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Abstract: We discuss the weighted complementarity problem, extending the nonlinear complemen-
tarity problem on Rn. In contrast to the NCP, many equilibrium problems in science, engineering, and
economics can be transformed into WCPs for more efficient methods. Smoothing Newton algorithms,
known for their at least locally superlinear convergence properties, have been widely applied to solve
WCPs. We suggest a two-step Newton approach with a local biquadratic order convergence rate to
solve the WCP. The new method needs to calculate two Newton equations at each iteration. We also
insert a new term, which is of crucial importance for the local biquadratic convergence properties
when solving the Newton equation. We demonstrate that the solution to the WCP is the accumulation
point of the iterative sequence produced by the approach. We further demonstrate that the algorithm
possesses local biquadratic convergence properties. Numerical results indicate the method to be
practical and efficient.

Keywords: weighted complementarity problem; two-step Newton method; local biquadratic
convergence; derivative-free line search

MSC: 65K05; 90C33

1. Introduction

The weighted complementarity problem (WCP) was originally introduced by Potra [1],
extending the standard nonlinear complementarity problem on Rn (NCP). Because of its
substantial applicability in various fields such as engineering, management, science, and
market equilibrium, it has garnered a great deal of interest from researchers. In particu-
lar, problems such as linear programming, weighted centering problems [2], and Fisher
market equilibrium problems [3] can be expressed using the model of the weighted linear
complementarity problem (WLCP) as shown below:

x ∈ Rn
+, y ∈ Rn

+, xy = w, Ax + By + Cu = d, (1)

and the WLCP model provides a more efficient approach to these problems than the
NCP model does.

Here we consider a more general WCP model: to find a triple (x, y, u) ∈ R2n × Rm

satisfying
x ∈ Rn

+, y ∈ Rn
+, xy = w, G(x, y, u) = 0, (2)

in which G(x, y, u) : R2n+m → Rn+m is a nonlinear mapping and w ∈ Rn
+ is a weighted

vector. When w = 0, the WCP (2) becomes the NCP [4–6]. When the function G(x, y, u)
becomes linear, then the WCP (2) is reduced to (1) [7–11].
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The WCP has been researched extensively, and numerous efficient algorithms have
been proposed. Smoothing Newton algorithms have gained popularity among researchers
because of their at least locally superlinear convergence properties [12–16]. With the aid
of the complementarity function, the WCP problem can be transformed into an equiva-
lent system of equations, which are then solved using Newton algorithms. This repre-
sents the core concept of employing Newton algorithms to solve the WCP. For WLCPs,
Zhang [17] presents a smoothing Newton algorithm. Tang [18] offers a damped derivative-
free Gauss–Newton method for a nonmonotone WLCP that is globally convergent and
requires no problem assumptions.

When solving the nonlinear equations G(z) = 0, it is widely known that the two-step
Newton approach [19–22] typically achieves higher-order convergence, such as third-order
or fourth-order convergence, than the classical Newton method. The two-step Newton
approach for solving nonlinear equations has recently been used in an attempt to solve
WCPs. Tang et al. [23] present a smoothing Newton approach to solve WCPs with local
cubic convergence rates. The approach accelerates the convergence rate by adding an
approximate Newton step, as the sequence of iterations is close to the solution, raising
the local convergence rate from second-order to third-order. This approach can be viewed
as an approximate two-step Newton algorithm. Liu et al. [24] propose a super-quadratic
smoothing Newton algorithm for solving WCPs based on the following two-step Newton
algorithm for solving nonlinear equations G(z) = 0:

zk+1 = sk − G(zk)−1G(sk), where sk = zk − G(zk)−1G(zk).

When solving Newton equations with the right parameter selections, the algorithm in
particular possesses the property of local cubic convergence. Argyros [25] and Magrenan
Ruiz [26] discuss the two-step Newton algorithm, whose iteration sequence {zk} is gener-
ated by

zk+1 = sk − G(sk)−1G(sk), where sk = zk − G(zk)−1G(zk),

and they show that the two-step Newton algorithm has a fourth-order convergence. A nat-
ural question emerges whether we can apply this algorithm to solve the WCP to obtain an
algorithm that is more efficient than the Newton method with local cubic convergence rate.
With these considerations, we develop a two-step Newton iterative technique for solving
the WCP (2) with a local biquadratic convergence property. The major contributions of the
new algorithm are as follows.

• The algorithm computes two Newton equations directly to obtain the next iteration
point, in contrast to the algorithm in [23]. If the value of the objective function meets
a certain descent criterion, the algorithm takes the iteration point produced by the
two Newton directions directly as the next iteration point; otherwise, the step size is
confirmed via a derivative-free line search to find the next iteration point. By doing
this, the computational efficiency of the algorithm is successfully improved without
adding to the time investment.

• Compared with the algorithm in [24], we employ different Jacobian matrices for
calculating Newton equations and add the new term χk = min{1, ξ4

k} when doing
so, in order to guarantee the local biquadratic convergence property. Due to this
architecture, the new algorithm exhibits local biquadratic convergence under the right
conditions.

• Because the nonlinear complementarity problem [4–6] and system of inequalities [27,28]
can be transformed into an equivalent system of equations, the novel algorithm
provides a fresh approach to solve these problems.

The paper proceeds as follows. Section 2 shows a smoothing function whose funda-
mental characteristics are also discussed. Section 3 proposes a new two-step smoothing
Newton approach for WCPs and demonstrates its viability. Sections 4 and 5 deal with the
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global and local strong convergence properties, respectively. Section 6 presents numerical
experiments. Section 7 contains final remarks.

2. Preliminaries

In this paper, we deal with the WCP (2) by using smoothing Newton methods. To this
end, we first introduce a smoothing function as

ϕc(ξ, p, q) =
√

p2 + q2 + 2c + 4ξ2 − (p + q), (3)

where ξ ∈ (0, 1) and c ∈ R+. The following lemma shows some basic properties of
ϕc(ξ, p, q), whose proof is obvious by simple calculations.

Lemma 1. Let ϕc(ξ, p, q) be defined by (3). Then

1. p ≥ 0, q ≥ 0, pq = c ⇔ ϕc(0, p, q) = 0.
2. If ξ > 0, then ϕc(ξ, p, q) is continuously differentiable for any (p, q) ∈ R2.

With the smoothing function ϕc(ξ, p, q) defined by (3), for the WCP (2), we define a
function F(ξ, x, y, u) : R× R2n+m → R× R2n+m by

F(ξ, x, y, u) =

 ξ
ϕw(ξ, x, y)
G(x, y, u)

, (4)

where

ϕw(ξ, x, y) =

ϕw1(ξ, x1, y1)
...

ϕwn(ξ, xn, yn)

. (5)

Let z = (ξ, x, y, u) to simplify the notation, then,

F(z) = F(ξ, x, y, u) = 0 ⇔ ξ = 0, G(x, y, u) = 0, ϕw(ξ, x, y) = 0.

It is simple to demonstrate that F(z) is continuously differentiable on R2n+m for any
ξ > 0 by using Lemma 1. By simple calculations, we have the Jacobian matrix for F(z)
as below:

F′(z) =

 1 0 0 0
J1 J2 J3 0
0 G′x G′y G′u

, (6)

where

J1 = vec

 4ξ√
x2

i + y2
i + 2wi + 4ξ2

, i = 1, 2, ..., n, (7)

J2 = diag

 xi√
x2

i + y2
i + 2wi + 4ξ2

− 1

, i = 1, 2, ..., n, (8)

J3 = diag

 si√
x2

i + y2
i + 2wi + 4ξ2

− 1

, i = 1, 2, ..., n. (9)

We next discuss the nonsingularity of Jacobian matrix H′(z). For this purpose, we
need an assumption.



Axioms 2023, 12, 897 4 of 13

Assumption 1. Suppose that Rank(G′y) = m, for any (∆x, ∆y, ∆u) ∈ R2n+m, if

G′x∆x + G′y∆y + G′u∆u = 0, (10)

then 〈∆x, ∆y〉 ≥ 0.

If G(x, y, u) is linear, i.e., G(x, y, u) = Ax + By + Cu− d, then (10) reduces to

A∆x + B∆y + C∆u = 0,

which means that the associated WLCP is monotone [9,17,29]. Similar to Lemma 1 in [17],
we can draw a conclusion as follows.

Theorem 1. If Assumption 1 is true, then F′(z) is invertible for any ξ > 0.

3. Description of the Method

This section presents and illustrates the feasibility of a new two-step smoothing
Newton approach. We start with the formal explanation of the new approach.

Remark 1.

1. It is worth noting that the Newton direction dk
1 + dk

2 obtained by computing Newton equations
twice is not necessarily the descent direction of the objective function. Therefore, to guarantee
the global convergence properties, we introduce a derivation-free line search. When the objective
function satisfies a certain descent quantity, we can use dk

1 + dk
2 directly as a descent direction.

Otherwise, we utilize (15) to generate a step length for obtaining the next iteration point.
2. In Step 2, the additional term χk = min{1, ξ4

k} is added to Newton Equations (11) and (12),
in contrast to the current smoothing Newton methods [17,23,30]. The property of lo-
cal biquadratic convergence of Algorithm 1 depends on this particular perturbation term.
Algorithm 1 has a similar computational cost to the traditional Newton approach even though
it computes the Newton direction twice.

3. The main distinction between Algorithm 1 and the accelerated algorithm in [23] as two-step
Newton algorithms is that Algorithm 1 employs two Newton directions from the beginning,
whereas the accelerated algorithm in [23] begins with one Newton direction and adds a second
Newton direction when certain conditions are met. We also note that Algorithm 1 is able
to solve the WCP better than the accelerated method in the following section of numerical
experiments.

4. In addition to the difference between Algorithm 1 and the algorithm in [24] in solving Newton
directions, another difference is that when the Newton equation is used as the descent direction
for the line search, there are different choices for the descent direction. As described in Step
4, the descent direction is chosen to be the sum of two Newton directions under certain
conditions. In the subsequent discussion, it will be shown that this choice is made to ensure
global convergence of the algorithm.

To investigate the convergence of Algorithm 1, we first demonstrate that it is
clearly defined.
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Algorithm 1 A Two-Step Newton Method
Input parameters: Required stopping criterion δ > 0, ξ0 > 0, c, l, ρ ∈ (0, 1), γ, σ1, σ2 ∈
(0, 1), κ ≥ 0 such that γ + γκ + κc < 1, and h = (γ, 0, 0, 0)T ∈ R × R2n+m. {ηk} ⊆ R+

satisfies that ∑∞
k=0 ηk ≤ η < ∞ and lim

k→∞
ηk = 0, and starting point (x0, y0, u0) ∈ R2n+m.

Output: an approximate solution (xk, sk, uk) to the WCP (2);
Step 0. Let z0 = (ξ0, x0, y0, u0) and k = 0.
Step 1. If ‖F(zk)‖ ≤ δ, stop.
Step 2.
a. Calculate dk

1 by
F′(zk)dk

1 = −F(zk) + χkh (11)

where χk = min{1, ξ4
k}. Let sk = zk + dk

1.
b. Calculate dk

2 by
F′(sk)dk

2 = −F(sk) + χkh. (12)

Step 3. If
‖F(zk + dk

1 + dk
2)‖ > l · ‖F(zk)‖, (13)

go to Step 4. Else, set dk = dk
1 + dk

2 and βk = 1, go to Step 5.
Step 4. Let

dk =

{
dk

1 + dk
2, if ‖F(sk)‖ ≤ c‖F(zk)‖ and ‖F′(zk)F′(sk)−1‖ ≤ κ,

dk
1 + βkdk

2, otherwise,
(14)

and let βk be the maximum of {ρ0, ρ, ρ2, · · · }, satisfying:

‖F(zk + ρm(k)dk)‖2 ≤ (1 + ηk)‖F(zk)‖2 − σ1(ρ
m(k))2‖dk‖2 − σ2(ρ

m(k))2‖F(zk)‖2. (15)

Step 5. Set zk+1 = zk + βkdk and k = k + 1. Return to Step 1.

Theorem 2. Supposing Assumption 1 is true, then Algorithm 1 is well-defined.

Proof of Theorem 2. As F′(z) is a nonsingular duo to Theorem 1, Step 2 is feasible. By the
definition of χk, we have that

χk = min{1, ξ4
k} = 1 ≤ ξk ≤ ‖F(zk)‖, if ξk ≥ 1

or
χk = min{1, ξ4

k} = ξ4
k ≤ ξk ≤ ‖F(zk)‖, if ξk < 1.

Thus,
χk ≤ ‖F(zk)‖. (16)

We next discuss the following two cases.

I. dk = dk
1 + dk

2
We obtain from (11), (12), (14), and (16) that

F(zk)T F′(zk)dk

= F(zk)T F′(zk)(dk
1 + dk

2)

= F(zk)T{−F(zk) + χkh + F′(zk)[F′(sk)−1(−F(sk) + χkh)]}
≤ − (1− γ)‖F(zk)‖2 − F(zk)T F′(zk)F′(sk)−1F(sk)

+ χkF(zk)T F′(zk)F′(sk)−1h

≤ − (1− γ− κc− κγ)‖F(zk)‖2,

(17)
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which together with γ + γκ + κc < 1 yields that

F(zk)T F′(zk)dk < 0. (18)

Note that, for any k ≥ 0, if the line search (15) is not satisfied, then

‖F(zk + βkdk)‖2

> (1 + ηk)‖F(zk)‖2 − σ1β2
k‖d

k‖2 − σ2β2
k‖F(z

k)‖2

≥‖F(zk)‖2 − σ1β2
k‖d

k‖2 − σ2β2
k‖F(z

k)‖2.

(19)

Then,
‖F(zk + βkdk)‖2 − ‖F(zk)‖2

βk
> −σ1βk‖dk‖2 − σ2βk‖F(zk)‖2. (20)

By letting k→ ∞ on (20), we obtain

F(zk)T F′(zk)dk ≥ 0,

which is in contradiction with (18). We can thus derive a step size βk that satisfies (15).
II. dk = dk

1 + βkdk
2

We obtain from (11) and (16) that

F(zk)T F′(zk)dk
1 = F(zk)T(−F(zk) + χkh)

≤ − (1− γ)‖F(zk)‖2

< 0.

(21)

On the other hand, if (15) is not satisfied, then

‖F(zk + βk(dk
1 + βkdk

2))‖2

> (1 + ηk)‖F(zk)‖2 − σ1β2
k‖d

k
1 + βkdk

2‖2 − σ2β2
k‖F(z

k)‖2

≥‖F(zk)‖2 − σ1β2
k‖d

k
1 + βkdk

2‖2 − σ2β2
k‖F(z

k)‖2.

(22)

Then,

‖F(zk + βk(dk
1 + βkdk

2))‖2 − ‖F(zk)‖2

βk
> −σ1βk‖dk

1 + βkdk
2‖2 − σ2βk‖F(zk)‖2. (23)

By letting k→ ∞ on (23), we obtain

F(zk)T F′(zk)dk
1 ≥ 0,

which is in contradiction with (21). We can thus derive a step size βk that satisfies (15).

In conclusion, Algorithm 1 is well-defined.

4. Global Convergence

We start defining the set Ω(z) as

Ω(z) = {z ∈ R+ × R2n+m|‖F(z)‖ ≤ e
ξ
2 ‖F(z0)‖}.

Theorem 3. If Assumption 1 is true, then Algorithm 1 generates a sequence zk = (ξk, xk, sk, uk)
satisfying 0 ≤ ξk+1 ≤ ξk ≤ · · · ≤ ξ0 and zk ∈ Ω(z).

Proof of Theorem 3. We show ξk ≥ 0 by induction. Supposing that ξk ≥ 0, it follows
from (11) and (12) that

∆ξ1
k = −ξk + χkγ (24)
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and
∆ξ2

k = −(ξk + ∆ξ1
k) + χkγ. (25)

Then, by Step 5, we have

ξk+1 = ξk + βk(∆ξ1
k + βk∆ξ2

k)

= ξk + βk{−ξk + χkγ + βk[−(ξk + ∆ξ1
k) + χkγ]} (26)

= (1− βk)ξk + βkχkγ,

indicating that ξk+1 ≥ 0 due to the fact that 0 ≤ βk ≤ 1. Moreover, combining with (16)
yields

ξk+1 − ξk = (1− βk)ξk + βkχkγ− ξk = βk(χkγ− ξk) ≤ 0,

i.e., ξk+1 ≤ ξk for any k ≥ 0.
It follows from (15) that

‖F(zk+1)‖2 ≤ (1 + ηk)‖F(zk)‖2

≤ (1 + ηk) · (1 + ηk−1) · · · (1 + η0)‖F(z0)‖2

≤
[

k

∑
j=0

1
k + 1

(1 + ηj)

]k+1

‖F(z0)‖2 (27)

≤
(

1 +
η

k + 1

)k+1
‖F(z0)‖2

≤ eη‖F(z0)‖2,

which indicates that zk ∈ Ω(z).

Theorem 4. If Assumption 1 is satisfied and {zk} is bounded, then lim
k→∞

ξk = 0.

Proof of Theorem 4. We have that {ξk} is monotonically nonincreasing and bounded from
Theorem 3, and is therefore convergent. Let lim

k→∞
ξk = ξ∗ ≥ 0. If ξ∗ = 0, the conclusion is

clearly valid. Supposing that ξ∗ > 0, we next show a contradiction.
Letting lim

k→∞
zk = z∗ = (ξ∗, x∗, y∗, u∗), then lim

k→∞
‖F(zk)‖ = ‖F(z∗)‖ ≥ ξ∗ > 0.

From (15), we have

‖F(zk + βkdk)‖2 ≤ (1 + ηk)‖F(zk)‖2 − σ1β2
k‖d

k‖2 − σ2β2
k‖F(z

k)‖2.

Since lim
k→∞

ηk = 0, by letting k→ ∞, we obtain that

‖F(z∗)‖2 ≤ ‖F(z∗)‖2 − σ1β2
∗‖d∗‖2 − σ2β2

∗‖F(z∗)‖2,

i.e.,
β2
∗(σ1‖d∗‖2 + σ2‖F(z∗)‖2) ≤ 0,

which indicates that β∗ = 0 due to F(z∗) > 0 and σ1, σ2 > 0. We proceed to the discussion
of two cases.

Case 1: ‖F(sk)‖ ≤ c‖F(zk)‖ and ‖F′(zk)F′(sk)−1‖ ≤ κ.

Letting β̂ =
βk
ρ

, it holds that

‖F(zk + β̂dk‖2

> (1 + ηk)‖F(zk)‖2 − σ1 β̂2‖dk‖2 − σ2 β̂2‖F(zk)‖2

≥‖F(zk)‖2 − σ1 β̂2‖dk‖2 − σ2 β̂2‖F(zk)‖2

(28)
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for sufficiently large k. Since

‖F(zk + β̂dk)‖2

= ‖F(zk) + β̂F′(zk)dk‖2 + o(β̂)

= ‖F(zk)‖2 + 2β̂F(zk)T F′(zk)dk + o(β̂),

(29)

combining (28) with (29), we obtain that

2F(zk)T F′(zk)dk + o(β̂) > −β̂(σ1‖dk‖2 + σ2‖F(zk)‖2). (30)

By (11), (12), and (14), we have

F(zk)T F′(zk)dk

= F(zk)T F′(zk)(dk
1 + dk

2)

= F(zk)T{−F(zk) + χkh + F′(zk)[F′(sk)−1(−F(sk) + χkh)]}
≤ − ‖F(zk)‖2 + χkγ‖F(zk)‖+ κc‖F(zk)‖2 + χkκγ‖F(zk)‖.

(31)

Then, from (30) and (31), we obtain

2[(−1 + κc)‖F(zk)‖2 + χk(γ + κγ)‖F(zk)‖]
> − β̂(σ1‖dk‖2 + σ2‖F(zk)‖2).

(32)

By letting k→ ∞ in (32), it holds that

2[(−1 + κc)‖F(z∗)‖+ (γ + κγ)χ∗] ≥ 0,

where χ∗ = min{1, ξ4
∗}. Then, we have

χ∗ ≥
1− κc
γ + γκ

‖F(z∗)‖ > γ + γκ

γ + γκ
‖F(z∗)‖ = ‖F(z∗)‖,

which contradicts (16). Thus, ξ∗ = 0.
Case 2: If the condition that ‖F(sk)‖ ≤ c‖F(zk)‖ and ‖F′(zk)F′(sk)−1‖ ≤ κ is not satis-

fied, we obtain from Step 4 that dk = dk
1 + βkdk

2. Similarly to Case 1, it can be deduced that

γχ∗ ≥ ‖F(z∗)‖

and then

χ∗ ≥
‖F(z∗)‖

γ
> ‖F(z∗)‖,

which is a contradiction. Therefore, we have ξ∗ = 0.

Theorem 5. If Assumption 1 is satisfied, then the sequence of iterations {zk} produced by
Algorithm 1 converges to a solution to the WCP (2).

Proof of Theorem 5. From (15), we obtain

‖F(zk+1)‖2 ≤ (1 + ηk)‖F(zk)‖2. (33)

Since ∑∞
k=0 ηk ≤ ξ < ∞, {‖F(zk)‖2} is convergent according to Lemma 3.3 in [31], and

{‖F(zk)‖} is also convergent as a result.
Suppose that lim

k→∞
zk = z∗ = (ξ∗, x∗, y∗, u∗) without loss of generality. We only need to

verify that ‖F(z∗)‖ = 0. If not, we can obtain by a similar proof to that in Theorem 4,

1− γ− κc− γκ ≤ 0,
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which is a contradiction, or
(1− γ)‖F(z∗)‖2 ≤ 1,

which is a contradiction. Hence, ‖F(z∗)‖ = 0.

5. Local Convergence

We deal with the local biquadratic convergence property in this section.

Theorem 6. If Assumption 1 is true, all D ∈ ∂F(z∗) are nonsingular. If the conditions hold that
both G′(x, y, u) and F′(x, y, u) are of Lipschitz continuity near z∗, then dk = dk

1 + dk
2 for any

sufficiently large k, and {zk} converges locally biquadratically to z∗.

Proof of Theorem 6. Since z∗ is the solution to the WCP (2), the Jacobian matrix F′(zk) is
invertible for any zk sufficiently close to z∗ according to Theorem 1. We obtain, for any
sufficiently large k,

‖F′(zk)−1‖ = O(1) (34)

from the condition that all D ∈ ∂F(z∗) are nonsingular and Proposition 4.1 in [32]. Addi-
tionally, since F(z) is strongly semismooth and locally Lipschitz continuous,

‖F(zk)− F(z∗)− F′(zk)(zk − z∗)‖ = O(‖zk − z∗‖2) (35)

and
‖F(zk)‖ = ‖F(zk)− F(z∗)‖ = O(‖zk − z∗‖). (36)

Since
‖χkh‖ ≤ γξ4

k ≤ ‖F(z
k)‖4, (37)

by (11) and (34)–(37), we have

‖sk − z∗‖ = ‖zk + dk
1 − z∗‖

= ‖zk + F′(zk)−1(−F(zk) + χkh)− z∗‖

= O
(
‖χkh + F(zk)− F(z∗)− F′(zk)(zk − z∗)‖

)
≤ O(‖F(zk)‖4) + O(‖zk − z∗‖2)

= O(‖zk − z∗‖2),

(38)

implying that sk is sufficiently close to z∗ as is zk. By (36) and (38), we obtain

‖F(sk)‖ = O(‖sk − z∗‖) = O(‖F(zk)‖2). (39)

Hence, combining (12), (34), (37), and (39) yields

‖dk
2‖ =

∥∥∥F′(y)−1
(
−F(sk) + χkh

)∥∥∥
≤ O

(
‖F(sk)‖+ ‖χkh‖

)
= O(‖F(zk)‖2),

(40)

and combining with (36) and (38) yields

‖zk + dk
1 + dk

2 − ∆z∗‖ ≤ ‖sk − z∗‖+ ‖dk
2‖

= O(‖zk − z∗‖2),
(41)

indicating that zk + dk
1 + dk

2 is sufficiently close to z∗ as is zk.
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Therefore, by combining (36) and (41), we have

‖F(zk + dk
1 + dk

2)‖
= O(‖zk + dk

1 + dk
2 − z∗‖)

= O(‖zk − z∗‖2)

= o(‖F(zk)‖)
= lk‖F(zk)‖,

(42)

where lk → 0. This means that (13) holds, indicating that βk ≡ 1 for any sufficiently large k, i.e.,

zk+1 = zk + dk
1 + dk

2. (43)

Upon the condition that F′(z) is Lipschitz continuous, we have from (12), (34), (37),
and (43) that

‖zk+1 − z∗‖
= ‖sk + dk

2 − z∗‖
= ‖sk − z∗ + F′(sk)−1(−F(sk) + χkh)‖

≤ O
(
‖F(sk)− F(z∗)− F′(sk)(sk − z∗)‖+ ‖χkh‖

)
= O(‖sk − z∗‖2) + O(‖F(zk)‖4)

= O(‖zk − z∗‖4).

(44)

Additionally, we have from (36) that

‖F(zk+1)‖ = O(‖zk+1 − z∗‖) = O(‖zk − z∗‖4) = O(‖F(zk)‖4),

implying that {zk} converges locally biquadratically to z∗.

6. Numerical Experiments

This section reports the computational efficiency of Algorithm 1, denoted as SNQ_L,
for WLCPs and WCPs. The numerical experiments are performed on a PC with 16 GB
RAM running MATLAB R2018b. In our tests, we set n = 2m, δ = 10−6, ρ = 0.6, γ = 0.01,
l = 0.1, c = 0.01, σ1 = σ2 = 0.001, ξ0 = 0.1, and ηk = 1/2k+2.

Furthermore, we use the algorithm in [23], denoted as ANM_Tang, and that in [24],
denoted as TSN_Liu, and compare them to SNQ_L. We utilize the same parameters for
ANM_Tang and TSN_Liu as those in [23,24], respectively.

6.1. Numerical Tests for a WLCP

Consider the following WLCP,

x ∈ Rn
+, y ∈ Rn

+, xy = w, Ax + By + Cu = d,

where

A =

(
M
N

)
, B =

(
0
−I

)
, C =

(
0
−MT

)
, d =

(
M f
g

)
.

We set M ∈ Rm×n to be generated from a standard normal distribution and
N = PT P/‖PT P‖, where P ∈ Rn×n is uniformly distributed over the interval (0, 1). The el-
ements of f ∈ Rn and g ∈ Rn, respectively, follow uniform distributions over the intervals
(0, 1) and (−1, 0). Then, w is generated by w = x̂ŷ with ŷ = Nx̂− g and x̂ = rand(n, 1).
The starting points (x0, y0, u0) = (0, 0, . . . , 0)T . In the following, Aveero reflects the av-
erage value of ‖F(zk)‖ at the end of the iteration, Avek stands for the average number
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of iterations, and AveCPU stands for the average runtime of the associated algorithm
in seconds.

To verify the local convergence rates of TSN_Liu, ANM_Tang, and SNQ_L, we first test
them on a specific case with n = 3000. Table 1 illustrates the variations in ‖F(zk)‖ with an
increase in the number of iterations. From Table 1, it is evident that our algorithm SNQ_L
exhibits local fourth-order convergence and, compared to ANM_Tang and TSN_Liu, it is
able to converge to the solution more rapidly.

Next, we randomly generate 10 instances of varying size for testing on each problem.
The test results are displayed in Table 2, showing that SNQ_L consistently requires fewer
iterations and typically utilizes less CPU time to achieve the stopping tolerance compared
to ANM_Tang and TSN_Liu. Furthermore, we can observe that SNQ_L requires even fewer
iterations and saves more CPU time compared to ANM_Tang and TSN_Liu as the problem
size increases. This is due to the local fourth-order convergence rate exhibited by SNQ_L.

Table 1. Display of the variation in ‖F(zk)‖ as the number of iterations k increases.

k SNQ_L ANM_Tang TSN_Liu

1 3.5540 × 101 1.5520 × 101 6.6272× 100

2 3.7347 × 10−2 1.6755 × 100 2.6368× 10−1

3 4.2037 × 10−8 5.1659 × 10−3 3.6580× 10−4

4 \ 3.2440 × 10−7 6.6823 × 10−12

Table 2. Numerical comparison results of the three algorithms for solving the WLCP.

n
SNQ_L ANM_Tang TSN_Liu

Avek AveCPU Aveero Avek AveCPU Aveero Avek AveCPU Aveero

1000 3.0 1.4839 2.2325 × 10−7 3.5 1.5091 9.4296 × 10−8 4.0 1.8323 6.1994 × 10−11

2000 3.0 9.8266 4.3843 × 10−7 3.6 9.4651 3.9083 × 10−7 4.0 15.3614 1.1060 × 10−10

3000 3.0 36.4712 2.9185 × 10−7 4.0 37.7936 3.2919 × 10−7 4.0 51.4373 1.6420 × 10−10

4000 3.1 89.5122 5.9255 × 10−7 4.0 101.6152 6.0811 × 10−7 4.0 110.9661 4.0618 × 10−10

5000 3.2 165.3057 4.9597 × 10−7 4.0 160.4525 7.7175 × 10−7 4.0 216.3353 1.4777 × 10−10

6000 3.3 289.1295 4.1117 × 10−7 4.0 296.4240 3.8819 × 10−7 4.0 368.0030 7.5609 × 10−9

7000 3.4 478.9888 7.6231 × 10−11 4.0 758.7281 1.1165 × 10−11 4.0 584.5569 5.9611 × 10−11

8000 3.4 731.9228 4.7637 × 10−7 4.0 1174.9030 1.3886 × 10−11 4.0 871.0305 3.6116 × 10−10

6.2. Numerical Tests for a WCP

Consider the following WCP,

x ∈ Rn
+, y ∈ Rn

+, xy = w, G(x, y, u) = 0,

with

G(x, y, u) =
(

Rx− PTu− y + d
P(x− f )

)
,

where R = DT D/‖DT D‖, D ∈ Rn×n is uniformly distributed over the interval (0, 1),
and P ∈ Rm×n is obtained from a uniform distribution on the interval (0, 1). The vectors
d, f , w ∈ Rn are all uniformly distributed over the interval (0, 1).

We perform 10 random experiments for each dimension. The average test results are
displayed in Table 3. These numerical results also demonstrate that SNQ_L is more stable
and effective compared to ANM_Tang and TSN_Liu. Furthermore, as the dimension of the
problem increases, SNQ_L requires less time and fewer iterations.
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Table 3. Numerical comparison results of the three algorithms for solving the WCP.

n
SNQ_L ANM_Tang TSN_Liu

Avek AveCPU Aveero Avek AveCPU Aveero Avek AveCPU Aveero

500 3.3 0.5099 1.5306 × 10−7 4.0 0.4196 1.4293 × 10−7 4.2 0.3881 8.6678 × 10−8

1000 3.7 2.0400 1.2644 × 10−7 4.0 2.1728 1.2036 × 10−7 4.7 1.9977 3.1280 × 10−8

1500 3.9 5.4378 9.5575 × 10−8 4.0 5.3286 1.6225 × 10−8 4.9 6.5876 8.3102 × 10−8

2000 3.8 12.2531 1.0501 × 10−7 4.3 17.5133 1.2893 × 10−7 4.9 17.1392 2.4996 × 10−7

2500 4.0 25.5304 1.1410 × 10−11 4.3 26.1118 5.1913 × 10−7 4.9 35.1112 3.1818 × 10−8

3000 4.0 44.2121 6.2264 × 10−9 5.0 42.3906 1.0581 × 10−7 5.1 56.0453 5.7393 × 10−8

3500 4.0 74.8664 1.4966 × 10−7 5.0 70.4032 1.4966 × 10−7 5.3 91.4523 2.8774 × 10−9

4000 4.0 109.1118 5.8961 × 10−11 6.0 149.8035 1.6964 × 10−8 5.4 139.3034 4.1105 × 10−8

4500 4.0 144.2821 1.3936 × 10−10 6.0 164.8998 1.4673 × 10−8 5.4 198.5842 2.9454 × 10−7

5000 4.0 210.1606 6.9677 × 10−9 7.0 259.7001 7.6293 × 10−9 5.2 278.2668 4.1158 × 10−8

7. Conclusions

We suggested a two-step Newton algorithm for the WCP by combining a two-step
Newton approach for nonlinear systems of equations with a classical Newton approach
for WCPs. The algorithm equivalently describes the WCP as a nonlinear set of equations.
The new algorithm computes an additional Newton direction to obtain the next iteration
point at each iteration. When the objective function value satisfies a specific descent
requirement, the algorithm uses the iteration point created by the two Newton directions
directly as the next iteration point; otherwise, the step size is decided by a derivative-free
line search to find the next iteration point. Under certain assumptions, the global and local
biquadratic convergence properties are verified. In numerical tests, we also compared
the algorithm with a two-step Newton algorithm and an accelerated Newton algorithm,
and the test results demonstrate that the computational efficiency of the new algorithm
is effectively improved without increasing the time cost and that the algorithm has the
property of local biquadratic convergence when the sequence of iterations is close to the
solution to the WCP.
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