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Abstract: In this article, we develop an efficient numerical scheme for dealing with fractional partial
integro-differential equations (FPIEs) with a weakly singular kernel. The weight and shift Grünwald
difference (WSGD) operator is adopted to approximate a time fractional derivative and the Sinc
collocation method is applied for discretizing the spatial derivative.The exponential convergence of
our proposed method is demonstrated in detail. Finally, numerical evidence is employed to verify
the theoretical results and confirm the expected convergence rate.
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1. Introduction

In recent years, fractional calculus has played an increasingly important role in various
fields and has attracted much interest from scholars due to its extensive applications in
modeling many complex problems [1–8]. The fractional integro-differential equation is one
of the most active fields in fractional calculus [9–15], which can be seen as the extension of
classical integral equations by replacing integer-order derivatives with fractional deriva-
tives. Consequently, there is a growing need to explore solution techniques to study these
equations. Although there are some ways to get exact solutions of these equations, the exact
solutions of these equations are very difficult to find in most cases. For this reason, there has
been much research on the effective numerical methods of fractional integral differential
equations (FIDEs). Here, we list only a few of them. In [16,17], the homotopy analysis
method is used to find the approximate solution of FIDEs. In [18], the spectral Jacobi-
collocation method is presented by Ma et al. to solve the solution of general linear FIDEs.
In [19], the compact finite difference scheme is constructed to approximate the solution of
FIDEs with a weakly singular kernel. In [20], the alternating direction implicit difference
scheme combined with a fractional trapezoidal rule is developed to solve two dimen-
sional FIDEs. In [21], the Legendre wavelet collocation method based on the Gauss–Jacobi
quadrature is introduced to solve the fractional delay-type integro-differential equations.
In [22], the collocation method combined with fractional Genocchi functions is used for
the solution of variable-order FIDEs. In [23], the meshless method based on the Laplace
transform is constructed for approximating the solution of the two-dimensional multi-term
FIDEs. In [24], the finite element method is proposed to solve the two-dimensional weakly
singular FIDEs. In [25], the spectral Galerkin method based on Legendre polynomials is
presented to solve the one and two-dimensional fourth-order FIDEs. In [26], the Adomian
decomposition method and homotopy perturbation method are given to approximate the
solution of the time FPIEs. Liu et al. [27–31] used the multigrid method and homotopy
method to solve practical problems in the fractional flow formulation of the two-phase
porous media flow equations and Biot elastic models.
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In this article, we consider the fractional partial integro-differential equations (FPIEs)
with a weakly singular kernel as follows:

0Dα
t v(x, t) =

∂2v(x, t)
∂x2 +

∫ t

0
(t− s)−1/2 ∂2v(x, t)

∂x2 ds + f (x, t), x ∈ [a, b], t ∈ [0, T], (1)

with the initial condition:
v(x, 0) = 0, x ∈ [a, b], (2)

and boundary conditions
v(a, t) = v(b, t) = 0, t ∈ [0, T], (3)

where 0 < α < 1 and f (x, t) is smooth enough. The time fractional derivative 0Dα
t v(x, t) is

defined in Riemann–Liouville sense as

0Dα
t v(x, t) =

1
Γ(1− α)

d
dt

∫ t

0

v(x, s)α

(t− s)
ds,

where Γ(·) is the Gamma function.
The partial integro-differential equation of integer order has proven to describe some

phenomena such as viscoelasticity, population dynamics and heat conduction in materials
with memory [32–34]. Over the past three decades, various numerical methods based
on the Sinc approximation have been presented, which have the advantages of a very
fast convergence of exponential order and handling singularities effectively. The Sinc
method proposed by Frank Stenger [35–37] has been increasingly applied to solve a variety
of linear and nonlinear models that arise in scientific and engineering applications such
as two-point boundary value problems [38], the Blasius equation [39], oceanographic
problems with boundary layers [40], fourth-order partial integro-differential equation [41],
the Volterra integro-differential equation [42,43], optimal control, heat distribution and
astrophysics equations. According to the definition, it can be seen that fractional derivatives
and integrals always deal with weak singularities. Therefore, in the past few years, the Sinc
method has been widely extended to get the numerical solution of the fractional differential
equations [44–47]. The main objective of this work is to provide a new attempt to develop a
numerical solution via the use of the Sinc collocation method to solve the fractional partial
integro-differential equation with a weakly singular kernel.

The remainder of this article is organized as follows. In Section 2, we introduce
some basic formulation and theoretic results of Sinc functions which are required for our
subsequent development. In Section 3, we propose a time discrete scheme based on the
weight and shift Grünwald difference operator and a space discrete scheme by applying a
collocation scheme based on the Sinc functions. In Section 4, the convergence analysis of
our scheme is proved and in the meantime the exponential convergence is obtained. Some
numerical results are described in Section 5 to illustrate the performance of our method.
Finally, we give our conclusion in Section 6.

2. Definitions and Preliminaries

In this section, we describe some main notations and definitions of the Sinc func-
tion and review some known results that will be used in the following sections. The
reader interested in learning more about the detailed properties of the Sinc function can
investigate [35].

The Sinc function is basically defined on the whole real line −∞ < x < ∞ by

Sinc(x) =

{
sin(πx)

πx , x 6= 0,
1, x = 0.
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For any mesh size h > 0 and k = 0,±1,±2, . . ., the Sinc basis functions with evenly
spaced nodes given on R by

S(k, h)(x) = Sinc
(y− kh

h

)
.

Let f (x) be a function defined on the real line, then for h > 0 the series

C( f , h)(x) =
∞

∑
k=−∞

f (kh)S(k, h)(x),

is called the Whittaker cardinal expansion of f , whenever this series converges. The
properties of Whittaker cardinal expansions which are derived on the infinite strip Qs of
the complex plane have been described and proved in detail in the literature [36].

Qs =
{

w = t + is : |s| < d ≤ π

2

}
.

In order to construct approximations on the interval (a, b), we consider the
conformal map

φ(z) = log
( z− a

b− z

)
,

which carries the eye-shaped domain of complex plan

QE =
{

z = x + iy :
∣∣∣arg

( z− a
b− z

)∣∣∣ < d ≤ π

2

}
,

onto the infinite strip domain of complex plan Qs.
Let ψ be the inverse map of w = φ(z), and we define the range of φ−1 on R as

(a, b) = {ψ(u) = φ−1(u) ∈ QE : −∞ < u < ∞}.

For the uniform grid {jh}∞
j=−∞ on R, the Sinc points which correspond to these nodes

are denoted by

xj = ψ(jh) =
a + bejh

1 + ejh , j = 0,±1,±2, . . . . (4)

The basis functions on (a, b) for z ∈ QE are taken to be the composite translated Sinc
functions as

Sk(z) = S(k, h) ◦ φ(z) = Sinc
(φ(z)− kh

h

)
, k = 0,±1,±2, . . . . (5)

Definition 1. Let B(QE) be the class of functions F which are analytic in QE and satisfy∫
ψ(t+Σ)

|F(z)|dz→ 0, as t→ ±∞,

where Σ =
{

iη : |η| < d ≤ π

2

}
and satisfy

N( f ) =
∫

∂QE

|F(z)dz| < ∞.

where ∂QE represents the boundary of QE .

Lemma 1 ([37]). If F(x), φ′(x) ∈ B(QE) and h > 0. Let φ be a one-to-one comformal map. For
all x ∈ (a, b) ∣∣∣∣F(x)−

N

∑
j=−N

F(xj)Sj(x)
∣∣∣∣ ≤ 2N( f φ′)

πd
e−πd/h. (6)
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Moreover, if |F(x)| ≤ ce−β|φ(x)| , x ∈ (a, b), for some positive constants c, l, N and β, and if
the selection h =

√
πd/βN, then

sup
x∈(0,1)

∣∣∣∣F(x)−
(

d
dx

)l N

∑
j=−N

f (xj)Sj(x)
∣∣∣∣ ≤ C1N(l+1)/2e−

√
πdβN , (7)

where C1 depends only on F, d and β.

Lemma 1 shows the Sinc interpolation on B(QE) is exponentially convergent. We
also need the derivative of the complex Sinc function to be evaluated at the nodes. So we
introduce the lemma as follows:

Lemma 2 ([48]). For the step size h and the Sinc points xj determined by (4), suppose that φ is the
conformal one-to-one mapping of the simply connected domain QE onto Qd, then we have

δ
(0)
kj = [S(k, h) ◦ φ(x)]

∣∣∣
x=xj

=

{
1, j = k,
0, j 6= k,

(8)

δ
(1)
kj = h

d
dφ

[S(k, h) ◦ φ(x)]
∣∣∣
x=xj

=

{
0, j = k,
(−1)j−k

j−k , j 6= k,
(9)

δ
(2)
kj = h2 d2

dφ2 [S(k, h) ◦ φ(x)]
∣∣∣
x=xj

=

{ −π2

3 , j = k,
−2(−1)j−k

(j−k)2 , j 6= k.
(10)

To facilitate the representation of discrete systems, we give the definition of the
following matrix as follows:

I(l) = [δ
(l)
kj ], l = 0, 1, 2, (11)

where δ
(l)
kj is the (k, j) the element of the matrix I(l). The matrix I(0), I(1) and I(2) repre-

sents the identity matrix, the skew symmetric Toeplitz matrix and the symmetric Toeplitz
matrix, respectively.

3. Derivation of the Numerical Scheme
3.1. The Time Semi-Discretization

For positive integer number N, let τ = T
N be the time mesh size, tn = nτ,

n = 0, 1, · · · , N, be the mesh points. Denote vn = v(x, tn) and f n = f (x, tn). Firstly,
in order to apply the WSGD operator to discrete the time fractionl derivatives, the approxi-
mation order must be used. Therefore, we review the following lemma.

Lemma 3 ([49]). Suppose that ϕ(t) ∈ L1(R) and ϕ(t) ∈ Cα+1(R), and define the shift Grünwald
difference operator by

Aα
τ,p ϕ(t) =

1
τα

∞

∑
k=0

g(α)k ϕ(t− (k− p)τ), (12)

where p is an integer and the sequences g(α)k are the coefficients of the power series expansion of the

function (1− z)α,i.e, g(α)0 = 1,g(α)k = (−1)k(α
k), k = 1, 2, · · · . Then

Aα
τ,p ϕ(t) = −∞Dα

t ϕ(t) + O(τ), (13)

uniformly for t ∈ R as τ → 0.
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Lemma 4 ([50]). Let ϕ(t) ∈ L1(R), −∞Dα+2
t ϕ(t) and its Fourier transform belong to L1(R).

Define the weighted and shifted Grünwald difference operator by

Dα
τ,p,q ϕ(t) =

2q− α

2(q− p)
Aα

τ,p ϕ(t) +
2p− α

2(p− q)
Aα

τ,q ϕ(t), (14)

where p and q are integers and p 6= q. Then,

Dα
τ,p,q ϕ(t) = −∞Dα

t ϕ(t) + O(τ2),

uniformly for t ∈ R as τ → 0.

Let p and q be equal to 0 and 1 in Lemma 4 , we can get

0Dα
t v(xi, tn) = τ−α

(
2 + α

2

n
∑

k=0
g(α)k vn−k

i − α

2

n−1
∑

k=0
g(α)k vn−1−k

i

)
+ O(τ2)

= τ−α
n
∑

k=0
λkvn−k

i + Rn+1,1,
(15)

where Rn+1,1 = O(τ2), λ0 =
2 + α

2
g(α)0 , λk =

2 + α

2
g(α)k −

1− α

2
g(α)k−1, k ≥ 1.

By using unusual quadrature approximation, the integral term of (1) can be approxi-
mated as follows:∫ tn+1

0
(tn+1 − s)−1/2 ∂2v(x, s)

∂x2 ds

=
n

∑
l=0

∫ tl+1

tl

(tn+1 − s)−1/2 ∂2v(x, s)
∂x2 ds

≈
n

∑
l=0

∫ tl+1

tl

(tn+1 − s)−1/2
(

tl+1 − s
τ

vl
xx(x) +

s− tl
τ

vl+1
xx (x)

)
ds

≈ 1
τ

n

∑
l=0

(
An,lvl

xx(x) + Bn,lvl+1
xx (x)

)
+ Rn+1,2,

(16)

where
Rn+1,2 = O(4t3/2),

An,l =
∫ tl+1

tl

(tn+1 − s)−1/2(tl+1 − s)ds,

Bn,l =
∫ tl+1

tl

(tn+1 − s)−1/2(s− tl)ds,

(17)

Substituting (15) and (16) into (1), we have

λ0vn+1(x)−
(

τα + τα−1Bn,n

)
vn+1

xx (x)

= τα−1
n

∑
l=0

ρn,lvl
xx(x)−

n

∑
k=0

λkvn+1−k(x) + τα f n+1(x) + Rn+1,
(18)

where
|Rn+1| ≤ min

{
|Rn+1,1|, |Rn+1,2|

}
,

ρn,0 = An,0,

ρn,l = An,l + Bn,l−1.
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Omitting the truncation error term Rn+1 from Equation (18), we get the following
semidiscrete scheme of Equation (1):

λ0vn+1(x)−
(

τα + τα−1Bn,n

)
vn+1

xx (x)

= τα−1
n

∑
l=0

ρn,lvl
xx(x)−

n

∑
k=0

λkvn+1−k(x) + τα f n+1(x),
(19)

and using the initial and boundary conditions (2), we have

v0(x) = g0(x),

vn+1(a) = 0, vn+1(b) = 0.

3.2. The Sinc Collocation Method for Spatial Discretization

Now we construct the Sinc collocation method to discrete the semidiscrete scheme (19).
The approximation solution vn(x) of the semidiscrete scheme (19) can be approximated by

vn(x) ≈ Vn
m(x) =

N

∑
k=−N

cn
j S(k, h) ◦ φ(x), m = 2N + 1, (20)

where cn
j is the undetermined coefficient in (20).

d2

dx2 Vn
m(x) =

N

∑
j=−N

cn
j

d2

dx2 [S(j, h) ◦ φ(x)]

=
N

∑
j=−N

cn
j [φ
′′(x)S(1)

j (x) + (φ′(x))2S(2)
j (x)],

where

S(l)
j =

d(l)

dφ(l)
[S(j, h) ◦ φ(x)], l = 1, 2.

It then follows from Lemma 2 that

d2

dx2 Vn
m(xi) =

N

∑
j=−N

cn
j

[
φ′′(xi)

δ
(1)
ji

h
+ (φ′(xi))

2
δ
(2)
ji

h2

]
. (21)

Substituting (20) and (21) into (19), we have

λ0

j=N

∑
j=−N

cn+1
j δ

(0)
ji − (τα + τα−1Bn,n)

j=N

∑
j=−N

cn+1
j

[
φ′′(x)

δ
(1)
ji

h
+ (φ′(x))2

δ
(2)
ji

h2

]

= τα−1
n

∑
l=0

j=N

∑
j=−N

ρn,lcn+1
j

[
φ′′(x)

δ
(1)
ji

h
+ (φ′(x))2

δ
(2)
ji

h2

]

−
n

∑
k=0

j=N

∑
j=−N

λkcn+1−k
j δ

(0)
ji + τα f n+1

i .

(22)

A diagonal matrix of order 2N + 1 is defined as follows

D(g(x))ij =

{
g(xi), i = j
0, i 6= j.

(23)
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Multiplying both sides of the above equation by
1

(φ′(x))2 , we get

1
(φ′(xi))2 cn+1

i −
(

τα + τα−1Bn,n

) N

∑
j=−N

cn+1
j

[
−φ′′(xi)

(φ′(xi))2

δ
(1)
ij

h
+

δ
(2)
ij

h2

]

= τα−1
n

∑
l=0

N

∑
j=−N

ρn,lcl
j

[
−φ′′(xi)

(φ′(xi))2

δ
(1)
ij

h
+

δ
(2)
ij

h2

]
+

1
(φ′(xi))2

n

∑
k=0

ck
i +

τα

(φ′(xi))2 f n+1
i .

(24)

Writing the above equation (24) in matrix form as

D
[(

1
φ′

)2]
Cn+1 −

(
τα + τα−1Bn,n

)[1
h

D
(

1
φ′

)′
I(1) +

1
h2 I(2)

]
Cn+1

= ταD
[(

1
φ′

)2]
Fn+1 + D

[(
1
φ′

)2]
(Cn + Cn−1 + . . . + C1 + C0)

+ τα−1
n

∑
l=0

ρn,l

[
1
h

D
(

1
φ′

)′
I(1) +

1
h2 I(2)

]
Cl ,

(25)

or in a compact form as

PCn+1 = R
(

ταFn+1 +
n

∑
m=0

Cm
)
+ τα−1

n

∑
l=0

ρn,lQCl , (26)

where

R = D
[(

1
φ′

)2]
,

Q =
1
h

D
(

1
φ′

)′
I(1) +

1
h2 I(2),

Cn+1 = (cn+1
−N , cn+1

−N+1, . . . , cn+1
N )T,

Fn+1 = ( f n+1
−N , f n+1

−N+1, . . . , f n+1
N )T,

P = R− Bn,nQ.

(27)

If we set

Gn+1 = R
(

ταFn+1 +
n

∑
m=0

Cm
)
+ τα−1

n

∑
l=0

ρn,lQCl ,

then Equation (26) can be written as follows:

PCn+1 = Gn+1, (28)

with the additional initial condition

C0 = (V0(x−N), V0(x−N+1), · · · , V0(xN))
T.

For each n, Formula (28) is a system of 2N + 1 order linear equations including 2N + 1
equations. By solving this system of linear equations, the coefficients of the numerical
solutions (20) can be obtained.

4. Convergence Analysis

In this section, we aim to analyze the convergence of the semidiscrete Equation (19)
for the FPIEs (1)–(3).
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For the sake of convenience, the semidiscrete Equation (19) can be rewritten as

λ0vn+1(x)−
(

τα + τα−1Bn,n

)
vn+1

xx (x) = g(x), (29)

where

g(x) = τα−1
n

∑
l=0

ρn,lvl
xx(x)−

n

∑
k=0

λkvn+1−k(x) + τα f n+1(x).

The numerical solution Wn+1
m (x) of Equation (29) at the point xj can be obtained by

Wn+1
m (x) =

N

∑
j=−N

vn+1(xj)Sj(x), (30)

To obtain the bound of |Vn+1(x)−Vn+1
m (x)|, we can start by estimating the boundary

of |Vn+1
m (x)−Wn+1

m (x)|.

Lemma 5 ([51]). For x ∈ φ−1 and the matrix P defined by Equation (27), we have

P + P∗

2
= H − Bn,n

h2 I(2),

where P∗ is the conjugate transpose of P and

H = D
[

Re
(( 1

φ′

)2)]
− Bn,n

2h

{
D
[(

1
φ′

)′]
I(1) − I(1)D

[( 1
φ′

)′]}
.

If the eigenvalues of the matrix H are non-negative, then there exists a constant c0 that doesn’t
depend on N, such that

‖P−1‖2 ≤
4dN

βπBn,n

(
1 +

C0

N

)
,

for a sufficiently large N.

Theorem 1. Suppose Vn+1
m (x) is an approximate solution of Equation (19), Wn+1

m is an approxi-
mate solution of Equation (1). Then, there exists a constant C4 that doesn’t depend on N, such that

sup
x∈[a,b]

|Vn+1
m (x)−Wn+1

m (x)| ≤ C4N3e−
√

πdβN .

Proof. By Equations (20) and (30) and the Cauchy–Schwarz inequality, we gain

|Vn+1
m (x)−Wn+1

m (x)| =
∣∣∣∣ N

∑
j=−N

cn+1
j Sj(x)−

N

∑
j=−N

vn+1(xj)Sj(x)
∣∣∣∣

≤
( N

∑
j=−N

|cn+1
j − vn+1(xj)|2

) 1
2
( N

∑
j=−N

|Sj(x)|2
) 1

2

.

(31)

Since
( N

∑
j=−N

|Sj(x)|2
) 1

2

≤ C1, where C1 is a constant independent of N, we obtain

|Vn+1
m (x)−Wn+1

m (x)| ≤ C1‖Cn+1 −Un+1‖2, (32)

where Cn+1 is given by (27) and denoting the vector Vn+1 by

Un+1 =
(

vn+1(x−N), vn+1(x−N+1), · · · , vn+1(xN)
)T

.
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Based on (19) and (28), we have

‖Cn+1 −Un+1‖2 = ‖P−1(PCn+1 − PUn+1)‖2 ≤ ‖P−1‖2‖PUn+1 − Gn+1‖2. (33)

For simplicity, we denote

rk =
(

PUn+1 − Gn+1
)

k
, k = −N, · · · , N,

and using Equation (29), we obtain

|rk| = |g(xk)− gm(xk)|

=

∣∣∣∣vn+1(xk)−
(

τα + τα−1Bn,n

) d2

dx2 vn+1(xk)−Vn+1
m (xk) +

(
τα + τα−1Bn,n

) d2

dx2 Vn+1
m (xk)

∣∣∣∣
≤ |vn+1(xk)−Vn+1

m (xk)|+ Bn,n

∣∣∣∣ d2

dx2 vn+1(xk)−
d2

dx2 Vn+1
m (xk)

∣∣∣∣.
(34)

Now, using Theorem 1, we have

‖rk‖ ≤ C2N
1
2 e−
√

πdβN + Bn,nC3N
3
2 e−
√

πdβN

≤ e−
√

πdβN
(

C2N
3
2 + Bn,nC3N

3
2

)
= KN

3
2 e−
√

πdβN ,

(35)

where C2 and C3 are constants independent of N and K = C2 + Bn,nC3.

‖PUn+1 − Gn+1‖2 ≤
√

2N + 1‖PUn+1 − Gn+1‖∞,

and using inequality (35), we get

‖PUn+1 − Gn+1‖2 ≤
√

2KN2e−
√

πdβN . (36)

Now, substituting (36) into (33), we have

‖Cn+1 −Un+1‖2 ≤
4
√

2dK(1 + C0)

απBn,n
N3e−

√
πdβN . (37)

Based on (32) and (37), we get

sup
x∈[a,b]

|Vn+1
m (x)−Wn+1

m (x)| ≤ C4N3e−
√

πdβN , (38)

where C4 =
4
√

2dK(1 + C0)

απBn,n
.

Theorem 2. Suppose Vn+1(x) be the analytical solution of (29), Vn+1
m (x) be its Sinc approxima-

tion defined by (20). Then, there exists a constant C7 that doesn’t depend on N, such that

sup
x∈[a,b]

|Vn+1(x)−Vn+1
m (x)| ≤ C7N3e−

√
πdβN .

Proof. Using the triangular inequality, we get

|Vn+1(x)−Vn+1
m (x)| ≤ |Vn+1(x)−Wn+1

m (x)|+ |Wn+1
m (x)−Vn+1

m (x)|. (39)
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Using Theorem 1, we can get

|Vn+1(x)−Wn+1
m (x)| ≤ C5N3e−

√
πdβN . (40)

where C5 is a constant independent of N. Based on Theorem 2, there exists a constant C6
that does not depend on N such that

|Wn+1
m (x)−Vn+1

m (x)| ≤ C6N3e−
√

πdβN , (41)

Finally, we conclude

sup
x∈[a,b]

|Vn+1(x)−Vn+1
m (x)| ≤ C7N3e−

√
πdβN , (42)

where C7 = max{C5, C6}.

5. Numerical Results

In this section, some numerical calculations are performed to demonstrate the validity
and accuracy of our method. In numerical examples, we set parameters d = π

2 and β = 1
and then h = π√

2N
. All numerical computations are carried out using Matlab 7.14 running

on a Lenovo PC (Lenovo, Quarry Bay, Hong Kong) with a 1.6 GHz Intel Core i5-4200 CPU
(Intel Corporation, Santa Clara, CA, USA) and 4 GB RAM installed.

To illustrate the accuracy of our method, the error analysis is calculated according to
the maximum norm errors, defined as:

e∞(h, τ) = max
0≤n≤N

‖Vn − vn‖∞.

Furthermore, the temporal convergence order can be expressed by

rate1 = log2

(
e∞(h, 2τ)

e∞(h, τ)

)
.

Example 1. We consider Equations (1)–(3) with the analytical solution

v(x, t) = t2x(x− 1),

where 0 < x < 1, 0 < t < 1 and

f (x, t) =
2

Γ(3− α)
x(x− 1)t2−α − 2t2 − 4Γ(1/2)

Γ(7/2)
t

5
2 .

Table 1 represents the maximum norm errors and the temporal convergence order for
N = 32 and α = 0.1, 0.3, 0.5, 0.7 with different values of time step size. Table 2 shows a
comparative study for the presented method and the method in [19]. It can be observed
from the table that the numerical results are better than the method in [19]. The maximum
norm errors for α = 0.8 and τ = 1

1000 with different values of N are plotted in Figure 1.
At the same time, it is clear from the figure that the presented scheme converges at an
exponential rate as N increases . From these diagrams, it can be seen that the results are in
excellent agreement with the theoretical analysis.
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Table 1. The maximum norm errors and temporal convergence orders with N = 32.

α τ e∞(h, τ) Rate1

0.1

1/10 2.71422 × 10−4 ∗
1/20 6.89322 × 10−5 1.97729
1/40 1.74371 × 10−5 1.98507
1/80 4.40355 × 10−6 1.98542

0.3

1/10 2.71798 × 10−4 ∗
1/20 6.90718 × 10−5 1.97637
1/40 1.74383 × 10−5 1.98584
1/80 4.41692 × 10−6 1.98115

0.5

1/10 2.78117 × 10−4 ∗
1/20 7.06728 × 10−5 1.97647
1/40 1.78836 × 10−5 1.98252
1/80 4.51750 × 10−6 1.98504

0.7

1/10 2.90936 × 10−4 ∗
1/20 7.37990 × 10−5 1.97903
1/40 1.86602 × 10−5 1.98365
1/80 4.71342 × 10−6 1.98512

The asterisk (∗) symbol indicates that the temporal convergence order cannot be calculated.

Table 2. Comparison of the maximum norm errors and temporal convergence orders with N = 100.

α τ e∞(h, τ) Rate1 e∞(h, τ) [19] Rate1 [19]

0.6

1/10 2.7821× 10−4 ∗ 2.4541× 10−4 ∗
1/20 7.0565× 10−5 1.9791 9.4738× 10−5 1.3732
1/40 1.7991× 10−5 1.9717 3.8919× 10−5 1.2835
1/80 4.5933× 10−6 1.9696 1.6656× 10−5 1.2244
1/160 1.1502× 10−6 1.9976 7.3463× 10−6 1.1810
1/320 2.8781× 10−7 1.9987 3.3191× 10−6 1.1462

The asterisk (∗) symbol indicates that the temporal convergence order cannot be calculated.
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Figure 1. The maximum norm errors with α = 0.8 and τ = 1
1000 .

Example 2. We consider Equations (1)–(3) with the analytical solution

v(x, t) = t sin(πx),
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where 0 < x < pi, 0 < t < 1 and

f (x, t) = sin(πx)
(

1
Γ(2− α)

t1−α + π2t +
4
3

π2t
3
2

)
.

Table 3 represents the maximum norm errors and the temporal convergence order for
N = 128 and α = 0.2, 0.4, 0.6, 0.8 with different values of time step size. The maximum
norm errors for α = 0.4 and τ = 1

512 with different values of N are plotted in Figure 2.
The figure also shows that our presented scheme converges at an exponential rate as N
increases. Figure 3 depicts the graph of the numerical solution and the exact solution with
α = 0.5, τ = 1

512 and N = 64. These figures confirm that the proposed method solution is
in good agreement with the exact solution.

Table 3. The maximum norm errors and temporal convergence orders with N = 128.

α τ e∞(h, τ) Rate1

0.2

1/10 1.4168 × 10−6 ∗
1/20 3.5892 × 10−7 1.9809
1/40 9.0501 × 10−8 1.9877
1/80 2.2729 × 10−8 1.9934

0.4

1/10 6.0618 × 10−6 ∗
1/20 1.5345 × 10−6 1.9819
1/40 3.8691 × 10−7 1.9877
1/80 9.7218 × 10−8 1.9918

0.6

1/10 2.1210 × 10−5 ∗
1/20 5.3633 × 10−6 1.9836
1/40 1.3508 × 10−6 1.9894
1/80 3.3889 × 10−7 1.9949

0.8

1/10 6.8883 × 10−5 ∗
1/20 1.7426 × 10−5 1.9829
1/40 4.3913 × 10−6 1.9885
1/80 1.1017 × 10−6 1.9949

The asterisk (∗) symbol indicates that the temporal convergence order cannot be calculated.
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Figure 2. The maximum norm errors with α = 0.4 and τ = 1
512 .
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Figure 3. Numerical solution and analytical solution with α = 0.5, τ = 1
512 and N = 64 .

6. Conclusions

In the present article, we have presented and analyzed an efficient numerical algorithm
for solving FPIEs with a weakly singular kernel. In this technique, the WSGD operator is
applied for discretization of the time fractional derivative and the Sinc collocation method
is used for discretization of the space derivative. Convergence analysis of our scheme is
theoretically proven, and it is shown that the numerical solution converges to the exact
solution at the exponential rate in space. Numerical experiments were provided to verify
the theoretical results. In the future, we intend to extend the method for solving the higher
space dimension equation, which is straightforward, in view of the potential applications.
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