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Abstract: This paper explores the cumulative entropy of the lifetime of an n-component coherent
system, given the precondition that all system components have experienced failure at time t. This
investigation utilizes the system signature to compute the cumulative entropy of the system’s lifetime,
shedding light on a crucial facet of a system’s predictability. In the course of this research, we unearth
a series of noteworthy discoveries. These include formulating expressions, defining bounds, and
identifying orderings related to this measure. Further, we propose a technique to identify a preferred
system on the basis of cumulative Kullback–Leibler discriminating information, which exhibits a
strong relation with the parallel system. These findings contribute significantly to our understanding
of the predictability of a coherent system’s lifetime, underscoring the importance of this field of study.
The outcomes offer potential benefits for a wide range of applications where system predictability is
paramount, and where the comparative evaluation of different systems on the basis of discriminating
information is needed.
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1. Introduction

The Shannon differential entropy has gained widespread adoption as a measure across
various fields of research. It was introduced by Shannon in their article [1], and since
then, it has become a cornerstone of probability theory. Suppose we have a non-negative
random variable X, which is absolutely continuous with a probability density function f (x).
If the expected value of the logarithm exists, then the expression H(X) = −E[log f (X)] is
referred to as the Shannon differential entropy. This is the situation being described in this
scenario. This definition allows us to quantify the uncertainty associated with the random
variable X by measuring the amount of information required to describe it. Owing to its
adaptability and usefulness, this metric has gained widespread adoption in a multitude
of research domains, making it an essential tool for any researcher looking to explore
probability distributions.

While differential entropy has many advantages, a fascinating substitute for conven-
tional entropy was suggested by Rao and colleagues in their paper [2], which they called
cumulative residual entropy (CRE). Unlike differential entropy, which uses f (x), CRE uses
F(x) = P(X > x) to obtain a measure of entropy. The definition of CRE is given by

CE(X) = −
∫ ∞

0
F(x) log F(x)dx. (1)

With its ability to capture the residual uncertainty of a distribution, CRE is particularly
useful in situations where the tails of the distribution are of interest. The CRE has emerged
as the preferred measure for characterizing information dispersion in problems related to
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reliability theory, which is a robust metric that has been extensively employed in numerous
studies, such as those carried out by [3–8], to name a few. A representation of the cumulative
entropy (CE), which is an information measure similar to Equation (1), is provided by Di
Crescenzo and Longobardi in their work [9] given by

CE(X) = −
∫ ∞

0
F(x) log F(x)dx, (2)

where F(·) is the cumulative distribution function (cdf) of a random variable X. Like CRE,
CE is nonnegative and CE(X) = 0 if, and only if, X is a constant.

Several measures of dynamic information have been proposed to characterize the
uncertainty in suitable functionals of the random lifetime X of a system. We review two
such measures, namely, the dynamic cumulative residual entropy (introduced by Asadi
and Zohrevand [10]) and the cumulative past entropy (proposed by Di Crescenzo and Lon-
gobardi in [11]), which are defined as the dynamic cumulative entropy of Xt = [X|X > t]
and Xt = [X|X ≤ t], respectively. In this case, the dynamic cumulative residual entropy is
defined as

E(Xt) = −
∫ ∞

t
Ft(x) log Ft(x)dx (3)

= −
∫ ∞

t

F(x)
F(t)

log
F(x)
F(t)

dx, t > 0, (4)

where Ft(x) = F(x)/F(t), x > t, is the survival function of Xt = [X|X > t]. Di Crescenzo
and Longobardi [11] pointed out that in many realistic scenarios, uncertainty is not neces-
sarily related to the future. For example, if a system that starts operating at time 0 is only
observed at predetermined inspection times and is found to be “down” at time t, then the
uncertainty is dependent on the specific moment within (0, t) at which it failed. When
faced with such scenarios, the cumulative past entropy proves to be a valuable metric. It is
defined as follows:

CE(Xt) = −
∫ t

0
Ft(x) log Ft(x)dx

= −
∫ t

0

(
F(x)
F(t)

)
log
(

F(x)
F(t)

)
dx, (5)

where Ft(x) = F(x)/F(t), 0 < x ≤ t, is the cdf of Xt = [X|X ≤ t]. Uncertainty is a
fundamental characteristic of numerous real-world systems, impacting not only future
events but also past occurrences. As a result, the concept of entropy has been extended
to encompass the uncertainty associated with past events, distinct from residual entropy,
which quantifies uncertainty in future events. The exploration of past entropy and its
statistical applications has garnered significant attention in the literature, as evidenced
by notable works such as Di Crescenzo and Longobardi [9] and Nair and Sunoj [12].
Gupta et al. [13] have made substantial contributions to the field by delving into the
properties and applications of past entropy within the framework of order statistics. Their
research focuses on investigating the residual and past entropies of order statistics and
establishing stochastic comparisons between them. Through their investigations, they
have shed new light on the fundamental principles underpinning past entropy and its
role in statistical analysis. The works of Gupta et al. [13], along with the aforementioned
studies, collectively highlight the growing interest and significance of past entropy in
various domains. These studies provide valuable insights into the statistical properties and
practical applications of past entropy, contributing to a deeper understanding of the role
of uncertainty in both past and future events. In the recent years, numerous researchers
have demonstrated a strong inclination toward investigating the information characteristics
of coherent systems, which can be seen in [8,14–18] and the references therein. Recently,
Kayid [19] investigated the Tsallis entropy of coherent systems when all components are
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alive at time t. Mesfioui et al. [20] have also delved into the Tsallis entropy such systems,
adding to the current body of captivating research in this area. More recently, Kayid
and Shrahili [21,22] investigated the Shannon differential and Renyi entropy of coherent
systems when all components have failed at time t. The aim of this study is to examine the
uncertainty properties of the lifetimes of coherent systems, with a particular focus on the
cumulative past entropy. In fact, when all components have failed at time t, we focus on
coherent systems consisting of n components by utilizing the system signature.

Therefore, the result of this paper is organized as follows: In Section 2, we provide
an expression for the CE of a coherent system’s lifetime when component lifetimes are
independent and identically distributed, given that all components of the system have
failed at time t by implementing the concept of system signature. In Section 3, some useful
bounds are presented. A new criterion is represented to choose a preferable among coherent
systems in Section 4. Some concluding remarks are also given in Section 5.

2. CE of the Past Lifetime

In this section, we present by applying the system signature concept to define the
past lifetime CE of a coherent system, which can have an arbitrary structure. To this
aim, we assume that at a specific time t, all components of the system have failed and
employ the concept of system signature, which is described by an n-dimensional vector
p = (p1, . . . , pn), where the i-th element is defined as pi = P(T = Xi:n), i = 1, 2, . . . , n.
(see [23]). Several recent papers have addressed the concept of survival signature. For ex-
ample, Rusnak et al. [24] and Coolen et al. [25] have made notable contributions in this area.

Consider a coherent system whose component lifetimes X1, . . . , Xn are independent
and identically distributed (i.i.d.), and whose signature vector p = (p1, . . . , pn) is known.
Assuming that the coherent system has failed at time t, we can represent the past lifetime of
the system as Tt = [t− T|Xn:n ≤ t]. Khaledi and Shaked [26] have established results that
allow us to express the cumulative distribution function of Tt in terms of their findings as

FTt(x) =
n

∑
i=1

piFTi
t
(x), (6)

where

FTi
t
(x) = P(t− Xi:n ≤ x|Xn:n ≤ t)

=
i−1

∑
k=0

(
n
k

)(
F(t− x)

F(t)

)k(
1− F(t− x)

F(t)

)n−k
, 0 < x < t,

denotes the cdf of Ti
t = [t− Xi:n|Xn:n ≤ t], i = 1, 2, · · · , n. It is important to note that Ti

t ,
i = 1, 2, · · · , n, represents the elapsed time since the failure of the component with a
lifetime of Xi:n in the system, given that the system has failed at or before time t. Fur-
thermore, according to Equation (6), Ti

t corresponds to the ith order statistic of n i.i.d.
components with a cumulative distribution function of F(t−x)

F(t) , 0 < x < t. Hereafter, we
provide a formula for computing the cumulative entropy of Tt. For this purpose, we define
Ft(x) = F(x)

F(t) , 0 < x < t, and use V = Ft(Tt), which is essential to our approach. Using this
transformation, we can express the cumulative entropy of Tt in terms of V, as shown in the
upcoming theorem.

Theorem 1. We can express the CE of Tt as follows

CE(Tt) =
∫ 1

0

ψ(SV(v))
ft(F−1

t (v))
dv, (7)
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where ψ(v) = −v log v, 0 < v < 1, for all t > 0 and

SV(v) =
n

∑
i=1

piSi(v), 0 ≤ u ≤ 1, (8)

represents the survival function of V = Ft(Tt) such that

Si(v) =
i−1

∑
k=0

(
n
k

)
vk(1− v)n−k, 0 < v < 1. (9)

is the survival function of i-th order statistics where lifetimes are uniformly distributed. Moreover,
F−1

t (u) = inf{x; Ft(x) ≥ u} is the quantile function of Ft(x).

Proof. Substituting z = t− x and using Equations (5) and (6), we obtain:

CE(Tt) =
∫ t

0
ψ(FTt(x))dx

=
∫ t

0
ψ

(
n

∑
i=1

piFTi
t
(x)

)
dx

=
∫ t

0
ψ

(
n

∑
i=1

pi

i−1

∑
k=0

(
n
k

)(
F(t− x)

F(t)

)k(
1− F(t− x)

F(t)

)n−k
)

dx,

=
∫ t

0
ψ

(
n

∑
i=1

pi

i−1

∑
k=0

(
n
k

)(
F(z)
F(t)

)k(
1− F(z)

F(t)

)n−k
)

dz, (by taking z = t− x)

=
∫ 1

0

ψ
(

∑n
i=1 pi ∑i−1

k=0 (
n
k)u

k(1− u)n−k
)

ft(F−1
t (u))

du, (by taking u = F(x)/F(t))

=
∫ 1

0

ψ(∑n
i=1 piSi(v))

ft(F−1
t (u))

du,

where the last equality is obtained by using the change in variables, u = Ft(x). Furthermore,
Si(v) represents the survival function of Ui:n = Ft(Ti

t ), as given in Equation (9). By utilizing
Equation (8), we can derive the relationship in Equation (7), which serves to conclude the
proof.

Suppose we examine an i-out-of-n system with a system signature of p = (0, . . . , 0, 1i,
0, . . . , 0), where i = 1, 2, . . . , n. Then, we obtain a special case of Equation (7), which
reduces to

CE(Ti
t ) =

∫ 1

0

ψ(Si(u))
ft(F−1

t (u))
du, t > 0. (10)

The following theorem is a direct consequence of Theorem 1 and characterizes the
aging properties of the system’s components. It is noteworthy to mention that a random
variable X is said to have a decreasing reversed hazard rate (DRHR) if its reversed hazard
rate function, τ(x) = f (x)/F(x), declines for x > 0.

Theorem 2. If X is DRHR, then CE(Tt) is increasing in t.

Proof. By noting that ft(F−1
t (x)) = xτt(F−1

t (x)), Equation (7) can be rewritten as

CE(Tt) =
∫ 1

0

ψ(SV(u))
uτt(F−1

t (u))
du, (11)
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for all t > 0. We can easily confirm that F−1
t (u) = F−1(uF(t)) holds for all 0 < u < 1.

Therefore, we obtain:

τt(F−1
t (u)) = τ(F−1(uF(t))), 0 < u < 1.

If t1 ≤ t2, then F−1(uF(t1)) ≤ F−1(uF(t2)). Therefore, if X has a DRHR property, then∫ 1

0

ψ(SV(u))
uτt1(F−1

t1
(u))

du =
∫ 1

0

ψ(SV(u))
uτ(F−1(uF(t1))

du

≤
∫ 1

0

ψ(SV(u))
uτ(F−1(uF(t2))

dudu

=
∫ 1

0

ψ(SV(u))
uτt2(F−1

t2
(u))

du.

By utilizing Equation (11), we can infer that CE(Tt1) ≥ (≤)CE(Tt2) for all t1 ≤ t2, thus
completing the proof.

We provide an example to demonstrate the applications of Theorems 1 and 2 in
engineering systems. This example highlights how these theorems can be utilized for
analyzing the CE of a failed coherent system and for investigating the aging characteristics
of a system.

Example 1. Suppose we have a coherent system with a system signature

p = (0,
4

45
,

19
90

,
3

10
,

86
315

,
34

315
,

2
105

, 0, 0, 0),

which is shown in Figure 1.
To compute the precise value of CE(Tt) using Equation (7), we require the lifetime distributions

of the system components. For this purpose, let us assume the following lifetime distributions.

(i) Let X follow the uniform distribution in [0, 1]. Since ft(F−1
t (v)) = 1/t, from Equation (7),

we immediately obtain

CE(Tt) = t
∫ 1

0
ψ(SV(v))dv = 0.2245t, t > 0.

The analysis indicates that the cumulative entropy of Tt increases as time t increases, which
aligns with previous research on the behavior of cumulative entropy for specific categories of
random variables. For instance, it is established that the uniform distribution has a DRHR
property, indicating that the CE of Tt should increase as time t increases, as per Theorem 2.

(ii) Let us examine a random variable X, whose cdf is defined as follows:

F(x) = e−x−k
, x > 0, k > 0.

After performing some algebraic manipulations, we have

CE(Tt) =
∫ 1

0

ψ(SV(v))

ku
(
t−k − log u

) k+1
k

du, t > 0.

Calculating this relationship explicitly is challenging; thus, we must rely on numerical methods
to proceed. In Figure 2, we illustrate the cumulative entropy of Tt for different values of k. It
is evident that X exhibits a DRHR property for all k > 0. Referring back to Theorem 2, we
can see that CE(Tt) rises with increasing t when k > 0.
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Figure 1. A coherent system with signature p = (0, 4/45, 19/90, 3/10, 86/315, 34/315, 2/105, 0, 0, 0).
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Figure 2. Cumulative entropy of Tt with respect to t for various values of k > 0, using the cdf Part (ii)
from Example 1.

The example above provides insights into the complex interplay between the CE of a
random variable and time, emphasizing the significance of accounting for the decreasing
reversed hazard rate property when analyzing such systems. The results suggest that the
DRHR property of X is a critical factor in determining the temporal dynamics of the CE of
Tt, which could have significant consequences in various areas of research, including the
study of intricate systems and the development of efficient data compression methods.

The notion of duality is a valuable tool in engineering reliability to reduce the compu-
tational workload of computing the signatures of all coherent systems of a given magnitude
by roughly half (as demonstrated, for instance, in Kochar et al. [27]). Particularly, if Tt
stands for lifetime of a coherent system with signature p = (p1, · · · , pn), then its dual system
with lifetime Tt

D,n has a signature pD = (pn, · · · , p1). By utilizing the principle of duality,
we have the following theorem, which facilitates the computational intricacy entailed in
calculating the past cumulative entropy of Tt.

Theorem 3. If ft(F−1
t (u)) = ft(F−1

t (1− u)) holds true for all 0 < u < 1 and t, then, for all p
and n, we can conclude that CE(Tt) = CE(Tt

D).
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Proof. It is crucial to emphasize that the equation Si(1− u) = Sn−i+1(u) is valid for all
i = 1, . . . , n and 0 < u < 1. Furthermore, since ft(F−1

t (u)) = ft(F−1
t (1− u)) holds for all

0 < u < 1, we can leverage Equation (7) to derive the subsequent expression:

CE(Tt
D) =

∫ 1

0

ψ(∑n
i=1 pn−i+1Si(u))
ft(F−1

t (u))
du

=
∫ 1

0

ψ(∑n
r=1 prSn−r+1(u))

ft(F−1
t (u))

du, (by taking r = n− i + 1)

=
∫ 1

0

ψ(∑n
r=1 prSr(1− u))

ft(F−1
t (1− u))

du, (by taking Sr(1− u) = Sn−r+1(u))

=
∫ 1

0

ψ(∑n
r=1 prSr(z))

ft(F−1
t (z))

du, (by taking z = 1− u)

= CE(Tt),

and this completes the proof.

Remark 1. The aforementioned theorem explores a significant property of system components’
lifetimes, which has practical applications in various fields. Specifically, we consider the property
where the component lifetimes satisfy the condition ft(F−1

t (u)) = ft(F−1
t (1− u)) for all t > 0

and 0 < u < 1. This property is particularly relevant in scenarios involving power distributions,
uniform distributions, certain special cases of beta distributions, and other distributions that exhibit
this behavior. Understanding and utilizing this property can yield valuable insights into and benefits
in system reliability analysis. The practical implications of this property extend to diverse fields,
including engineering, telecommunications, finance, and so on.

3. Bounding the Cumulative Entropy of Past Lifetime

When working with extremely intricate systems that consist of numerous components,
calculating CE(Tt) can be a difficult undertaking. To handle this difficulty, investigators
have newly proposed uncertainty bounds for the component lifetimes in coherent systems.
This approach is explored in works such as [18,21,22] and the related literature. In the next
theorem, we obtain bounds for CE(Tt) based on the CE of the parent distribution CE(Xt).
These bounds can be useful in certain circumstances, particularly when calculating the
precise cumulative past entropy is challenging.

Proposition 1. If Tt = [t− T|Xn:n ≤ t] denotes the past lifetime of the system, then

B1CE(Xt) ≤ CE(Tt) ≤ B2CE(Xt)

where B1 = infu∈(0,1)
ψ(SV(u))

ψ(u) , B2 = supu∈(0,1)
ψ(SV(u))

ψ(u) and ψ(u) = −u log(u).

Proof. The upper bound is given by:

CE(Tt) =
∫ 1

0

ψ(SV(u))
ft(F−1

t (u))
du

=
∫ 1

0

ψ(SV(u))
ψ(u)

ψ(u)
ft(F−1

t (u))
du

≤ sup
u∈(0,1)

ψ(SV(u))
ψ(u)

∫ 1

0

ψ(u)
ft(F−1

t (u))
du

= B2CE(Xt).

The constant B2 is dependent on the distribution of V. Using the same method, we
can also derive a lower bound for CE(Tt).
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It is worth noting that B1 in the aforementioned theorem is obtained by computing the
infimum of ψ(SV(u))/ψ(u) for u ∈ (0, 1), and B2 is obtained by computing the supremum
of the same ratio. The given bounds offer valuable means of approximating CE(Tt) based
on CE(Xt).

Remark 2. It is worth noting that the lower bound B1 in Proposition 1 equals zero for all coherent
systems that satisfy either p1 = 0 or pn = 0. This is especially true for coherent systems with more
than one i.i.d. component, as outlined in [8].

Proposition 2. The lower bound for the CE of Tt is given by

CE(Tt) ≥ CE L(Tt), (12)

where CE L(Tt) = ∑n
i=1 piCE(Ti

t ).

Proof. Utilizing Equation (7) and the concavity of the function ψ(u) = −u log(u), we can
derive the following lower bound:

CE(Tt) =
∫ 1

0

ψ(SV(u))
ft(F−1

t (u))
du

≥
∫ 1

0

∑n
i=1 piψ(Si:n(u))

ft(F−1
t (u))

du

=
n

∑
i=1

piCE(Ti
t ),

where CE(Ti
t ) is the cumulative entropy of Ti

t .

Notice that equality in Equation (12) holds for i-out-of-n systems in the sense that we
have pj = 0, for j 6= i, and pj = 1, for j = i, and then CE(Tt) = CE(Ti

t ). When the lower
bounds in both parts of Theorems 1 and 2 can be computed, one may use the maximum of
the two lower bounds.

Example 2. In this example, we analyze a coherent system with the signature p = (0, 3
10 , 5

10 ,
2

10 , 0), consisting of n = 5 i.i.d. component lifetimes drawn from a uniform distribution in the
interval [0, 1]. If Tt = [t− T|X5:5 ≤ t] denotes the past lifetime of this system, Remark 2 yields
B1 = 0, while B2 = 1.25 and CE(Xt) =

t
4 , 0 < t < 1. As per Theorem 1, we deduce that CE(Tt)

is bounded accordingly:
0 ≤ CE(Tt) ≤ 1.25t, 0 < t < 1. (13)

Moreover, as ∑n
i=1 piCE(Ui:n) = 0.164, we can represent the lower bound provided in

Equation (12) as:
CE(Tt) ≥ 0.164t, 0 < t < 1. (14)

Recalling the lower bound Equation (14) and the upper bound Equation (13), we have the
following inequality

0.164t ≤ CE(Tt) ≤ 1.25t,

for all 0 < t < 1. This inequality supplies a precise and secure boundary for the conditional CE of
Tt over the entire interval (0, 1).

4. Preferable System

Hereafter, we consider two nonnegative random variables, X and Y, that represent
the lifetimes of two items having the same supports (0, ∞). For any given time t > 0, we
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define their respective past lifetimes as Xt = [X|X ≤ t] and Yt = [Y|Y ≤ t]. To this end, we
also introduce the distribution functions of Xt and Yt by

Ft(x) =
F(x)
F(t)

, Gt(x) =
G(x)
G(t)

, 0 ≤ x ≤ t, (15)

respectively. In their groundbreaking work, Di Crescenzo and Longobardi [28] introduced a
novel concept that utilizes the mean past lifetimes of nonnegative random variables X and
Y with cdfs F and G, by µX(t) = E[t− X|X ≤ t] and µY(t) = E[t−Y|Y ≤ t], respectively.
They proposed a past version of the cumulative Kullback–Leibler information measure that
is defined as a function of the mean past lifetimes of X and Y as follows:

CE(Xt, Yt) =
∫ t

0
Ft(x) log

Ft(x)
Gt(x)

dx + µX(t)− µY(t), (16)

provided that Ft(x) = 0 whenever Gt(x) = 0. In order to advance our findings, we define
a novel measure of distance that is symmetric and applicable to two distributions. This
measure is called symmetric past cumulative (SPC) Kullback–Leibler divergence and is
denoted by the shorthand SPC(Xt, Yt).

Definition 1. Consider two non-negative past random variables, Xt and Yt, with shared support
and cumulative distribution functions Ft and Gt, respectively. In this case, we introduce the SPC
Kullback–Leibler divergence as a measure of distance between the two variables as follows:

SPC(Xt, Yt) = CE(Xt, Yt) + CE(Yt, Xt)

=
∫ t

0
Ft(x) log

Ft(x)
Gt(x)

dx +
∫ t

0
Gt(x) log

Gt(x)
Ft(x)

dx

=
∫ t

0
[Ft(x)− Gt(x)] log

Ft(x)
Gt(x)

dx, (17)

for all t > 0.

The proposed measure, defined as Equation (17), possesses several desirable properties.
First and foremost, it is nonnegative and symmetric. Moreover, the value of SPC(Xt, Yt) is
equal to zero if, and only if, Ft(x) and Gt(x) are almost equal everywhere. In addition to
these properties, we also observe the following.

Lemma 1. Suppose we have three random variables, Xt, Yt, and Zt, each with cumulative distribu-
tion functions Ft, Gt, and Ht, respectively. If the stochastic ordering Xt ≤st Yt ≤st Zt holds, then
the following statement is true:

(i) 0 ≤ SPC(Xt, Yt) ≤ SPC(Xt, Zt),
(ii) 0 ≤ SPC(Yt, Zt) ≤ SPC(Xt, Zt),

for all t > 0.

Proof. Given that the function (x− 1) log(x) is decreasing in the interval (0, 1) and increas-
ing in (1, ∞), we can make an important inference from the condition Ft(x) ≥ Gt(x) ≥ Ht(x)
for 0 ≤ x ≤ t. Specifically, we can conclude that:

(i) [Gt(x)− Ft(x)] log Gt(x)
Ft(x) ≤ [Ht(x)− Ft(x)] log Ht(x)

Ft(x) , 0 ≤ x ≤ t,

(ii) 0 ≤ [Gt(x)− Ht(x)] log Gt(x)
Ht(x) ≤ [Ft(x)− Ht(x)] log Ft(x)

Ht(x) , 0 ≤ x ≤ t.

By integrating both sides of the descriptions (i) and (ii), we can obtain the desired
result.

As T1
t ≤st Tt ≤st Tn

t holds for any coherent system, from Lemma 1, we have the
following theorem.
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Theorem 4. If Tt is the lifetime of a coherent system based on X1, . . . , Xn, then:

(i) 0 ≤ SPC(Tt, T1
t ) ≤ SPC(T1

t , Tn
t ),

(ii) 0 ≤ SPC(Tt, Tn
t ) ≤ SPC(T1

t , Tn
t ).

In the subsequent analysis, the implications of Theorem 3 lead us to propose a measure
that allows for the selection of a system with superior reliability characteristics. Theorem 3
provides valuable insights into the reliability of systems and offers a framework for com-
paring different system configurations. Building upon this theorem, we introduce a novel
measure that captures the reliability performance of various systems and aids in the selec-
tion process. Traditional stochastic ordering may not be sufficient for pairwise comparisons
of system performance, particularly for certain system structures. In some cases, pairs
of systems remain incomparable using stochastic orders. In this case, alternative metrics
for comparing system performance are being explored. Hereafter, we will introduce a
new method to choose a preferable system. It is worth noting that engineers typically
favor those that offer extended operational time. As a result, it is crucial to ensure that the
systems being compared possess comparable attributes. Furthermore, assuming that all
other attributes are equal, we can choose parallel system lifetime since it has a longer past
lifetime than alternative systems. In other words, from Equation (6), we have

FT1
t
(x) ≥ FTt(x) ≥ FTn

t
(x), x > 0.

Rather than relying on comparisons between two systems at a time t, we can explore a
system that has a structure or distribution that is more similar to that of the parallel system.
Essentially, our goal is to determine which of these systems is more similar or closer in
configuration to the parallel system while also having a dissimilar configuration from that
of the series system. To this aim, one can employ the idea of SPC given in Definition 1.
Consequently, we put forth the following symmetric past divergence (SPD) measure for
Tt as

SPD(Tt) =
SPC(Tt, T1

t )− SPC(Tt, Tn
t )

SPC(T1
t , Tn

t )
. (18)

Theorem 3 establishes that −1 ≤ SPD(Tt) ≤ 1. It is evident that SPD(Tt) = 1 if,
and only if, Tt =st Tn

t and SPD(Tt) = −1 if and only if Tt =st T1
t . Put simply, we can

deduce that if SPD(Tt) is closer to 1, the distribution of Tt is more akin to the parallel
system’s distribution. On the other hand, if SPD(Tt) is closer to −1, the distribution
of Tt is more similar to the series system’s distribution. Based on this, we suggest the
subsequent definition.

Definition 2. Consider two coherent systems, each with n component lifetimes that are inde-
pendent and identically distributed, alongside signatures p1 and p2. Let T1,t and T2,t represent
their respective past lifetimes. At time t, we assert that T2,t is more desirable than T1,t with re-
gard to the symmetric past distance (SPD) measure, indicated by T1,t ≤SPD T2,t, if, and only if,
SPD(T1,t) ≤ SPD(T2,t) for all t > 0.

It is important to note that the equivalence of SPD(T1,t) and SPD(T2,t) does not al-
ways mean that T1,t =st T2,t. In accordance with Definition 2, we can define
PD(T) = SPC(T, T1

t )− SPC(T, Tn
t ). From Equation (17) and the aforementioned conver-

sions, we obtain

SPC(Tt, Ti
t ) =

∫ 1

0

SV(u)− Si:n(u)]
ft(F−1

t (u))
log

SV(u)
Si:n(u)

du, (19)
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for i = 1, n. Then, from (19), we obtain

PD(T) =
∫ 1

0

[SV(u)− S1:n(u)]
ft(F−1

t (u))
log

SV(u)
S1:n(u)

du−
∫ 1

0

[SV(u)− Sn:n(u)]
ft(F−1

t (u))
log

SV(u)
Sn:n(u)

du,

SPC(T1
t , Tn

t ) =
∫ 1

0

[Sn:n(u)− S1:n(u)]
ft(F−1

t (u))
log

Sn:n(u)
S1:n(u)

du.

If we assume that the components are i.i.d., we can derive the equations ψ(S1:n(u)) = un

and ψ(Sn:n(u)) = 1− (1− u)n. By referencing Theorem 3, we can arrive at an intriguing
result.

Proposition 3. If Tt is the lifetime of a coherent system based on X1, . . . , Xn, then SPC(Tt, Ti
t ) ≤

SPC(T1
t , Tn

t ), for i = 1, n.

The next theorem is readily apparent.

Theorem 5. Assuming the conditions outlined in Definition 2, if the X1 is exponentially distributed,
then the SPD measure is independent of time t. In other words, SPD(Tt) = SPD(T) holds true
for all t > 0.

Proof. Using the memoryless property, we can deduce that ft(F−1
t (u)) = f (F−1(u)) holds

true for all t > 0. Consequently, we can conclude that the result holds true.

Example 3. Consider two coherent systems with past lifetimes T1,t and T2,t, in which the component
lifetimes are exponentially distributed with cdf F(x) = 1 − e−x, x > 0. The signatures of
these systems are given by p1 = (1/4, 1/4, 1/2, 0) and p2 = (0, 2/3, 1/3, 0), respectively.
Although these systems are not comparable using traditional stochastic orders, we can compare them
using the SPD measure. By using numerical computation, we obtain SPD(T1,t) = 0.0914 and
SPD(T2,t) = 0.1179. This indicates that the system with lifetime T1,t is less similar to the parallel
system than the system with lifetime T2,t.

Theorem 6. Suppose that T1,t and T2,t denote the lifetimes of two coherent systems with signatures
p1 and p2, respectively, based on n i.i.d. components with the same cdf F. If p1 ≤st p2, we can
assert that T1,t ≤SPD T2,t.

Proof. We can derive the desired outcome from Theorem 2.3 of Khaledi and Shaked [26].
Specifically, if we have two probability vectors denoted p1 and p2, where p1 ≤st p2, then
we have T1

t ≤st T1,t ≤st T2,t ≤st Tn
t . By applying Lemma 1, we can obtain SPC(T1,t, T1

t ) ≤
SPC(T2,t, T1

t ) and SPC(T1,t, Tn
t ) ≥ SPC(T2,t, Tn

t ). These relations enable us to arrive at
the desired outcome due to the relation defined in Equation (18).

An exciting discovery is that the comparison based on SPD can perform as a necessary
condition for the usual stochastic order. Let us assume we have two coherent systems,
denoted by T1,t and T2,t, each composed of several components with lifetimes X1, . . . , Xn.
If we find that T1,t is less reliable than T2,t in the stochastic order, denoted as T1,t ≤st T2,t, we
can conclude that the system T1,t is also less reliable than T2,t in the SPD order, i.e., T1,t ≤SPD
T2,t. This comparison of systems through the SPD order can be useful when comparing
systems that are otherwise difficult to assess. It is worth noting that if we find that two
systems T1,t and T2,t are equally reliable in the stochastic order, i.e., T1,t =st T2,t, then they
are also equivalently reliable in the SPD order, i.e., T1,t =SPD T2,t. This highlights the
potential power of the SPD order in system analysis.

5. Conclusions

In recent years, there has been a notable surge in interest surrounding the quantifica-
tion of uncertainty associated with the lifetime of engineering systems. This criterion holds
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the potential to provide valuable insights into predicting and understanding the uncertainty
surrounding system lifetimes. To address this need, the concept of cumulative entropy
(CE) has emerged as an extension of Shannon’s entropy, offering a highly effective tool for
analyzing and characterizing uncertainty in such scenarios. This paper has presented the
application of CE to the lifetime of a system in which all components have failed at time
t. By leveraging the concept of system signature, we have examined the properties of the
proposed CE metrics, including their expressions and bounds in terms of CE uncertainties.
Through a series of illustrative examples, we have effectively demonstrated the practical
implications and findings of our research. In summary, this study has introduced criteria
based on relative CE, enabling the identification of a preferred system that exhibits simi-
larities to a parallel system. By utilizing CE to quantify uncertainty, we have provided a
comprehensive framework for evaluating system lifetimes and making informed decisions
regarding system design which can be seen as an advantage of the new measure. However,
it can be somewhat difficult to compute the mentioned measure when the structure of
the systems is complex or systems have large components. The insights gained from our
research have the potential to contribute significantly to the field of engineering system
reliability and offer valuable guidance for practical applications. As a whole, this paper has
contributed to the ongoing exploration of uncertainty quantification in engineering systems
by introducing and investigating the application of CE. By providing a solid foundation of
theoretical analysis, examples, and criteria for system selection, our work aims to advance
the understanding and utilization of CE in the context of system lifetime uncertainty. It is
worth pointing out that the current analysis focuses on continuous-type random variables;
however, we agree that exploring the application of RTE to discrete-type variables is an
intriguing direction for future research. Discrete-time approaches, such as those used in
telecommunication and networking systems where time slots are considered, indeed offer
interesting opportunities to apply entropy-based measures. The concept of RTE can be
extended to discrete-type variables by appropriately adapting the underlying probability
models and considering the discrete nature of the observations. In such scenarios, the RTE
for discrete-type variables can provide insights into the information content and uncertainty
associated with the ordering of discrete observations within a given time slot or sequence.
We hope to incorporate this suggestion in our future investigations.
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