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1. Introduction

Fractional stochastic delay differential systems (FSDDs) are mathematical models that
involve fractional derivatives, stochastic noise, and time delays. The fractional derivatives
represent the memory effects and long-range dependence in the system, while the stochastic
noise and delays account for the random fluctuations and time delays, respectively. FSDDs
find applications in many fields, including physics, biology, finance, and engineering. They
can be used to model systems with memory and randomness, such as anomalous diffusion
processes, fractional-order control systems with stochastic disturbances, and biological
systems with fractional-order kinetics and stochastic effects. They provide a powerful
framework for understanding and predicting the behavior of complex systems with mem-
ory, randomness, and time delays. See, for example, [1-6] and the references cited therein.

The averaging principle is a mathematical tool used to simplify the analysis of dynam-
ical systems with fast and slow time scales. It provides an approximate description of the
system’s behavior. In 1968, Khasminskii [7] first used the average principle to prove that the
solution of the average equation converges to the solution of the corresponding equation.
In [8], the authors presented an averaging method for stochastic differential equations
with non-Gaussian Lévy noise. Due to the importance of fractional calculus in theory and
application, many works have emerged that apply the averaging principle to fractional
stochastic differential equations (FSDEs). In [9], Xu et al. presented an averaging principle
for Caputo FSDEs driven by Brown motion. In [10], Luo et al. established an averaging
principle for the solution of a class of FSDEs with time delays. In the sense of a mean
square, Ahmed and Zhu [11] studied the averaging principle for the Hilfer FSDEs with
Poisson jumps. In [12], Ahmed investigated the periodic averaging method for impulsive
and conformable FSDEs with Poisson jumps. In [13], Wang and Lin consider the following
FSDEs
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{ CD[x(t) — h(t,x(t)] = f(t,x(t)) +g(t, x(1) %, te]=10,T],
x(0) = xo,

the main results obtained extend some of the works on the average principle of FSDES [9,10,14]
from L? convergence to LP convergence (p > 2). In [15], Yang, et al. studied the averaging
principle for a class of {-Caputo FSDDEs with Poisson jumps.
Recently, Li and Wang in [16] investigated the existence, uniqueness, and averaging
principle for the following Caputo-type FSDDEs:
(CDAY)(t) = AY(t) + BY(t—h) + f(t, Y()) + a(t,Y(t))dV;—ft), te],
Y(t) =®(t), —h<t<0 h>0.

Motivated by [11,13,16], we will study the following Caputo FSDDSs with Poisson
jumps

(CD§x)(t) = Ax(t) + Bx(t — o) + g(t, x(t), x(t — ) + x(t, x(t), x(t — 7)) we,
+ [y f(t,x(t),x(t — 0),0)N(dt,dv), te], (1)
x(t) =¢(t), —o<t<0,

where CDg is the left Caputo fractional derivative with % <a<1,]J=][0,T], A BeR"™>"
are two constant matrices, the state vector x € R” is a stochastic process, g : | x R* x R" —
R", x: ] xR"xR" - R"™ and f: ] x R" x R" x V — R" are measurable continuous
functions, W(t) is an m-dimensional Brownian motion on the probability space (Q), F, P).
Let (V,®,A(dv)) be a o-finite measurable space. Define N(t,dv) := N(t,dv) — tA(dv),
where N(t,dv) is the counting measure of the stationary Poisson point process p;.

In this paper, we first prove the existence and uniqueness of solutions of Caputo-type
FSDDSs (1) using the delayed perturbation of the Mittag—Leffler function and Banach
fixed-point theorem; secondly, we prove the averaging principle for Caputo FSDDSs (1)
in the sense of L, (pth moment) with inequality techniques. The main contributions and
advantages of this paper are as follows:

(1) The solution of the averaged FSDDSs converges to that of the standard FSDDSs in the
sense of L,, which is a generalization of the existing result (p = 2) of the averaging
principle for FSDDSs;

(2)  Stochastic inequality, fractional calculus, and Holder inequality are utilized to establish
our results very effectively.

(3) Our work in this article is innovative. Our result extends the main results of [16].

The remainder of this paper is arranged as follows. In Section 2, we give some
definitions and preliminaries. In Section 3, we prove the existence and uniqueness of
solutions for Caputo-type FSDDSs (1) with Poisson jumps. In Section 4, we prove that
the solution of the FSDDSs (1) converges to that of the standard one in the L, sense. In
Section 5, two examples are presented to illustrate our theoretical results. Finally, the paper
is concluded in Section 6.

2. Preliminaries

Let Y = LP(Q, F,P) denote the space of all F(t)-measurable, p-square integrable
n 1/p n

functions x : QO — R" with [[x(t)][ps := (Z E(|xi(t)|7’)) ,and ||x| = ¥ |x;| and
i=1 =1

n
[|All = max ) |a;j| be the vector norm and matrix norm, respectively. A process x :
<j<nj—1

[—0, T] —;I[jP(Q, F,P) is said to be F(t)-adapted if x(t) € Y.
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Definition 1 ([17]). Let a > 0and f be a real function defined on [a, b]. The left Riemann—Liouville
fractional integral operator of order w is defined by

B0 = i [ -9, 1> ©

a

Definition 2 ([17]). Letn —1 < a < nand f € C"([a, ]). The left Caputo fractional derivative
of order  is defined by

EDIFE) = ()0 = gy [ (=9 @ 10 O

where n = [a] + 1.

Definition 3 ([18]). The coefficient matrices Qx(s), k = 0,1,2, ..., satisfy the following multivari-
ate determining matrix equation

QO(S):Qk(ir):G’ Ql(O)II, k:0/1/2/"'/ SZO,T,ZT,"',

Qri1(s) = AQk(s) + BQk(s—1), k=0,1,2,---, s=0,7,21,--,

where [ is an identity matrix and © is a zero matrix.

Definition 4 ([18]). Delayed perturbation of two parameter Mittag—Leffler-type matrix function

XA Bﬁ generated by A, andB is defined by

O, te[-0,0),
I, t=0,
A,B . patp—1 t (7)506+/3—1
X pt) = Z Qit1(0) g + Z Qi1(o )Tﬂg) (4)

in+p—1
ot ‘ZOQiH(P(T)%, po<t<(p+1)o.
i=

From [18], we can easily obtain the following definition.

Definition 5. A R"-value stochastic process {x(t) : —o < t < T} is called a solution of (1) if
x(t) satisfies the following form:

X:,“fl<t+cf¢< o)+ [° XAE (t—5)[CD" . ¢)(s) — Ad(s)]ds
t—

 Jo Xgia(t = 9)g(5,x(s), x(s = 0)ds
x(t) = +f0 Xa(t = $)x(s,x(s), x(s — @) )dW(s) ®)
—i—fo XeB (b —5) [, f(s,x(s),x(s — o), 0)N(ds,dv), te],

¢(t), te[-0o,0],
where x(t) is F (t)-adapted and E(ffg lx(8)]|Pdt) < o0
Lemma 1 ([19]). Foreacht >0,0<a <1,0< B <1landa+ B > 1, one has

X225 (D] < 7 Eq g ((IIAI -+ [IBIDE), )

ou,B

where Eq p(z) = Y37 1"(#:-/5)’ z € R is the Mittag—Leffler function.
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Lemma 2. Foranyp > 2, a € (1 — %,l) and u > 0, we have

t B _ I'(pao —p+1 _
/0 (t=5)P PEpa—pr11 (us™ PH)ds < (pyp)EWpH/l(WW P, )

where T(a) := [ s*~e~*ds is the Gamma function.

Proof. Let y > 0 be arbitrary. Consider the corresponding linear Caputo fractional differ-
ential equation of the following form

DN x(t) = pa (). ®)

From [20], it is easy to know that the Mittag—Leffler function Ep,_ 41,1 (utP*P*1) is a
solution of (8). So, the following equality holds:

t
Epups11 (ut" 7)) =1+ W /o (= )P P Epa—pyr1 (usP* P )ds,

which completes the proof. [

Lemma 3 ([21,22]). Let ¢ : R+ x V — R" and assume that

t
/ / 16(s,0)|PA(dv)ds < o, p > 2.

0 Jv

Then, there exists D) > 0 such that

P
E( sup )
0<t<u
< D,,{E(/OM /V |¢(s,v)|2A(dv)ds>2 +E/O” /V|4)(s,v)p)x(dv)ds}.

Lemma 4 ([23]). Let u,v be two integrable functions and g be continuously defined on the domain
[a,b]. Suppose that

/ot /V $(s,0)N(ds, dv)

©)

(1)  u and v are non-negative, and v is non-decreasing;
(2) g is non-negative and non-decreasing.

If
u(t) < o(t) +g(t) | (¢ - o (),
then
u(t) < o(t)Ex(g(H)T(a)(t —a)*), Vte [a,b],
where E,(+) is the Mittag—Leffler function.

To study the problem (1), we impose the following conditions:
(H1) For each x1,x3,y1,y2 € R" and t € ], there exist two constants C;,C, > 0
such that

lg(t x1,y1) — &(t, x2, y2)IP V || (t, x1,y1) — x(t, x2,y2) ||
V/V £ (£, x1,y1,0) — f(tx2,¥2,0)[|PA(dv) < CF (|lx1 — x2||P + [ly1 — v2P),

where || - || is the norm of R”, x Vy = max{x,y}.
(H2) Let x(-,0,0) and f(-,0,0,0) be essentially bounded, i.e.,

|lx(-,0,0)||c0 :=ess sup |[x(£,0,0)| < +oco, |f(-,0,0,0)|c0 :=ess sup | f(t0,0,0)| < +oo,

te[0,00) te[0,00)
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and g(+,0,0) is L” integrable, i.e.,

T
gl = /0 Ig(,0,0)[[Pdt < +co.

3. Existence and Uniqueness Result

Let H? ([0, T]) be the space of all the processes x which are measurable, F (t)-adapted,
and satisfied that || x||gy := sup |[[x(t)||ps < co. Obviously, (HP ([0, T]), || - ||m») is a Banach
0<t<T

space. Set y = ||A|| + ||B|. For eacht € [—c,T] and ¢ € C(|—0,0],R"), we define an
operator 7 : HP ([0, T]) — HP([0, T]) as follows :

(T)(0) = X[+ 009(—0) + [ XER (15D 2 9)(6) — Agls)lds
/ XAB (£~ 5)g(s,x(s), x(s — 0))ds
/ XAE (= s)x(s, x(s), x(s — 0))AW(s)
+ / XAE(t—s) /V f(s,x(s), x(s — 0),0)N(ds, do).

(10)

Lemma 5. Let 1 — % < a < 1. Assume that (H1) and (H2) hold. Then, the operator T is well
defined.

Proof. For any x € HP ([0, T]), by (10) and the following elementary inequality,

m
<mP 'Y |la|P, a4 €R",i=1,2,..,m. (11)
i=1
we have
— A,B
I(Tx)()]lhs < 57 'E(IX20 (t+ 0)p(—0)||P)

r p>
) » (12)
+5P—1E< / XA (t - $)(s, x(s), x(s — ) ) AW (s) )
P
)

+5p_1E< / XAE (t—s) /fsx —0),v)N(ds,dv)
=Lh+DLh+ I3+ 14+ Is.

518 ( | [1 XA - 9ICD%0)(9) - Aglo)ls

+5plE< / X?aBa )8(s, x(s),x(s — 0))ds

For I;, from Lemma 1, one has

Iy = 5P B[ Xpu (F+ 0)g(=0)lIP) < 5P E(IX00 (t+ o) [P ¢(=0)|1P) 13)
< 5P p(=0) 1P (Eaa (7(T +0)%))P.
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For I, by Lemma 1, Holder inequality, and « > 1 — %, we obtain

)
0 p—1

<50t [0 - olrasm( 0108000 - apellias) 09
-

L (T+o)r p+1 "
<5 12O T (E (1T + ),

=515 (] [ XA 9D, 9)(6) - Ap(oas

- p-1
where 1 +1 =1and & = ([, (CD*,9)(s) = Ag(s)|Jids)" < oo.
For I, applying (H1), (H2), Holder inequality, Lemma 1 and Jensen inequality, one has

p
)
<5t ([ Xt |qu) ~ (/ (s x(5) (s = ) = 8(5,0,0) + g(6,0,0) s

< 5P 1(/ #EDE, o (u(t — 5)* )qu)
2 [ llg6s,3(5), s~ @) ~ gl 0,0)Pds + [ g(s,0,0)174s

I3 =5~ 1IE<H/ XUM (t—s)g(s,x(s),x(s —0))ds

(15)

1 Tax—q+1 % t p t
<10 BT (o ) B [ LI + s = s + [ Lg(s,0,0) s
p
Tae—q+1 \ q
p—1 o\ p p p q
<10 (1) (g ) (TC @I + ol + sl ).

since

sup E|x(t—1)[|7 <maxq sup E[p(t)[|7, sup E|x(t)[
0<t<T —7<#<0 0<t<T

= max{ [¢11%, 1l } < 917+ 1*llE
For 14, by using (H1), (H2), Cauchy-Schwarz inequality, Ito’s isometry, Lemma 1, and

Jensen inequality, we have
2)5)
B (] IXA =5 Pl x(0), (s — o)) s
( 1724 (/ X8~ 9P Iets, <s>,x<s—a>>|Pds)”) (16

< 5p17} 1E(/ |XAZ (¢t~ 5)] |P||K<s,x<s>,x<s—a))HPds)

Iy = 5P~ 1E< H/ X?aBa t—s)k(s,x(s),x(s —0))dW(s)

LSS

N

| /\

<5 T8 S (P [ (6 IR + lxls — )lP) + (50,00 P )

_ 1orirret

a\p (P p p . p
< 71 Ewa (YT*)P(CY 2%l + [10117) + [1%(+, 0,0)[|oo)-

For I5, using (H1), (H2), Lemmas 1, 3 and Jensen inequality, we obtain
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Is = 5P~ 1E<H/ /X?fa (t—3)f(s,x(s),x(s —0c),v)N(ds,dv) P>
§5P1DPE</ / |X{;‘“Ba t—s 2fz(s x(s),x(s—(7),7))/\(070)015)g
+571D,E (/ / I XNEB (t—3)PfP (s, x(s),x(s—a),v))\(dv)ds)
<5/7'D, Tfl—i—l (/ |X2B (t—s) |”/f7’ s, x(s (s—a),v))t(dv)ds) (17)

< 577D, (T5 7+ 1)2 B (97
‘E(A%ﬁ_ﬂw_qqﬂu@nw+HAs—amm+wﬂaaaonﬂ%)

107 1D, (T2~ 1 4 1) TP P+
<
- pe—p+1

Ena(YT*)P(C (2]l x5 + 19117) + 11£(-,0,0,0)[1%).

Submitting (13)—(17) into (12) implies that || 7 x||gr < oo. Thus, the operator T is well-
defined. O

Theorem 1. Let 1 — % < a < 1. Assume that (H1) and (H2) hold, then (1) has a unique solution
x € HP([0, T)).

Proof. For T > 0, we choose and fix a constant y > 0 such that
P
> 230 1C By u (YT*)P(T7 + (Dp + 1)T2 1+ T (pa — p+ 1). (18)

On the space H ([0, T]), we define a weighted norm || - ||, as below

Iﬂw=ﬂm< E(x(DIF) 07 vx € BP([0,T)).

te[0,T] Epa—pt1,1(pt?* P

Similarly to Theorem 1 in [18], it is easy to know that the norms || - |[g» and || - ||, are
equivalent. Hence, (HF([0,T]), | - [|,) is a Banach space. We can easily prove that 7 :
H? ([0, T]) — HP([0, T]) defined in (10) is uniformly bounded operator by Lemma 5. Next,
we only check that 7 is a contraction operator.

Firstly, by using Holder inequality (H1) and Lemma 1, we obtain

p

| R = 91505, x(5 = ) = g(5,y(5)y(s )

< ([ 1908) " [ IR e~ )17Vt 56), 56— ) (5405 4G5~ ) P

p

a /ot(f = )P B (7 (= 5)*)P[Ig (s, x(s), x(s —0)) = g(s,y(s), y(s — 0))||Pds

< T (9] [ (6= 9P (a(s) ~ y(O)IP + (s = 0) — y(s = 0) )

(19)

IN

Secondly, similarly to the Proof of (16), one has
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p

H/ X?aBa t—s) x(s),x(s —0)) —x(s,y(s),y(s — 0)))dW(s)

< TE [V XA = )P (s, 2(5), (5 = ) = K5, y(6),y(s — )]s

< T B (T [ (= )" HICH(x(s) ~ y(S) P + (s = o) — y(s — 0) ) “
< T Ea (TP [ (6= 9P P(Jx(s) ()17 + Ix(s ~ 0) s — )| )ds.
Thirdly, similarly to the Proof of (17), we obtain
| [ xas (), (s~ 0),0) — £(5,y(5),y(s — @), 0)) N (ds, o)
<Dp( IS / (s, x(5) x(sa)m)f(s,y<s>,y<sa>,v>||2A<dv>ds)g
Dy [ XA =91 [ 17(5,(5), (5~ 0),2) = fls,y(5) s — ), ) PAdo)ds eh
< Dp(rE 1) [LIXAR(T =) [ 7G5 x() /0) = £(5,(5),y(s = 0),0) |"A(do)ds
< DT 4 DB (T [ (6= 9P P(lx(5) = y&)IP + (s — 0) — (s — ).
For each x,y € H?([0, T]), from (10), (11), and (19)-(21), we have
E(ITx() ~ Ty(H)]1?)
<3 1E(|/ XL (65 (g(5,(6), x5~ ) — gl w9 s — )| )
3718 [ X80 = ) (5, (6), 5 - 0)) ~ x(5,99) s~ aw s
#3718 [ X80 —9) [ (7660, 0,00 = fs,v(6)y(s — )0 N, o))
(22)

< 3P T CPEy (1T / (t = s)P@VE(|x(s) = y(s)[1” + [[x(s — o) —y(s — o||P)ds
+ 3P AT L By o (7 TP /O (£ — )P PE(|x(s) — y(s)[1P + [|x(s — o) — y(s — o||P)ds
43P 1CI Dy (T 4 1) Egp (1T%)7 /Ot<t — )P PE(||x(s) — y(5) [P + [|x(s — &) — y(s — o||P)ds

— w/ot(t — $)PPE(|x(s) — y(s)|IP + |lx(s — o) — y(s — o||P)ds,

where

P
W 1= 3P CP Eq o (YT*)P(TT + (D) +1)T2 "' 4 D).

For t > 0, one has

/t(t s) ||x s—0)—y(s—o)|Pds = / /(t—s)p(“*l)Hx(s—a)—y(s—U)H’”ds
_/ e x(s — o) — y(s — o) ||Pds (23)
=/0t (=0 = D) — y ()P
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From Lemma 2, combining (22) and (23) for each t € [0, T], we obtain

E(ITx() - Ty@®)|7)

Eprxprrl,l (.”tptx_p—H)

w t ) i
=E o (i) /0 (= )P PEpypyr,1 (s P )ds||x — yll}
pa—p+1, .
w t—o pa—p pa—p+1 p
T Byt (u(t— ) ) /o (t =0 = )P PEpu—pi11 (pu )dul|x —y|’
pa—p+1,

< 2wl (pa — p+1)

_ p
i Yl

I
which implies that
1T =Tyl < pllx =yl

1
2wl (pa—p+1) ) »

where p = ( i

Based on (18), one can obtain p < 1 and the operator 7 is a contractive. Thus, (1) has
a unique solution using the Banach fixed-point theorem. This completes the proof of
Theorem 1. O

4. An Averaging Principle
To show the averaging principle for FSDDEs (1), let us consider the following standard
form of (1)

vet) = XA (14 0)p(-0) + [ X1 9)[CD* - 9)(5) — Ap(s)is
—i—e/ XM,X (t —5)g(s, xe(s), xe(s — 0))ds
+VE [ XA (= 9)x(s xe(5) x5 — )W ()

Jrﬁ/o X{;‘,fa(t—s)/Vf(s,xe(s),xe(s—a),v)N(ds,dv),

(24)

where € € (0, €] is a positive small parameter with €y being a fixed number.

Consider the averaged form which corresponds to the standard form (24) as follows :

ol

elt) = X2 (14 0)p(~0) + [ XA (1= 9)[CD* - 9)(5) — Ap(s)is
e [ XA = 9806, e(s) vels — )i
+VE [ XA = R, 1e(s) (s — )W ()
+ Ve / XAt =3) | F(s,0e(),vels = 0),0)N(ds, do),

(25)

where ¢ : R" x R" — R", & : R" x R" — R™™,and f : R" x R" x V — R" satisfying the
following averaging condition:

(H3) Foreach t € ], x,y € R", and p > 2, there exists a positive bounded function
¢i(-),i=1,2,3 such that

1t X
;/0 18(s,%,y) = &(x, y)[[Pds < 1 (£) (1 + [|x[|” + [ly[I"),
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t /Ot (=) (k(s, %, ) = &R(x, ) [Pds < @a(£)(1+ [|x]|P + [ly[17),

%/Ot (/V 1t = )" (f(s,x,y,0) —f(x,y,v))ll”?t(dv))ds < @s()(1+ |x]IP + [lylIP),
where th—>r£10 pi(t)=0,i=1,2,3.

Theorem 2. Assume that (H1)—(H3) are satisfied. Then, for a given arbitrary small number 6 > 0
p>2withl— % <w <1, thereexist L >0, e € (0,e0] and B € (0,1) such that

E sup  |xe(t) —ye(t)[P ] <6, (26)
te[—t,Le P]

foralle € (0,€1].

Proof. If p = 2, it is easy to prove that (26) holds using method similarly to that in [20]

In the following, we will only consider the case of p > 2. From Equations (25), (26)
and inequality (11), we obtain

14
Ixe(t) = ye(D|[P < 3P~ e?

/ Xonoa(t = 5)[g(s, xe(s), xe(s — ) = §(¥e(s), ye(s — 0))]ds

P
+3rleh

[ XA = 95, 2e5) s = ) = Rels), s — @) AW @7)

P
3P les

/ Xt =) [ [F(s xe(s), %e(s = 0),0)) = Fl3e(s), wels = ),0))]N s, do)

Foranyt € [0,u] C

E <Os<1t11<3 [|xe(t) — ye(t)||’7>

< 3plepIE< sup

[0, T], taking the expectation on both sides of Equation (27), we have

)

/0 Xt = 8)[K(s,%e(5), xe(s — 7)) = R(ye(s), ye(s — 0))]AW(s)

0<t<u

/O Xoaa(t = 5)[8(s, xe(s), xe(s — 7)) = §(ve(s), ye (s — 0))]ds

+37 1R < sup

0<t<u

P) (28)

+3p1€§E<sup /X?fa (t—s) /V[f(s,xe(s),xe(s—a),v))—f(xe(s),xe(s—a) )N (ds, dv) p)

0<t<u

=1L+ L+ I

Applying Jensen’s inequality, we obtain

I <6Ple? -E| sup
0<t<u

/ Xoaa(t = 5)[8(s,%e(s), xe(s — 7)) = §(5, ¥e(s), ye(s — ) ]ds

)
P) (29)

0<t<u

6!l E( sup || [/ XA = 9)[g(6,9e(5) s — ) — 4y (s) el — )l

=11 + L.

Thanks to Holder inequality and (H2), we obtain
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u 4
I < 6P~ LeP (/ 1‘7ds)
0

<Oilt1§ / X (=) IP[18 (s, xe(s), xe(s — o)) —g(srye(s),ye(s—0))||”d5)
< 6P lePyp~ leEa,,X('yu"‘)p
']E< sup /t(t—S)’”("‘D[llxe(S)—ye(S)l”+||xe(5—f7))—ye(s—ff))ll”]d5> (30)
0<t<u /0

< 6”_1epu”_1CfEa,a (yu*)?

'/OM(M—S)”("‘_U E( sup ||xe(9)—ye(9)||”> +E< sup IIxe(Q—U)—ye(G—U)II’?)]dS

0<60<s 0<60<s

u
<26V LePuP T LCY Eg o (yu®)? /0 (ts)p("‘_l)E< sup ||xe(8) — ye(9)|”>ds,

0<6<s
since
sup [[xe(8 —T) —ye(0 —T)[|P < sup [[xe(8) —ye ()P

0<0<s 0<60<s

Applying Holder inequality, we obtain

2
I <6/ 1P -E( sup (/ HXUM (t—s9)] |‘7ds>
0<t<u

] 556D s = @) = §(0e(5)wels ~ )P )

p
qa—q+1 N\ q (31)

< gP—1gP ayp (M

—6 eElxrlX(’Yu) <qa_q+1)

1 +E< sup Iye(t)||p> +E< sup |[|ye(t — U)II”)]
0<t<u 0<t<u

= 6" [ @1]lwMi(ga — g+ 1) Vel Egq(yu®)Pub,

]| prfleo

here [|1ljeo = supjo,y) l91(1)], M1 =1 +E< sup IIye(t)I”) +E< sup |[ye(t - T)|p>-

0<t<u 0<t<u
p)

P> (32)

In view of the Burkholder-Davis—-Gundy’s inequality, Holder’s inequality and Doob’s
martingale inequality, and (H1), one has

For the second term I, we have

/Xo'zxoc (£ = 8)[K(s, xe(s), xe(s — @) = x(s,ye(s), ye(s — 0))|dW(s)

L < 6”_16’271[*3( sup

0<t<u

t

+ 6p_1€gE< sup /0 X;‘,&E,;a(t —5)[x(5,ye(s), ye(s — ) — R(ye(s), ye(s — 0))]dW(s)
0<t<u

= Ip1 + Ip.
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LSS

Iy < 6pl€gE( sup /O HX(Irana t—s) H |x(s, xe(s), xe(s — 7)) _K(Sr]/e(s)/]/e(s_‘7))||2d5>

0<t<u
14 t P %2%
<6l leR sup (/ 1#’2ds)
0<t<u 0
IR P x5, 3 = ) = () vels — o)) P ) ) )

< 67’_167Cfu7_ Epo(yu®)?
'/Ou(M*S)’”“_” E( sup ||xe(9)ye(9)|”> +E< sup ||xe(90)ye(90)|”>]ds

0<6<s 0<6<s
u
<2. 6P—1e%c§’u%—1gm(w)iﬂ/0 (1 — s)’”“"”E( sup [xe(6) — ye(9)||”> ds.
0<0<s

Applying (H3) and an estimation method similar to Equation (33), we obtain
I < 6" letut E ( sup  [* XA = )17 (s, 7e(5), ve(s = 0)) = £(3els), yels — ) ||Pds>

0<0<u
1+E< sup |ye<t>|”> +E< sup |ye<t—a>|r’>] 9

0<t<u 0<t<u

< 67 er U T By u (yu®)Put]| 2o

_ P /4
= 6/ "M 92| o€ ? En e (yu™)Pui2.

For the third term I3, we have

I < 3P-1ehE sup
0<t<u

t
43P leIR sup/
0<t<u /0

= I31 + I5.

/ Xoaa(t = $)[f(s,%e(s), xe(s = 0),0) = £(5,Ye(s), Ye(s — ), 0)IN(ds, dv)

)
”) (35)

AX?aBa(t—S)[f(sfl/e(S),ye(S—ff), v) = f(ye(s), ye(s — @), 0)]N(ds, dv)

From Lemma 3, similarly to the Proof of (17), one has

N

I < 3 D)E (sup [ ] ixag s ||f<s,xe<s>,xe<s—a>,v>—f<s,ye<s>,ye<s—a>,v>||2A<dv>ds>

0<t<u

+3p1€2E<sup ]I ), xe<s—a>,v>—f<s,ye<s>,ye<s—a>,v>||m<dv>ds>
0<t<u
<3 led (Dt~ 41)
E<sup / [ IXEE =915, e o), xe<s—a>,v>—f(s,ye<s>,ye<s—o>,v>||wdv>ds> (36)
0<t<u
(DpW '+ 1) B (u®)PCY

-/Ou(u—S)”“*” E( sup ||xe(9)—ye(9)||”> +E< sup ||xe(9—0)—ye(9—0)||”>]ds

0<0<s 0<0<s
u
g2~3p_1Cfeg(Dpu§_1+1)Ea,a('yu“)p/0 (t—s)”"‘"’E(OSL;E ||xe(9)—y€(9)||”>ds.
<0<s

Moreover, by (H3), we also have
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132<3v—1e5DpE<suP [ 1A= P pelo), ye<s—o>,v>—f(ye<s>,ye<s—a>,v>||2A<dv>ds>
0<t<u
—1 F PN
+3 1621@(0535 [ [ It = P56, ye<>ye<s—a>,v>—f<ye<s>,ye<s—v>,v>||m<dv>ds>
SISu
p—1.2 P
<3P le2(Dpu2"" +1) (37)
(&“E [ 1= 1P e >ye<s—o—>,v>—f<ye<s>,ye<s—a>,v>||wdv>ds>
t<u
< 31t (Dput ™!+ 1) By ) u] 3]l | 1 +E< sup ||ye<t>up) +E< sup ||ye(t _@”p)]
0<t<u 0<t<u
< 377" M | g o€ Ena ()P (Dpu + ).
From (28)—(37), for u € (0, T], we obtain
u
E( sup () - ye<t>|P> < AW +B(w) | (u- s)W-PE< sup () —ye<e>|*’>ds, 38)
0<t<u 0 0<0<s
where
Au) = 6/ gu M (g — g + 1)~ e? By (yu)Pu
67 M |92 o ® Eq(yu)Pu?
+ 37 M g3 oot Ena(yu)? (Dyut + ),
and

B(u) =267 ClePEga(yu®)PuP ™ + 267 Clek By (ut)Puub 1

42377 1C e By o (yut)P (Dpu” ' 4 1).

By using of Lemma 4, we obtain

E( sup [[xe(t) - yew) < A()Eyga1yn (BOOT(pla — 1) + 1@ D+1),

0<t<u

Choose L > 0 and B € (0,1) such that, for all t € (0, Le "] C (0, T] satisfies the following

]E< sup |xe(f)—ye(f)||”>SA(e)Ep(a—1)+1(B(€)T(P(0¢—1)+1))€1ﬁ,

0<t<Le
where
A(€) = 6" Eqa(1T*)” | 1]loMi (g — g + 1)~ P~V LPeer(1=eh)
+ 67 My || @2|ooEa e (YT*)PL2€Z(1-P)
+ 3P My || @3 | o Eaa (YT)P (D L2 2 (1-F) 4 Le37F),
and

Ble)=2- 6P‘1CfEa,a(yT"‘)PLP‘leP—(P‘l)ﬂ
+2~6”_1CfEM(’yT"‘)pLg_le%_(g_l)ﬂ
4230 CPEy o (7 T)P (D, L 15~ (3-10F b)),
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are two constants. Thus, for any given number § > 0, there exists €; € (0, o] such that, for
eache € (0,e]and t € [0,Le™P] C ],

E( sup IIxe(t)—ye(t)lp) <.
te[0,LeF)

O

Remark 1. If p = 2 and f = O, then FSDDEs (1) reduces to FSDDSs (1.1) in [16]. Therefore,
Theorems 1 and 2 generalize the main results of [16].

By using Theorem 2 and Chebyshev-Markov inequality, we can obtain the following
corollary.

Corollary 1. Assume that (H1)-(H3) are satisfied. Then, for a given arbitrary small number 6 > 0,
p > 2with1— % < & < 1, then for arbitrarily number § > 0 such that for L > 0, €1 € (0, €]

and B € (0,1) satisfying for all € € (0, €1]

lim]P’( sup ||xe(t)—y€||p>5_) =0.

€20 \tejo,Le b

5. Applications

In this section, we will provide two examples to illustrate the application of our
main results.

Example 1. Consider the following Caputo-type FSDDSs with Poisson jumps:

(CD%9x)(t) = Ax(t ) + Bx(t —0.4) + g(t, x(t), x(t — 0.4)) +x(t, x(£), x(t — 0.4)) 22()
+ [, f(t,x(t), x(t — 0.4),0)N(dt,do), t€],
x(t) = (), —04 g t <0,

(39)
wherex = 0.9, 0 = 0.4, [ = [0,4], x(t) = (x1(t), x2(t))T, and

03 01 02 0.1
A= ( 0.15 0.2 > b= ( 0.15 025 ) P(t) = (

)

e 2t sin(xq(t)) + e~ sin® tarctan(xq (t — 0.4)) +
e 2t cos(xa(t)) + e~ ! cos® tarctan(xa (t — 0.4)) +

N—= =

and

=

g(t,x(b), x(t —0.4)) = (

NN

).

([ Le arctan( 1(t)) + Lem? cos? tsin(xy (t — 0.4)) + 1
Kt x(t), x(t = 04)) = ( 4% Esin(xp(t)) + 3e = sin? tarctan(le(t —04))+ ’ >'

[SSITETNY

and

and

F(tx(8),x(t - 04),0) = (

Foreach x(t),y(t) € Yand t € [0, T|, we have

QIR
\—/
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It x(0), 1t —04)) = g1, y(1),y(t — 04))]
01() =y ()] + (= 0.4) — (= 04)| + glvalt) — ya(0)] + glalt —04) = (i ~ 0.

IN

IN
wHw\H

(

=

(t) —y(®) |+ [[x(t — 0.4) —y(t — 04)]).
Thus )
gt x(£), x(t — 0.4)) — g(t,y(t),y(t — 04))[° < %(HX(O —y(O)IP + [lx(t — 0.4) —y(t — 04)[]),

which implies that the function g satisfies the assumption (H1). Similarly, we can obtain that the
functions x and f satisfy the assumptions (H1) and (H2).

Let p = 3. By calculation, we have v = ||A|| + || B|| = 0.8, ||g]lLr = f04 llg(t,0,0)|3dt =
0.0651, [|x(+,0,0)||cc = %, [|£(-,0,0,0)||cc = 2, C1 = 5 and

== ([ 102006 -~ a0l as)
< (V2 0D 9l + 14061 i)
) -09 % )
(f/04 (H( 2rr(0011) 7 Oot(s — 1) 0'902; ) i H( 82? )
<2 ( /_ Oo,4<(2r(31.1)> : (s +0.4)015 4 0.61'5> ds>2 — 15722,

Hence, we may choose a suitable value y > 0 such that

)

2-32C3E09,09(0.8-4%%)3(4% + (D3 +1)2+ 1)T(0.7) < .
By Theorem 1, FSDDEs (39) have a unique solution x € H3([0, 4]).

Example 2. In the following, we consider the standard form of (39) as follows

(CDY9xe)t) = Axe(t) + Bxe(t — 0.4) + eg(t, xe(£), xe(t — 0.4)) + v/ex(f, xe (), xe(t — 0.4)) 20
+VeE [, f(t xe(t), xe(t — 0.4),0)N(dt,dv), te], (40)
xe(t) = ¢(t), —04<t<0,

where x¢(t) = (xl,e(t)/xz,e(t))T’ and

e 2t sin(xy¢(t)) + et sin® tarctan(xq ¢ (t — 0.4)) +
e 2 cos(xp¢(t)) + ge~* cos® tarctan(xp e (t — 0.4)) +

g(t,xe (1), xe(t — 0.4)) = (

)
)

QI —
NN

and

1,— 1,-2t .52 £ i —
k(b % (1), xe (£ — 0.4)) < i Parctan(xq¢(t)) + ze7% cos® tsin(xy ¢ (f — 0.4)) +
3¢

Esin(xpe(t)) + e 2 sin® tarctan(xp ¢ (t — 0.4)) +

We can easily check that the conditions (H1) and (H2) hold, and according to Theorem
1, FSDDSs (40) have a unique solution x, given by

[op\ LS TIE

and

f(t/ xe(t)/ xe(t — 04), ?J) = (

W= =
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xe(t) fx§43091<t+04>¢< 0.4) + 204 X3iE 5 0o (t —S)[CD% . 9)(s) — Ag(s)]ds

.....

+e fo X§4l,;0.9,0.9(t 5)8(s, xe(s), xe(s — 0.4))ds a
‘hffo Xi40900(t—5)K(s, xe(s), xe(s —0.4))dW(s)
Ve fy Xoa09,09(t —5) [y £(5,xe(s), xe(s — 0.4),0)N(ds, do).

By calculation, one has

1
$(xe(t), xe(t—0)) = = lim - . / f(s,xe(s), xe(s — 0))ds = ( Z ),
1
R(xe(t), xe(t —0)) = tli)Iglo% Ota(s,xg(s),xg(s —0))ds = < 2 >,
1
Fxe(t), xe(t —0),0) = tlLrglo% Otg(s,xg(s),xg(s —0),v)ds = ( é )

We are now checking that condition (H3) holds. In fact, one has

+ [ gt xes) xels = ) = gls) el — P s

Te 2 sin(x1e(s)) + }Le’s sin® sarctan(x (s — 0.4))
3672 cos(x6(s)) + e cos® sarctan(xp ¢ (s — 0.4))

P
ds

1 gt
=31 Jy (e (|x1,e(s)| + |x2e(s)]) + e (Jx1,e(s — 0.4)| + [x2,e(s — 0.4)]))" ds
1 t
_ —ps . p
—3pt/0(e ([lxe(s) Il + [[xe(s — 0.4)[)P ds
2 14 p ! —ps
< S Uxe(®)I” + lIxe(s — 04)]| )/0 e Pods
_ 21—

3t (14 [lxe ()P + llxe(s — 0.4)[|7),

+ Fne- s)“—1<x<s,xe<s>,xe<s —0)) = #(xe(s), (s = )| ds

/ )&~ le=% arctan(x1¢(s)) + % (t — s)*1e ™2 cos? s sin(x1 ¢ (s — 0.4))
Tt “ Le=5sin(xp,(s)) + %(t s)vle sm2 sarctan(xpe(s —0.4))

P
ds

2P— t
p _ p _g\pa—p
< 2 Ure)P + lxels —0)17) [ -5
2 tPe—P (1 P 0.4)||P
ezt AF x4 lxels = 04)7),
and

% /t (/ et — s)"‘_l(f(s, xe(s), xe(s — 0.4),0) — F(xe(s), xe(s — 0.4),0) |”A(dv)> ds

1
3

A(dv)ds
- 1(2) A(V) /;(t—s)v(“-lms

t
5PA(V)

Sgaoprnet (At + lxels — 0.

Thus, (H3) is satisfied with
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p=1(1 — p—pt p—1 p
T : m and¢3<t):(;?uc5);(‘+/)1)6p

H== 7 =
¢1(t) 37 pt ;) = (pvc—erl)SP ,
Therefore, the conditions of Theorem 2 and Corollary 1 are satisfied. So, as € — 0, the origi-
nal solution x¢(-) — ye(+) in the sense of p square (p = 3) and in the probability, where

tPep,

Ye(t) :Xéfo.g,1(t+0'4)¢(_ )+f,004X614B()909( )[ D094+¢)(5)_A¢(5)]d5
+e fo X{ih000(t —5)8(We(s), ye(s — 0.4))ds
Ve Jy XGinons(t =)k ye< > ye<s—04>>dw<s>
)

+\/Efo X§4l,30.9,0.9 —5) [y f(Ye(s), ye(s — 0.4),v)N(ds, dv).
(42)

6. Conclusions

In this article, we established and proved the existence and uniqueness theorem for
solutions of Caputo-type fractional stochastic delay differential systems (FSDDSs) with
Poisson jumps. By utilizing Burkholder—Davis—-Gundy’s inequality, Doob’s martingale
inequality, fractional Gronwall’s inequality, Holder’s inequality, and Jensen’s inequality,
we proved the averaging principle for FSDDSs in the sense of L”. This provides an effective
stochastic approximation of the solutions of FSDDSs. Our method for fractional averaging
will be beneficial for the study of the dynamics behavior of FSDDSs. Our results enrich
the research field of fractional-order stochastic delay differential equations. Finally, we
provided two examples to show the usefulness of our results.
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