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Abstract: We study two quite different types of Terracini loci for the order d-Veronese embedding of
an n-dimensional projective space: the minimal one and the primitive one (defined in this paper).
The main result is that if n = 4, d ≥ 19 and x ≤ 2d, no subset with x points is a minimal Terracini set.
We give examples that show that the result is sharp. We raise several open questions.
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1. Introduction

Let X ⊂ Pr be an integral and nondegenerate variety defined over an algebraically
closed field K with characteristic zero. For any positive integer x, let S(Xreg, x) denote the
set of all S ⊂ Xreg such that #S = x. For any p ∈ Xreg, let 2p denote the closed subscheme
of X with (Ip)2 as its ideal sheaf. For each S ∈ S(Xreg, x), set 2S := ∪p∈S2p. We have
deg(2S) = x(dim X + 1). By the Terracini lemma ([1] Cor. 1.10), the zero-dimensional
scheme 2S is a key player for the study of the secant varieties of X.

Let T (X, x) denote the set of all S ∈ S(Xreg, x) such that ⟨2S⟩ ̸= Pr and dim⟨2S⟩ ≤
deg(2S) − 2 = x(dim X + 1) − 2, where ⟨ ⟩ denotes the linear span. The set T (X, x)
is called a Terracini set of the embedding X ⊂ Pr or the x-Terracini locus of X. These
Terracini loci are the sets at which a certain morphism connected to the x-secant variety
ramifies (see Section 6 for motivations). The integer x(dim X + 1)− dim⟨2S⟩+ 1 is the
dimension of the kernel of the differential of this map at a point associated with S ([1]
Cor. 1.10). Knowing that S /∈ T (X, x) guarantees that S is an isolated solution for the
X-rank problem of a sufficiently general p ∈ ⟨S⟩ (Section 6). In previous works, it was
clear that these sets T (X, x) (which are algebraic subsets for the Zariski topology) have a
rich geometry ([2]). Sometimes T (X, x) = ∅ for all x > 0, e.g., if X is a rational normal
curve ([2] Th. 1.1(i)). Assuming T (X, x) ̸= ∅ for some x, the minimal integer x, t(X, min),
such that T (X, x) ̸= ∅ is certainly important (see Remark 1 for an easy lower bound on it).

But not all Terracini sets are “equally interesting”. Take S ∈ T (X, x). Quite often,
there are integers y > x and S1 ∈ S(Xreg, y − x) such that S ∩ S1 = ∅ and S ∪ S1 ∈ T (X, y).
Indeed, the condition “dim⟨2(S ∪ S1)⟩ ≤ deg(2(S ∪ S1))− 2 = y(dim X + 1)− 2” is true
by the corresponding inequality for 2S and we only need ⟨2(S ∪ S1)⟩ ̸= Pr. This is true
for all p ∈ Xreg \ S if dim⟨2S⟩ ≤ r − dim X − 2, and this inequality is very often satisfied
in interesting ranges of integers x. In many cases, from a single S ∈ T (X, x), we obtain
larger sets that give T (X, y) ̸= ∅ for all y > x ([2] Th. 1.1(iii)). Take S ∈ T (X, x). We say
that S is minimal if dim⟨2S′⟩ = deg(2S′)− 1 for all S′ ⊊ S, i.e., if no proper subset of S is
Terracini. Let T (X, x)′ denote the set of all minimal S ∈ T (X, x). It is easy to check that
T (X, x)′ = ∅ for all x ≫ 0 (Remark 4). Thus, minimal Terracini sets are more important.
Of course, elements of T (X, t(X, min)) are minimal.
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Now assume that X is the image vd(Pn), n > 1, of the d-Veronese embedding vd :
Pn → Pr, r = (n+d

n )− 1 of Pn. We take finite sets in Pn instead of vd(Pn). For any positive
integer x, let T1(n, d; x) denote the set of all S ∈ S(Pn, x) such that vd(S) ∈ T (X, x). Fix
a line L ⊂ Pn and take S ⊂ L such that #S = 1 + ⌈d/2⌉. Since h0(OP1(d)) = d + 1,
dim⟨2νd(S)⟩ ≤ deg(2S)− 2. Since n > 1 and d ≥ 2, (1 + ⌈d/2⌉)(n + 1) ≤ (n+d

n ). Thus,
S ∈ T1(n, d; 1 + ⌈d/2⌉). This set S is not very interesting; it lies in a tiny part of Pn, and
this (many points in a tiny part) is the only reason to be an element of T1(n, d; x). Let
T (n, d; x) denote the set of S ∈ T1(n, d; x) such that ⟨S⟩ = Pn, i.e., Pn is the minimal
projective space containing S. A similar notation and assumption is available for Segre
embeddings of multiprojective spaces. Take S ∈ T (n, d; x). We say that S is minimally
Terracini and write S ∈ T (n, d; x)′ if dim⟨νd(S′)⟩ = (n + 1)#S − 1 for all S′ ⊊ S ([2]) . Note
that νd(T (n, d; x)′) = T (X, x)′ ∩ νd(T (n, d; x)).

In Section 5, we consider the following set: T̃ (n, d; x). Let T̃ (n, d; x) be the set of all
S ∈ T (n, d; x) such that h1(I2A(d)) = 0 for all A ⊊ S such that ⟨A⟩ = Pn. We say that
T̃ (n, d; x) is the primitive Terracini loci of the Veronese variety vd(Pn). Obviously,

T (n, d; x)′ ⊆ T̃ (n, d; x) ⊆ T (n, d; x).

In our opinion, the minimal Terracini locus is the most important one, and in [2] it
was shown how different T (n, d; x)′ and T (n, d; x) are. In the second part of this paper
(Section 5), we show how different the primitive Terracini locus is with respect to the other
ones. By the semicontinuity theorem for cohomology, the sets T (n, d; x)′, T̃ (n, d; x) and
T (n, d; x) are locally closed subsets of the set S(Pn, x) of all subsets of Pn of cardinality x.
In particular, it makes sense to speak about their dimension.

We prove the following result:

Theorem 1. Fix positive integers d, x such that x ≤ 2d. If x ≤ 2d − 1, assume d ≥ 17. If x = 2d,
assume d ≥ 19. Then, T (4, d; x)′ = ∅.

We have T (4, d; 2d + 1)′ ̸= ∅ and we classify all S ∈ T (4, d; 2d + 1)′ contained in a
(reducible) rational normal curve (Remark 8 and Proposition 2).

Remark 1. Take an integral and nondegenerate variety X ⊂ Pr. Recall the positive integer
t(X, min), which is a key invariant of the embedding X ⊂ Pr, and that every S ∈ T (X, min) is
minimal. Now assume X = vd(Pn), n ≥ 2, d ≥ 4. With this general definition (as discussed
in [2]), we would obtain t(X, min) = ⌈(d + 2)/2⌉ for all n > 1. Obviously, this is not interesting,
since in the applications, to see the difficulty of a problem, it is better to consider only multivariate
polynomials which are “concise”, i.e., such that there is no linear change in coordinates making
the polynomials depending on a smaller number of variables. With this restriction, Theorem 1,
Remark 8 and Proposition 2 solve the minimal x-problem for n = 4. For n = 2, 3, the problem was
solved in [2]. The case n = 2 was easy, while the proof of the case n = 3 was longer. In our opinion,
the proof of Theorem 1 is as short as possible with our technology. We stress that these tools are
useful for other problems (see the discussion of Question 5 at the end of Section 2).

A similar restriction should be added in the study of other important (for the applications)
embedded varieties, e.g., the multiprojective spaces (which are associated with tensors and partially
symmetric tensors) and Grassmannians (which are associated with antisymmetric tensors). For
tensors and partially symmetric tensors, it is equivalent to study exactly the concise tensors.

We recall the following conjecture ([2] Conjecture 1.2):
Conjecture 1: we have T (n, d; x)′ = ∅ for all x ≤ ⌊(nd + 1)/2⌋.
Question 1: Assume d large. Are all S ∈ T (4, d; 2d + 1)′ contained in a (reducible)

rational normal curve?
We know that T (4, d; ⌈5d/2⌉)′ ̸= ∅ (Remark 9).
Question 2: Assume d large. Is T (4, d; x)′ = ∅ for all 2d + 1 < x < ⌈5d/2⌉?
Question 3: Assume d large. Is T (4, d; 1 + ⌈5d/2⌉)′ = ∅?
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Question 4: Fix a positive integer e. Is there an integer d(e) such that T (4, d; x)′ = ∅
for all d ≥ d(e) and all ⌈5d/2⌉ < x ≤ e + ⌈5d/2⌉?

Conjecture 2: For all n, there is an integer d0(n) that has T (n, d; 2 + ⌊(nd + 1)/2⌋)′ =
∅ for all d ≥ d0(n).

In Section 2, we give the key definition (critical scheme) used in [2] and give several
results (and a question) on the Hilbert function of a zero-dimensional scheme Z ⊂ Pn.

Section 3 is devoted to the proof of Theorem 1. An outline of the proof is presented at
the beginning of the section.

In Section 4, we consider the range x > 2d: the range of the last four questions.
In Section 5, we consider T̃ (n, d; x). We give conditions on n, d and x in order to have

T̃ (n, d; x) ̸= ∅ and other conditions implying T̃ (n, d; x) = ∅. We classify the sets T̃ (n, d; x)
if x < 3d/2 (Theorem 3). The main difference between T (n, d; x) and T̃ (n, d; x) is that
T̃ (n, d; x) = ∅ for x ≫ 0 (Theorem 2).

In Section 6, we give the main motivations for the study of the Terracini loci. Several
tools used here and in [2] (in particular zero-dimensional schemes, not just finite sets) are
useful for other topics, e.g., the description of evaluation codes and the computation of
their minimum distance and higher Hamming weights ([3,4]).

The author thanks the referees for several helpful suggestions.

2. Preliminary Results

For any sequence {wi}, i ≥ 1 of non-negative integers, we say that {wi} is weakly
decreasing if wi ≥ wi+1 for all i ≥ 1.

A rational normal curve C ⊂ Pr is an integral and nondegenerate curve of degree
deg(C) = r. All rational normal curves of Pr are smooth and rational and they are the
nondegenerate curves of Pr of minimal degree.

For any projective scheme M, any effective Cartier divisor D of M and any zero-
dimensional scheme Z ⊂ M of the residual scheme ResD(Z) of Z with respect to D is
the zero-dimensional subscheme of M with IZ,M : ID,M as its ideal sheaf. We have
ResD(Z) ⊆ Z and deg(Z) = deg(D ∩ Z) + deg(ResD(Z)). For any line bundle L on M,
we have an exact sequence

0 → IResD(Z) ⊗L(−D) → IZ ⊗L → IZ∩D,D ⊗L|D → 0 (1)

Often, we will say that (1) is the residual exact sequence of D without mentioning Z and
L. Let Zred denote the reduction in Z, i.e., the set of all p ∈ M such that {p} ⊆ Z. The
set Zred is finite, and #S ≤ deg(Z) and Zred and Z have the same number of connected
components.

A key definition used in [2] is the notion of a critical scheme.

Definition 1. Take a finite set S ⊂ Pn such that h1(I2S(d)) > 0. A zero-dimensional scheme
Z ⊂ Pn such that Zred ⊆ S, each connected component of Z has degree ≤ 2, h1(IZ(d)) > 0 and
h1(IZ′(d)) = 0 for all Z′ ⊊ Z is called a critical scheme of S.

Remark 2. Take a finite set S ⊂ Pn such that h1(I2S(d)) > 0. There is a critical scheme of S ([5,6]
and [2] Lemma 2.8 and Definition 2.9). If S ∈ T (n, d; #S)′, then Zred = S ([2] Lemma 2.11). Let
D ⊂ Pn be a hypersurface. Set t := deg(D). Assume Z ⊈ D, i.e., assume Z ∩ D ̸= Z. Since Z is
critical, h1(ID∩Z(d)) = 0. Hence, h1(D, IZ∩D,D(d)) = 0. The residual exact sequence of D gives
h1(IResD(Z)(d − t)) > 0.

Using Remark 2, we obtain the following lower bound for the integer t(X, min):

Lemma 1. Let X ⊂ Pr be an integral and nondegenerate variety. Let γ(X) be the minimal
degree of a zero-dimensional scheme Z ⊂ Xreg such that dim⟨Z⟩ ≤ deg(Z)− 2 and ⟨Z⟩ ̸= Pr,
with the convention γ(X) = ∞ if there is no such Z (e.g., for a rational normal curve). Then,
t(X, min) ≥ ⌈γ(X)/2⌉ if γ(X) is finite while T (X, x) = ∅ for all x if γ(X) = ∞.
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Remark 3. Often, it is easy to compute γ(X). For instance, if X ⊂ Pr is the image of the d-Veronese
embedding of Pn, d ≥ 3, then γ(X) = d + 2.

Remark 4. Let X ⊂ Pr be an integral and nondegenerate variety. Set n := dim X. By the
Terracini lemma ([1] Cor. 1.10), we have T (X, x)′ = ∅ for all x > ⌈(r + 1)/(n + 1)⌉ (see [2]
Prop. 3.5) for the case of the Veronese varieties. Now assume that X is secant-defective and let k
be the first integer such that the k-secant variety has dimensions of at most k(n + 1)− 2. In this
case, T (X, k)′ contains a general S ∈ S(X, k) by the Terracini lemma ([1] Cor. 1.10 (b)). Thus, in
this case, k is the maximal integer y such that T (X, y)′ ̸= ∅. By the semicontinuity theorem for
cohomology, we have T (X, k) = S(Xreg, k).

Remark 5. Fix positive integers d, z and a zero-dimensional scheme Z ⊂ P2 such that deg(Z) = z
and h1(IZ(d)) > 0.

(a) Assume z ≤ 3d. Then, Z is in one of the following cases ([7] Rem. (i) at. p. 116):

(i) There is a line L such that deg(L ∩ Z) ≥ d + 2;
(ii) There is a conic D such that deg(D ∩ Z) ≥ 2d + 2;
(iii) z = 3d and Z is the complete intersection of a plane curve of degree three and a plane curve of

degree d.

(b) Assume z ≤ 4d − 4 and z ≥ 16. Then, either Z is as in one of the cases (i), (ii) or (iii) of
part (a) or there is a plane cubic C such that deg(Z ∩ C) ≥ 3d + 1 or z = 4d − 4 and Z is the
complete intersection of a plane curve of degree four and a plane curve of degree d − 1 (case s = 4
of [7] Cor. 2).

(c) Assume z ≥ 25 and z ≤ 5d − 11. Then, either Z is as in case (b) or there is W ⊆ Z such
that 4d − 4 ≤ deg(W) ≤ 4d + 2, h1(IW(d)) > 0 and W is contained in a plane curve of degree
four (case s = 5 of [7] Cor. 2).

(d) Assume z ≥ 36 and z ≤ 6d − 19. Then, either Z is as in case (c) or there is W ⊆ Z such
that 4d − 4 ≤ deg(W) ≤ 4d + 2, h1(IW(d)) > 0 and W is contained in a plane curve of degree
four or there is E ⊆ Z such that 5d − 10 ≤ deg(E) ≤ 5d, h1(IE(d)) > 0 and E is contained in a
plane curve of degree five (case s = 6 of [7] Cor. 2).

The following result is well-known for finite sets, but we need it for certain very mild
zero-dimensional schemes:

Proposition 1. Assume d ≥ 12. Let Z ⊂ P3 be a zero-dimensional scheme such that ⟨Z⟩ = P3,
its connected components have degree ≤ 2, z := deg(Z) ≤ 3d + 3 and no line contains at least
⌈(d + 2)/2⌉+ 1 points of Zred. Assume h1(IZ(d)) > 0. Then, one of the following cases occurs:

(i) There is a line L ⊂ P3 such that deg(L ∩ Z) ≥ d + 2;
(ii) There is a conic D such that deg(D ∩ Z) ≥ 2d + 2;
(iii) There is a plane cubic T such that deg(T ∩ Z) = 3d and T ∩ Z is the complete intersection of

T and a degree d plane curve;
(iv) There is a plane cubic T′ such that deg(T′ ∩ Z) ≥ 3d + 1;
(v) There is a (reducible) rational normal curve C ⊂ P3 such that deg(C ∩ Z) ≥ 3d + 2.

Proof. If z ≤ 3d + 1, then Proposition 1 is just [2] Proposition 6.1. Assume 3d + 2 ≤ z ≤
3d + 3. Since dim |OP3(2)| = 10, any zero-dimensional scheme of degree ≤ 9 is contained
in a quadric.

Take a plane H1 such that z1 := deg(Z ∩ H1) is maximal. If h1(IH1∩Z(d)) > 0, then
we use Remark 5. Thus, we may assume h1(IH1∩Z(d)) = 0. The residual exact sequence of
H1 gives h1(IResH1 (Z)(d − 1)) > 0.

(a) Assume z1 ≥ 5. Thus, deg(ResH1(Z)) = z − z1 ≤ 3(d − 1) + 1. If ⟨ResH1(Z)⟩ = P3,
we use [2] Proposition 6.1 for the integer d − 1. If dim⟨ResH1(Z)⟩ ≤ 2, we use Remark 5
for the integer d − 1. In both cases, we are in one of the cases (i), (ii) or (iii) of Proposition 1
for the integer d − 1, and all cases are contained in a plane. Hence, in this case, we have
deg(ResH1(Z)) ≤ z− z1 ≤ z/2. Thus, there is a line L such that deg(ResH1(Z)∩ L) ≥ d+ 1.
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If deg(L ∩ Z) ≥ d + 2, then we are in case (i) for the integer d. Thus, we may assume
deg(Z ∩ L) = d + 1. Take a plane M ⊃ L such that z′ := deg(M ∩ Z) is maximal. Note
that z′ ≥ d + 2 and hence z − z′ ≤ 2d + 1 ≤ 3(d − 1) + 1. If h1(IM∩Z(d)) > 0, then we
conclude using Remark 5 (more precisely, d is odd and the conic is singular). Thus, we may
assume h1(IM∩Z(d)) = 0. The residual exact sequence of M gives h1(IResM(Z)(d − 1)) >
0. As above, we obtain the existence of a line R such that deg(Z ∩ R) = d + 1 and
Z ∩ R = ResM(Z) ∩ R. If R ∩ L ̸= ∅ (we allow the case R = L, but it does not occur by
the assumption on Zred), then we are in case (ii) with a singular conic because L ⊂ M
and deg(R ∩ ResM(Z)) = d + 1. Thus, we may assume R ∩ L = ∅. Take a general
Q ∈ |IR∪L(2)|. Since IR∪L(2) is globally generated, Z ∩ Q = Z ∩ (R ∪ L) and hence
h1(IQ∩Z(d)) = 0. The residual exact sequence of Q gives h1(IResQ(Z)(d − 2)) > 0. Since
deg(ResQ(Z)) ≤ d + 1, there is a line J such that deg(J ∩ ResQ(Z)) ≥ d. Assume for
the moment that J, R and L are pairwise disjoint. Let Q′ be the only quadric containing
J ∪ L∪ R. The quadric Q is smooth and J, L and R are in the same ruling of Q′, say the ruling
|OQ′(1, 0)|. Since deg(ResQ′(Z)) ≤ 2, the residual exact of Q′ gives h1(Q, IZ∩Q′ ,Q′(d)) > 0.
Since H1(OQ′(d − 3, d)) = 0 by the Künneth formula, the restriction map H0(OQ′(d)) →
H0(OL∪J∪R(d)) is surjective. Hence, h1(IZ(d)) = 0, unless one of the lines L, J or R is as in
case (i). Now assume J ∩ (L ∪ R) ̸= ∅, say J ∩ L ̸= ∅. Taking the plane ⟨L ∪ J⟩, we obtain a
contradiction, unless J ∪ R ∪ L is a reducible rational normal curve.

(b) By step (a), we are allowed to assume z1 ≤ 4. Hence, Z is contained in no reducible
quadric.

Take any quadric Q such that deg(Z ∩ Q) ≥ 8.
(b1) Assume h1(IResQ(Z)(d − 2)) > 0. Since deg(ResQ(Z)) ≤ 3d + 3 − 8 = 3(d − 2) +

1, we may apply either Remark 5 or ([2] Proposition 6.1). We obtain z1 ≥ d, contradicting
one of our assumptions.

(b2) Assume h1(IZ∩Q(d)) > 0. If deg(Z ∩ Q) ≤ 3d + 1, then we may apply either
Remark 5 or [2] Proposition 6.1 to the scheme Z ∩ Q. Thus, we may assume deg(Z ∩ Q) ∈
{3d + 2, 3d + 3}. Taking Z ∩ Q instead of Z, we may assume Z ⊂ Q. We may also assume
that Z is contained in every quadric containing at least a degree eight subscheme of Z.
Thus, Z is contained in ∞1 quadrics. Since z1 ≤ 4, Z is not contained in a reducible quadric.
Thus, Z is contained in the complete intersection T of two quadric surfaces. Note that
the restriction map H0(OP3(d)) → H0(OT(d)) is surjective. Thus, h1(T, IZ,T(d)) > 0.
Looking at the connected components of T, we reduce to the case T connected. If T is
irreducible, it is sufficient to use that deg(Z)− #Zred = 1 and deg(Z) < 4d ([2] Remark
3.1). If T is reducible, it is sufficient to perform all possible decompositions of T and use
the assumption on Zred (this is performed in [2] Lemma 6.4 for all z < 4d, with minor
additional assumptions).

Remark 6. We take the assumptions on d and z as in Proposition 1, except that now we assume
Z ⊂ P4 and ⟨Z⟩ = P4. The thesis of Proposition 1 is true and it is easy to prove it by using
Proposition 1 and starting with a hyperplane H1 such that deg(Z ∩ H1) is maximal.

Remark 7. Fix integers n, d and z such that n ≥ 2, d ≥ 4 and z < 3d. Let Z ⊂ Pn be a
zero-dimensional scheme such that deg(Z) = z, each connected component of Z has degree ≤ 2 and
h1(IZ(d)) > 0. By Remark 5, we may assume n > 2 and use induction on n. As in the argument
of Remark 6, by using hyperplanes instead of planes, we obtain that either there is a line L ⊂ P3

such that deg(Z ∩ L) ≥ d + 2 or there is a conic D such that deg(D ∩ Z) ≥ 2d + 2.

Question 5: Take a large integer d. Are Proposition 1 or Remarks 6 and 7 still true
for any degree z zero-dimensional scheme? Are they true at least for curvilinear zero-
dimensional schemes, i.e., for the zero-dimensional schemes whose connected components
may be embedded in a smooth curve?

Solving the last question would be a key step for the study of the cactus rank of
homogeneous polynomials ([8–10]) and would also have nice consequences for computing
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the higher Hamming weights of certain evaluation codes ([3,4] and several papers quoting
them). When the evaluation code comes from a smooth curve, it would be sufficient to
study Question 5 for curvilinear schemes because all zero-dimensional subschemes of a
smooth curve are curvilinear.

3. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We outline its proof. Assume, by
contradiction, that T (4, d; x)′ ̸= ∅ and fix S ∈ T (4, d; x)′. Let Z be a critical scheme of S
(Definition 1). The proof is divided into two parts.

In step (a), we consider the case x ≤ 2d − 1. We prove this case by taking a general
linear projection Z from a general point of P4 into P3 and applying several results of [2] to
the image of Z. A key ingredient of step (a) is the definition of the set V of allowable points
of projection.

In step (b), we consider the case x = 2d. We take Q ∈ |IZ(2)| containing at least
five connected components of Z. If Z ⊈ Q, we reduce to step (a) for the integer d − 2. If
Z ⊂ Q, we use several residual exact sequences with respect to hyperplanes of P4 and use
Proposition 1 for the intersection of Z with these hyperplanes.

Proof of Theorem 1: Set z := deg(Z). Since each connected component of Z has a degree
at most of two, z ≤ 2x.

(a) Assume x ≤ 2d − 1. For any o ∈ P4, let ℓo : P4 \ {o} → P3 denote the linear
projection from o. Since each connected component of Z has degree ≤ 2, there is a nonempty
open subset U of P4 \ S such that for all o ∈ U , the morphism ℓo|Z is an embedding. By
the semicontinuity theorem for cohomology restricting if necessary U , we may assume
that all degree z schemes ℓo(Z), o ∈ U , have the same Hilbert function. Fix o ∈ U and
set Z′ := ℓo(Z) and S′ := ℓo(S). Since ⟨S⟩ = P4, we have ⟨S′⟩ = P3. Take homogeneous
coordinates x0, x1, x2, x3, x4 of P4 such that o = [0 : 0 : 0 : 0 : 1]. For any p = [p0 : p1 : p2 :
p3 : p4] ̸= o, we have ℓo(p) = [p0 : p1 : p2 : p3]. For any constant t ̸= 0, define ht ∈ Aut(P4)
by the formula ht([p0 : p1 : p2 : p3 : p4]) = [p0 : p1 : p2 : p3 : tp4]. We see that ℓo(Z)
is a flat limit of the family ht(Z) of projectively equivalent schemes. The semicontinuity
theorem for cohomology gives h0(P3, Iℓo(Z)(d)) > 0. We have h0(P3,OP3(d)) = (d+3

3 ).

Since 4x < (d+3
3 ), h0(P3, Iℓo(Z)(d)) > 0. Thus, S′ ∈ T (3, d; x). Our assumptions on d and

x are the ones made in [2] Theorem 1.4. Thus, S′ /∈ T (3, d, x)′. Since the critical scheme
Z of S has only finitely many subschemes, there is a nonempty open subset V of U such
that dim⟨ℓo(Z′′)⟩ = min{3, dim⟨Z′′⟩} for all o ∈ V . From now on, we assume o ∈ V .
Since S ∈ T (4, d; 3)′, we obtain that there is scheme A ⊂ Z such that dim⟨ℓo(A)⟩ ≤ 2 and
h1(Iℓo(A)(d)) > 0. Hence, a minimal Z′′ ⊂ Z′ with h1(P3, IZ′′(d)) > 0 has ⟨Z′′⟩ = P3. Set
S′′ := Z′′

red and G := S ∩ ℓ−1
o (S′′). The minimality of Z′′ gives h1(⟨Z′′⟩, IZ′′ ,⟨Z′′⟩(d)) = 1

and h1(⟨Z′′⟩, IZ′
1,⟨Z′′⟩(d)) = 0 for every Z′

1 ⊊ Z′′.
(a1) Assume that M′ := ⟨S′′⟩ has dimension ≤ 2. We exclude the case dim M′ = 1

because the minimality of S implies that S does not contain ⌈d/2⌉ + 1 collinear points.
Thus, M′ is a plane. The definition of V gives that ⟨G⟩ is a plane and ℓo|G : G → S′′ is a
linear isomorphism of plane subsets. Consider the residual exact sequence of M′ in P3:

0 → IS′′ ,P3(d − 1) → I(2S′′ ,P3),P3(d) → I(2S′′ ,M′),M′(d) → 0 (2)

By assumption, h1(I(2S′′ ,P3)(d)) > 0. If h1(M′, I(2S′′ ,M′),M′(d)) > 0, we obtain the inequality
h1(I2G(d)) > 0, and hence S is not minimal. By (2), we obtain h1(IS′′(d − 1)) > 0, and
hence h1(IG(d − 1)) > 0. Since #G ≤ 2(d − 1) + 1, there is a line containing at least d + 1
points of G ([9] Lemma 34). Thus, S is not minimal.

(a2) Assume ⟨S′′⟩ = P3. Since d ≥ 17, 4x < (d+3
3 ). Hence, h0(P3, I2S′′ ,P3(d)) > 0.

Recall that Z′′ is minimal and T (3, d; y)′ = ∅ for all y ≤ 2d − 1 such that y ̸= ⌈3d/2⌉+ 1.
By [2] Theorem 1.3, there is a rational normal curve C containing Z′′ and deg(Z′′) ∈
{3d + 2, 3d + 3}. A rational normal curve C ⊂ P3 such that #(ℓo(Z) ∩ C) ≥ 3d + 2 must be
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the linear projection of a rational normal curve of a hyperplane of P4 because Z has finitely
many subschemes and we may take o outside the finitely many rational normal curves of
P4 containing a subschemes of Z of degree at least 3d + 2.

First assume Z′ ̸= Z′ ∩ C. Since IC,P3(2) is globally generated and each connected
component of Z′ has degree ≤ 2, Q ∩ Z′ = C ∩ Z′ for a general Q ∈ |IC,P3(2)|. Let Q1 ⊂ P4

denote the quadric cone with a vertex containing o such that ℓo(Q1 \ {o}) = Q. Since
Z′ ⊈ Q, Z ⊈ Q1. Since S is minimal, h1(IZ∩Q1(d)) = 0. The residual exact sequence of Q1
gives h1(IResQ1

(Z)(d − 2)) > 0. Since deg(ResQ1(Z)) ≤ 4d − 2 − 3d − 2 ≤ d − 1, we obtain
a contradiction. Now assume Z′ = Z′ ∩ C. Since C may depend on o, we call it C(o). The
rational normal curve C(o) is unique (for a fixed o ∈ V) because deg(Z′) > 6. Call Co the
cone with vertex o and C(o) as its base. Since this is the only remaining case to consider for
x < 2d, this would occur for all o ∈ V . We obtain that Z is contained in all two-dimensional
cubic cones Co, o ∈ V . Fix o, a ∈ V such that a ̸= o. Since Ca is cut out by quadrics, Ca ∩ Co
is strictly contained in the complete intersection of Co and a quadric, which is a degree six
scheme, counting the multiplicities of its connected components. Since deg(Z) > 16, the set
∆ := ∩u∈VCu contains a curve, T1, (maybe with multiple components) with deg(T1) < 6.
Taking u ∈ V \ Co ∩ V , we obtain that Cu ∩ Co contains no line. Since ℓo(Co \ {o}) = C(o),
we obtain that T1 has no component of degree 2 and that either it is linearly isomorphic to
C(o) (and hence it must be a linear section of Co not containing o) or it is a rational normal
curve of P4 containing o. Taking a general u ∈ V instead of o, we exclude the latter case.

Take a general u ∈ V and a general Q ∈ |ICu(2)|. We obtain Co ∩ Q = T1 ∪ T2 with T2,
another hyperplane section of Co. Taking a different general Q′ ∈ |ICu(2)|, we obtain that
Z \ Z ∩ T1 has a degree ≤ 6. Since ⟨S⟩ = P4, the residual exact sequence of ⟨T1⟩ gives that
S is not minimal.

(b) Assume x = 2d and d ≥ 19. Fix A ⊂ S such that #A = 5 and call E the union of the
connected components of Z with a point of A as their reduction. We have dim |IE(2)| ≥ 4.
Take a general U ∈ |IE(2)|.

(b1) Assume Z ⊈ U. Since S is minimal and Z ⊈ U, the residual exact sequence
of U gives h1(IResU(Z)(d − 2)) > 0. Set F := ResU(Z)red. Since F ⊆ S \ A, hence, #F ≤
2(d − 2)− 1. Thus, we may apply part (a) and [2] Th. 1.3, 1.4, 1.5 to F. As in step (a), we
take a general o ∈ P4 and set Z′ := ℓo(Z) with deg(Z′) = z. Since h1(IResU(Z)(d − 2)) > 0,
we may apply step (a) for the integer d − 2. Thus, we obtain that one of the following
possibilities occurs:

1. There is F1 ⊆ F such that #F1 = ⌈d/2⌉, L1 := ⟨F1⟩ is a line and deg(W1 ∩ L1) ≥ d,
where W1 is the union of the connected components of Z with a point of F1 as their
reduction;

2. There is a conic C2 containing W2 ⊂ ℓo(ResU(Z)) with deg(W2) ≥ 2d − 2;
3. There is a plane cubic C3 such that W3 := C3 ∩ ℓo(ResU(Z)) is the complete intersec-

tion of C3 and a degree d − 2 curve of ⟨C3⟩;
4. There is a plane cubic containing W4 ⊂ ℓo(ResU(Z)) with deg(W4) ≥ 3(d − 2) + 1;
5. There is a rational normal curve C5 of a hyperplane ofP4 containing W5 ⊂ ℓo(ResU(Z))

with deg(W5) ≥ 3d − 4.

We recall that (as in step (a)) for any A ⊆ Z, we have dim⟨ℓo(Z)⟩ = min{3, dim⟨ℓo(Z)⟩},
and hence each subscheme of Z′ contained in a plane (resp. a line) comes from a subscheme
of Z contained in a plane (resp. a line).

(b1.1) Assume the existence of W5. Since a rational normal curve C5 of a hyperplane of
P4 is scheme-theoretically cut out by quadric hypersurfaces and each connected component
of Z has degree ≤ 2, Q ∩ Z = C5 ∩ Z for a general Q ∈ |IC5(2)|. If deg(Z ∩ C5) ≥ 3d + 4,
then S is not minimal. If Z ⊈ C5, then deg(ResQ(Z)) ≤ d − 2 and hence h1(IResQ(Z)(d −
2)) = 0, contradicting the minimality of S.

(b1.2) Assume the existence of Wi with i ∈ {3, 4} and call C3 the plane cubic containing
Wi. Take a general hyperplane H′ containing ⟨C3⟩. Since ⟨S⟩ = P4 and S is minimal,
h1(IResH′ (Z)(d − 1)) > 0. Since deg(ResH′(Z)) ≤ 2(d − 1) + 1, there is a line L′ such that
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deg(L′ ∩ ResH′(Z)) ≥ d + 1. Since S is minimal, deg(L′ ∩ Z) = d + 1. For a general H′

containing ⟨C3⟩, we have Z ∩ H′ = Z ∩ ⟨C3⟩. For a general hyperplane H′′ ⊃ L′ we have
H′′ ∩ Z = L ∩ Z. Thus, Z ⊂ L′ ∪ ⟨C3⟩ and Z ∩ L′ ∩ ⟨C3⟩ = ∅. We also obtain that d
is odd, #(S ∩ L′) = (d + 1)/2 and #(S ∩ ⟨C3⟩) = (3d − 1)/2. Since ⟨S⟩ = P4, we obtain
L′ ∩ ⟨C3⟩ = ∅. Thus, there is a hyperplane H1 ⊃ ⟨C3⟩ containing exactly one point of S∩ L1.
Since deg(ResH1(Z)) ≤ d, the residual exact sequence of H1 contradicts the minimality
of S.

(b1.3) Assume the existence of W2. Take a general hyperplane H2 containing ⟨W2⟩.
Since deg(ResH2(Z)) ≤ 2d + 2 and h1(IResH2 (Z)(d − 1)) > 0, either there is a conic D′′ such
that deg(D′′ ∩ ResH2(Z)) ≥ 2d or there is a line L′′ such that deg(L′′ ∩ ResH2(Z)) ≥ d + 1.

(b1.3.1) Assume the existence of D′′. Taking a general hyperplane H3 containing D′′,
we obtain that either deg(W2) ≥ 2d or there is a line R such that deg(ResH3(Z)∩ R) ≥ d+ 1.
First assume deg(W2) ≥ 2d. Since ⟨S⟩ = P4, h1(IW(d − 1)) = 0 for every scheme of degree
≤ d and S is minimal, we first obtain S ∩ ⟨W2⟩ ∩ ⟨D′⟩ = ∅ and then Z ⊂ D′′ ∪ C2 with
deg(Z ∩ D′′) = deg(Z ∩ C2) = 2d. Take a hyperplane M containing ⟨D′′⟩ and a point of F2.
Since h1(IResM(Z)(d − 1)) > 0, we obtain that C2 is reducible with one of its components,
R′, such that deg(Z ∩ R′) = d + 1. However, taking as M a hyperplane containing a point
of S ∩ R′, we obtain a contradiction.

Now assume the existence of R. Since z ≤ 4d, R must be a component of C2. Since
S is minimal, R ∩ C′′ = ∅. Taking a general quadric Q containing R ∪ D′′, we obtain a
contradiction because W2 ⊈ Q and deg(ResQ(Z)) ≤ d − 1.

(b1.3.2) Assume the existence of L′′. Since S is minimal, deg(L′′ ∩ Z) = d + 1. Take a
general hyperplane U2 containing L′′. Since Z∩ (H2 ∪U2) = Z∩ (⟨W2⟩ ∪ L′′), Z ⊈ H2 ∪U2.
Since deg(ResH2∪U2(Z)) ≤ d + 3, there is a line J such that deg(J ∩ ResH2∪U2(Z)) ≥ d.
Take a hyperplane U3 containing L′′ ∪ J. Since deg(ResU3(Z)) ≤ 2d − 1, either deg(W2 \
W2 ∩ U3) ≥ 2d (and we excluded this case in step (b1.3.1)) or there is a line J1 such that
deg(ResU3(Z) ∩ J1) ≥ d + 1 (it may be an irreducible component of C2). Taking a general
quadric hypersurface containing L′′ ∪ J ∪ L1, we obtain a contradiction.

(b1.4) Assume the existence of F1. Set L1 := ⟨F1⟩. Since S is minimal, d ≤ deg(Z ∩
L1) ≤ d + 1. Take a hyperplane H containing the line L1 and spanned by Z ∩ H. Note that
deg(H ∩ Z) ≥ d + 2. Since S is minimal, h1(IResH(Z)(d − 1)) > 0. Assume for the moment
dim⟨ResH(Z)⟩ ≥ 3. Since deg(ResH(Z)) ≤ 3d − 3 = 3(d − 1) and h1(IResH(Z)(d − 1)) > 0,
either there is a line L2 such that deg(L2 ∩ ResH(Z)) ≥ d + 1 or there is a conic D such that
deg(D ∩ ResH(Z)) ≥ 2d or there is a plane cubic D′ with deg(D′ ∩ ResH(Z)) = 3d − 3.
We excluded the existence of D in step (b1.3) and the existence of D′ in step (b1.2). Thus,
L2 exists. Since S is minimal, deg(L2 ∩ Z) = d + 1 and hence S ∩ L1 ∩ L2 = ∅. Take a
general hyperplane H1 containing L1 ∪ L2. Since ⟨S⟩ = P4, ResH1(Z) ̸= ∅. Since S is
minimal, h1(IResH1 (Z)(d − 1)) > 0. Since deg(ResH1(Z)) ≤ 4d − 2d − 1 = 2(d − 1) + 1,
there is a line L2 such that deg(ResH2(Z)) = ∅. Since S is minimal, we first obtain
Z ∩ L2 ∩ L3 = ∅ and then L2 ∩ L3 = ∅. Call H3 the hyperplane ⟨L2 ∪ L3⟩. Since S is
minimal, L1 ⊈ H3 and hence deg(ResH3(Z)) ≥ d − 1. Since deg(ResH3(Z)) ≤ 2d − 2
and h1(IResH3 (Z)(d − 1)) > 0, we obtain deg(Z ∩ L1) = d + 1 and Z ∩ L1 ∩ H3 = ∅.
Since S is minimal, we also obtain L1 ∩ L2 = L1 ∩ L3 = ∅. Thus, IL1∪L2∪L3(2) is globally
generated and hence Z ∩ Q = Z ∩ (L1 ∪ L2 ∪ L3) has degree 3d + 3. Thus, Z ⊈ Q and
h1(IResQ(Z)(d − 2)) = 0, a contradiction.

Now assume dim⟨ResH(Z)⟩ ≤ 2. Since h1(IResH(Z)(d− 1)) > 0, either there is a line R
such that deg(R ∩ ResH(Z)) ≥ d + 1 or there is a conic R2 such that deg(R2 ∩ ResH(Z)) ≥
2d or there is a plane cubic R3 such that deg(R3 ∩ ResH(Z)) ≥ 3d − 3 (Remark 5). We
excluded the existence of R2 and R3 in steps (b1.2) and (b1.3). Thus, there is R. We use L1
and R as we used L1 and L2 in the first part of step (b1.4).

(b2) Assume Z ⊂ U. Since U is general in |IE(2)|, we obtain |IZ(2)| = |IE(2)|. By
part (b1), we have |IZ(2)| = |IE(2)| for all A ⊂ S such that #A = 5. Assume for the
moment that S is not in a linear general position, i.e., there is a hyperplane H containing
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at least five points of S. Take A ⊆ S ∩ H such that #A = 5 and take the quadric 2H.
Since Z ⊂ 2H by the assumption of step (b2), we obtain S ⊂ H, a contradiction. Thus,
S is in the linear general position and hence every hyperplane contains at most a degree
eight subscheme of Z. Set Z0 := Z. Let H1 be a hyperplane such that z1 := deg(Z ∩ H1)
is maximal. Set Z1 := ResH1(Z). Fix an integer i ≥ 2 and assume the hyperplane Hj,
the integer zj and the scheme Zj for all j = 1, . . . , i − 1. Take a hyperplane Hi such that
zi := deg(Hi ∩ Zi−1) is maximal and set Zi := ResHi (Zi−1). The sequence {zi} is weakly
decreasing and 4d = 2x ≥ z = ∑i≥1 zi. Since dim |OP4(1)| = 4, Zi = ∅ if zi ≤ 4. Thus,
there is a minimal integer e ≤ d such that deg(Ze) ≤ 1. Since h1(IZe(d − e)) = 0 and S
is minimal, Z ⊂ H1 ∪ · · · ∪ He. Set T := H1 ∪ · · · ∪ He−1. We have Ze−1 = ResT(Z) and
ze = deg(Ze−1) ≥ 2. Note that ze−1 ≥ ze and that ze−1 ≥ ze + 3 − m if dim⟨Ze−1⟩ = m.
Since S is minimal, h1(IZe−1(d − e + 1)) > 0 and hence ze ≥ d − e + 3. Moreover, either
ze ≥ 3(d − e + 1) + 1 or d − e + 4 ≤ ze ≤ 3(d − e + 1) and Ze−1 is contained in a plane
or ze = d − e + 3 and Ze−1 spans a line. Thus, in all cases ze−1 ≥ d − e + 5. Recall
that z ≥ (e − 1)ze−1 + ze and ze−1 ≤ z1 ≤ 8. Since e ≤ d and d ≥ 19, we first obtain
e ∈ {d − 2, d − 1, d} and then z ≥ 5d, a contradiction.

4. Beyond Theorem 1

We recall the definition of a reducible rational normal curve ([2] §4.1). Let T ⊂ Pn

be a reduced, connected and degree n curve spanning Pn. If T is irreducible, then it is
a rational normal curve. Now assume that T has s ≥ 2 irreducible components. Since
T is connected, there is an ordering T1, . . . , Ts of the irreducible components of T (called
a good ordering) such that each T1 ∪ · · · ∪ Ti, 1 ≤ i ≤ s, is connected. Set di := deg(Ti).
For any reduced and connected curve M, let pa(M) denote its arithmetic genus, i.e., set
pa(M) := h1(OM). We have pa(T1 ∪ · · · ∪ Ti) = 0, the linear span of each T1 ∪ · · · Ti has
dimension d1 + · · ·+ di and T1 ∪ · · · ∪ Ti is a (reducible) rational normal curve in its linear
span. Note that Sing(T) is the set of all points of T contained in at least two irreducible
components of T. An irreducible component Ti of T is said to be a final component if
#(Sing(T) ∩ Ti) = 1. In any good ordering T1, . . . , Ts of T, T1 and Ts are final components,
but there may be other final components (e.g., take at T the union of n general lines though
some point of Pn). By [2] Proposition 4.7, there are very strong restrictions for the existence
of S ∈ T (n, d; ⌈(nd + 2)/2⌉)′ contained in a reducible normal rational curve T: n is even, d
is odd, S ⊂ Treg, all final components have an odd degree and #(S ∩ Ti) = (did + 1)/2 for
all i.

Now assume n = 4. We have d1 + · · ·+ ds = 4 and hence 2 ≤ s ≤ 4. Take a reducible
rational normal curve T ⊂ P4. To have some S ∈ T (4, d; 2d+ 1)′ with S ⊂ T, we also need d
the be odd, S ⊂ Treg and #(S∩ Ti) = di(d+ 1)/2 for all final components Ti ([2] Proposition
6.1). Thus, either s = 2 and {d1, d2} = {1, 3} or 3 ≤ s ≤ 4 and all final components are lines.
All s ∈ {2, 3, 4} and d1, . . . , ds with d1 + · · ·+ ds = 4 occur for some reducible normal curve
of P4 (Remark 8 and Proposition 2). If di = dj = 1 and #(S ∩ Ti) = #(S ∩ Tj) = (d + 1)/2
for some i ̸= j, then Ti ∩ Tj = ∅, because no reducible conic contained in T contains d + 1
points of S. If we also prescribe that all final components of T have an odd integer as
#(S ∩ Ti) ([2] Proposition 6.1), then we obtain the following list:

Remark 8. Assume d1 ≥ d2 if s = 2. With this restriction, we only have the following cases:

1. s = 2, d1 = 3, d2 = 1;
2. s = 3, d1 = d3 = 1, d2 = 2;
3. s = 4, d1 = d2 = d3 = d4 = 1, T1 and T4 are final components, T2 and T3 are not final

components;
4. s = 4, d1 = d2 = d3 = d4 = 1; T is nodal; and T1, T2, T4 are final components, while

#(T3 ∩ Ti) = 1 for i = 1, 2, 4.

Take one of the four cases just listed. Take S ∈ T (4, d; 2d + 1)′ such that S ⊂ Treg and set
xi := #(S ∩ Ti). Since S ⊂ Treg, we have x1 + · · · + x4 = 2d + 1. In case (1), we have
d1 = (3d + 1)/2 and d2 = (d + 1)/2. In case (2), we have x1 = x3 = (d + 1)/2 and x2 = d.
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In case (4), we have x1 = x2 = x4 = (d + 1)/2 and x3 = (d − 1)/2. Now we exclude case (3).
We must have x1 = x4 = (d + 1)/2 and hence x2 + x3 = d. With no loss of generality, we may
assume x2 ≥ x3. Since d is odd, we have x2 ≥ (d + 1)/2 and hence the reducible conic T1 ∪ T2
contains at least d + 1 points of S. Thus, S is not minimal.

Proposition 2. Take an odd d, d ≥ 5 and a reducible rational normal curve T = T1 ∪ · · · ∪Ts ⊂ P4

as in case (1) or (2) or (4) of Remark 8 and take S ⊂ Treg. Set xi := #(S ∩ Ti). In case (1), assume
x1 = (3d + 1)/2 and x2 = (d + 1)/2. In case (2), assume x1 = x2 = (d + 1)/2 and x3 = d. In
case (4), assume x1 = x2 = x4 = (d + 1)/2 and x3 = (d − 1)/2. Then, S ∈ T (4, d; d + 1)′.

Proof. Obviously, ⟨S⟩ = P4. Since h0(OT(d)) = 4d + 1 and deg(2S ∩ T) = 4d + 2,
h1(I2S(d)) > 0. Thus, S ∈ T (4, d; 2d+ 1). Fix S′ ⊂ S such that #S = 2d and set Ai := S′ ∩ Ti
and yi := #(Ai). Note that yi = xi for s − 1 irreducible components of T and yi = xi − 1
for the other component of T. To prove that S is minimal, it is sufficient to prove that
h1(I2S′(d)) = 0. Since the restriction map H0(OP4(d)) → H0(OT(d)) is surjective, it is
sufficient to prove that h1(T, IA,T(d)) = 0. This is performed by using s − 1 Mayer–Vietoris
exact sequences.

Remark 9. The lowest integer x ≥ 2d + 2 that we know such that T (4, d; x)′ ̸= ∅ is the integer
⌈5d/2⌉. We construct an element of T (4, d; ⌈5d/2⌉)′ in the following way. Let C ⊂ P4 be an
integral and linearly normal degree five curve such that pa(C) = 1. If d is odd, any S ⊂ Yreg such
that #S = (5d + 1)/2 is an element of T (4, d; (5d + 1)/2)′. If d is even, take S ∈ |L|, where L is
a degree 5d/2 line bundle on Y such that L⊗2 ∼= OY(5).

5. Primitive Terracini Loci

Remark 10. Since T1(1, d; x) = ∅ for all d and x ([2] Lemma 3.4), T̃ (1, d; x) = ∅ for all d and x.

Remark 11. Since T (n, 2; x) = ∅ for all x ([2] Lemma 3.6), T̃ (n, 2; x) = ∅ for all n and x.

By Remarks 10 and 11, we may assume n ≥ 2 and d ≥ 3.
The following result is the main difference between T̃ (n, d; x) and T (n, d; x). The

latter is nonempty for all x ≫ 0 if (n, d) ̸= (2, 3) by [2] Th. 1.1(iii).

Theorem 2. Fix integers n ≥ 2, d ≥ 3 and x ≥ 1+ ⌈((n+d
n ) + 1)/(n + 1)⌉. Then, T̃ (n, d; x) = ∅

Proof. Assume T̃ (n, d; x) ̸= ∅ and take S ∈ T̃ (n, d; x). Take E ⊂ S such that ⟨E⟩ = Pn

and #E = n + 1. Take B ⊂ S \ E such that #B = x − n − 2 and set A := E ∪ B. We have
#A = x − 1 and hence deg(2A) > (n+d

n ). Thus, h1(I2A(d)) > 0. Since ⟨A⟩ = Pn, S is not
primitive, a contradiction.

The following result shows that, often, T (n, d; x)′ and T̃ (n, d; x) are quite different.

Theorem 3. Fix integers n ≥ 2 and d ≥ 3.
(a) If x ≤ ⌈d/2⌉+ n − 1, then T̃ (n, d; x) = ∅.
(b) We have T̃ (n, d; ⌈d/2⌉+ n) ̸= ∅. For any S ∈ T̃ (n, d; ⌈d/2⌉+ n), there is a line L

such that #(S ∩ L) = ⌈d/2⌉+ 1.
(c) Assume d ≥ 5 and ⌈d/2⌉+ n < x ≤ d + n − 2. We have T̃ (n, d; x) = ∅.
(d) Assume d ≥ 5. We have T̃ (n, d; d + n − 1) ̸= ∅. For any S ∈ T̃ (n, d; d + n − 1), there

is a reduced conic D such that #(S ∩ D) = d + 1; if d is even, then D is smooth; if d is odd, then D
may be reducible with each component containing (d + 1)/2 points of S.

Proof. Take S ∈ T̃ (n, d; x) and let Z be a critical scheme of S. Set z := deg(Z). We
have z ≤ 2x and h1(IZ(d)) = 1. Since 2x ≤ 2d + 1, there is a line L ⊂ Pn such that
deg(Z ∩ L) ≥ d + 2 ([9] Lemma 34). Hence, #(S ∩ L) ≥ ⌈d/2⌉+ 1. Since ⟨S⟩ = Pn, there is
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E ⊆ S \ S ∩ L such that #E = n − 1 and ⟨E ∪ L⟩ = Pn. We obtain part (a). Taking any F ⊂ L
such that #F = ⌈d/2⌉+ 1 and taking S := E ∪ F, we also obtain part (b).

Using Remark 7 instead of [9] Lemma 34, we obtain parts (c) and (d).

The following observation gives another difference between T̃ (n, d; x) and T (n, d; x)′

([2] Lemma 2.11).

Remark 12. Fix S ∈ T̃ (n, d; x) and let Z be a critical scheme of S. Part (b) of Theorem 3 shows
that sometimes Zred ̸= S.

Lemma 2. Fix positive integers n and d. Take a finite set S ⊂ Pn. If h1(I2S(d)) = 0, then
h1(IS(d − 1)) = 0.

Proof. Assume that the lemma fails for n and d and take S ⊂ Pn with minimal cardi-
nality for which it fails. Note that S ̸= ∅. Fix p ∈ S and set A := S \ {p}. Since
A ⊂ S, h1(I2A(d)) ≤ h1(I2S(d)) = 0. Hence, h0(I2S(d)) = h0(I2A(d)) − n − 1. The
minimality assumption for S implies h1(IA(d)) = 0. Thus, h1(IS(d − 1)) = 1 and
|IA(d − 1)| = |IS(d − 1)|. Take a system of homogeneous coordinates x0, . . . , xn of Pn. Fix
f ∈ H0(I2A(d)). Take o ∈ A and i ∈ {0, . . . , n}. Since f vanishes on 2o, fi := ∂ f /∂xi van-
ishes at o. Since |IA(d − 1)| = |IS(d − 1)|, fi(p) = 0. Since ∑n

i=0 xi fi = d f , f (p) = 0. Thus,
p is in the base locus of |I2A(d)|. Hence, h0(I2S(d)) ≥ h0(I2A(d))− n, a contradiction.

Proposition 3. If T̃ (n − 1, d; x − 1) ̸= ∅, then T̃ (n, d; x) ̸= ∅. Moreover, dim T̃ (n, d; x) ≥
2n + dim T̃ (n, d; x − 1).

Proof. Fix a hyperplane H ⊂ Pn and p ∈ Pn \ H. Take A ∈ T̃ (n − 1, d; x − 1). Identify
Pn−1 with the hyperplane H and hence see A as a subset of H. Set S := A ∪ {p}. All
cones with a vertex at p and singular at all points of A are singular at all points of S.
Thus, h0(I2S(d)) ≥ h0(H, I2A,H(d)) > 0. Since h1(H, I2A,H(d)) > 0 and (2A, H) ⊂ 2S,
h1(I2S(d)) > 0. Take E ⊊ S such that ⟨E⟩. Obviously, p ∈ E. Set B := S \ {p}. We have
⟨B⟩ = H. To prove that S ∈ T̃ (n, d; x) (and hence to prove both assertions of Proposition 3),
it is sufficient to prove that h1(I2E(d)) = 0. Consider the residual exact sequence of H:

0 → IB∪2p(d − 1) → I2E(d) → I(2B,H),H(d) → 0.

Since A ∈ T̃ (n − 1, d; x − 1) and ⟨B⟩ = H, h1(H, I(2H,H),H(d)) = 0. Hence, it is sufficient
to prove that h1(IB∪2p(d − 1)) = 0. Since d ≥ 2, the residual exact sequence of H gives
h1(IB∪2p(d − 1)) ≤ h1(H, IB(d − 1)). Lemma 2 applied to H and B gives h1(H, IB(d −
1)) = 0.

Proposition 4. Fix integers n ≥ 2 and d ≥ 4. If d = 4, assume n ≥ 6. Set x := ⌈((n+d−1
n−1 ) +

1)/n⌉+ 1. Then, T̃ (n, d; x) ̸= ∅ and dim T̃ (n, d; x) ≥ 2n + (n − 1)(x − 1).

Proof. Fix a hyperplane H ⊂ Pn, p ∈ Pn \ H and a general A ∈ S(H, x − 1). Set S :=
A ∪ {p}. Since x − 1 ≥ n and A is general, ⟨S⟩ = Pn. Since d ≥ 4, the scheme 2S is
contained in the singular locus of a degree d hypersurface, the union of 2H and a degree
d − 2 hypersurface singular at p. Thus, h0(I2S(d)) > 0. Since n(x − 1) > h0(OH(d)),
h1(H, I(2A,H),H(d)) > 0. Since (2A, H) ⊂ 2S, h1(I2S(d)) > 0. Take B ⊊ S such that
⟨B⟩ = Pn. Obviously, p ∈ B. Set E := B \ {p}. Since n(x − 2) ≤ h0(OH(d)) and OH(d) is
not secant defective ([11–13]), h1(H, I(2E,H(d)) = 0. Applying Lemma 2 as in the proof of
Proposition 3, we obtain h1(I2B(d)) = 0. Thus, S is primitive.

Proposition 5. Fix integers d ≥ 3, n ≥ 2 and x > 0 such that T̃ (n − 1, d; x − 1) = 0,
n(x − 1) ≤ (n+d−1

n−1 ) and T (n, d; x)′ = ∅. Then, T̃ (n, d; x) = ∅.
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Proof. Assume the existence of S ∈ T̃ (n, d; x). Since (n + 1)(x − 1) < (n+d
n ), h0(I2E(d)) >

0 for all E ⊊ S. Let A denote the set of all A ⊊ S such that h1(I2A(d)) > 0. Since
T (n, d; x)′ = ∅, A ̸= ∅. Since S ∈ T̃ (n, d; x), ⟨A⟩ ̸= Pn for all A ∈ A. The set A is partially
ordered by inclusion. If A ⊆ B ⊊ S and A ∈ A, then B ∈ A. Thus, there is B ∈ A such
that #B = x − 1. Since ⟨S⟩ = Pn and S ∈ T̃ (n, d; x), H := ⟨B⟩ has dimension n − 1. Set
{p} := S \ H. Lemma 2 and the residual exact sequence of H imply h1(H, I(2B,H),H(d)) > 0.
Since T̃ (n − 1, d; x − 1)) = 0, there is E ⊊ B such that ⟨E⟩ = H and h1(H, I(2E,H),H(d)) > 0.
Since ⟨{p} ∪ H⟩ = Pn, the set E ∪ {p} gives S /∈ T̃ (n, d; x), a contradiction.

6. Motivations

In this section, we give the original motivation for the study of Terracini loci. Just to fix
the notation, we conduct it in the set-up of the Veronese embeddings of a projective space.

Fix the positive integers n, d and x and let νd : Pn → Pr, r = −1 + (n+d
n ) denote

the Veronese embedding. Let x0, . . . , xn be homogeneous coordinates. Let K[x0, . . . , xn]d
denote the (n+d

n )-vector space of all degree d forms in n + 1 variables, i.e., K[x0, . . . , xn]d =
H0(OPn(d)). Thus, elements of Pr correspond to equivalent classes of nonzero forms.
Fix f ∈ K[x0, . . . , xn]d, f ̸= 0 and let [ f ] ∈ Pr denote its equivalence class. An additive
decomposition of f with exactly x addenda is an equality f = ∑x

i=1 ℓ
d
i with each ℓi a linear

form. This decomposition is equivalent to the existence of S ∈ S(Pn, x) such that [ f ] ∈ ⟨S⟩
and [ f ] /∈ ⟨S′⟩ for any S′ ⊊ S. The set S([ f ]) of the additive decompositions of [ f ] is often
called the solution set of [ f ]. The set S([ f ]) ⊂ S(Pn, x) has a topology, the restriction to it
of the Zariski topology of S(Pn, x). If h1(I2S(d)) = 0, then the Terracini lemma says that
S is the unique additive decomposition of [ f ] which is “near” to S, i.e., S is an isolated
point of S([ f ]) for the Zariski topology. Moreover, if h1(I2S(d)) = 0, then h1(I2A(d)) = 0
for all A ∈ S(Pn, x) that are near S in the Zariski topology, and we may recover in this
way (varying A) all points of Pr in a Zariski neighborhood of [ f ]. Given S, it is possible to
quickly check the value of h1(I2S(d)) by using software (it is a linear algebra problem). In
all cases with (n + 1)x < (n+d

n ), we have h0(I2E(d)) > 0 for all E ∈ S(Pn, x). Hence, only
the value of h1(I2S(d)) matters, and usually ⟨S⟩ = Pn. If h1(I2S(d)) > 0, it is easy to check
all S′ ⊊ S to see if S is minimal or primitive.

7. Conclusions

Our main results are negative (certain Terracini loci are empty), but we discuss in
Section 6 how the emptiness results are used. Among the existing results, we stress the
ones with the lowest possible number of points for multivariate forms of fixed degrees in a
given number of variables.

We raised several open questions in the introduction and listed another one (on the
Hilbert function of zero-dimensional schemes) at the end of Section 2 with a discussion of
its possible applications, for instance, to evaluation codes ([3,4]).
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