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Abstract: As a new member of the NA (negative associated) family, the m-AANA (m-asymptotically
almost negatively associated) sequence has many statistical properties that have not been developed.
This paper mainly studies its properties in the gradual change point model. Firstly, we propose a
least squares type change point estimator, then derive the convergence rates and consistency of the
estimator, and provide the limit distributions of the estimator. It is interesting that the convergence
rates of the estimator are the same as that of the change point estimator for independent identically
distributed observations. Finally, the effectiveness of the estimator in limited samples can be verified
through several sets of simulation experiments and an actual hydrological example.

Keywords: least squares estimator; gradual change; m-AANA sequence; convergence rates;
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1. Introduction

Change point problems originally arose from quality control engineering [1]. Because
of the heterogeneities in real data sequences, the problems of change point estimation
and detection in real data sequences have drawn attention. Scholars have proposed many
methods to solve various data problems (see [2–9]). The purpose of change point detection
and estimation is to divide a data sequence into several homogeneous segments, and the
theories have been applied in many fields like finance [10], medicine [11], environment [12]
and so on. For some special problems, such as hydrological and meteorological problems,
most of the change point that occur are gradual rather than abrupt. Therefore, the research
on the problems of gradual change is very meaningful.

In earlier research, most theories of gradual changes were derived from two-stage
regression model [13,14]. Hušková [15] used the least–squares method to estimate an
unknown gradual change point and the model is as follows:

For n > 1, observations X1, X2, · · · , Xn shall satisfy:

Xt = µ + δ

(
i−m

n

)
+
+ ei, 1 ≤ i ≤ n,

where (a)+ = max(0, a), µ, δ 6= 0, m is the location of the change, e1, e2, · · · , en are i.i.d.
random variables with Eei = 0, var(ei) = σ2, E|ei|2+∆ < ∞ for some ∆ > 0. In the same
year, Jarušková [16] conducted a log likelihood ratio test of the model on the basis of
Hušková [15], and obtained that the asymptotic distribution of the test statistic is Gumbel
distribution.
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Later, Wang [17] extended the error terms ei from the traditional i.i.d. sequences to
the long memory i.i.d sequences and obtained the consistency of the estimator of the mean
gradual change point and the limit distribution of the test statistic. Then, Timmermann [18]
tested the gradual change in general random processes and update processes respectively,
and also obtained the limit distribution of test statistic. It is well known that most of the
previous studies tend to focus on the abrupt change. But for some important time series,
such as temperature and hydrology, there is a greater possibility of gradual mean change.

Therefore, this paper considers the gradual change problem and the following model
based on Hušková [15] is constructed:

Xt = µ + δn

(
t− k∗

n

)γ

+
+ Yt, 1 ≤ t ≤ n, (1)

where n > 1, X1, X2, · · · , Xn are observations. (a)+ = max(0, a), γ ∈ (0, 1), and k∗ is

unknow change point location. µ, δn are unknown parameter, µ, δn 6= 0 with n1/2|δn |
(log n)1/2 → ∞.

Y1, Y2, · · · , Yn are random variables with zero mean.
The least squares method is a classic method (see [19,20]). In model (1), the estimators

of k∗ and τ∗ based on the least–squares–type are, respectively:

k̂∗ = min
{

k : k = arg max
j

Uj(γ); j = 1, 2, · · · , n− 1
}

, (2)

τ̂∗ = k̂∗/n, (3)

where:

Uj(γ) =

∣∣∑n
t=1(xtj − x̄j)Xt

∣∣(
∑n

t=1(xtj − x̄j)2
)1/2 . (4)

For convenience of illustration, xtj and x̄j are
(

t−j
n

)γ

+
and 1

n

n
∑

t=1
xtj, respectively.

It can be seen that most previous studies have one thing in common, namely that
the error terms are independently and identically distributed. However, the constraints
of independent sequences are quite strict, and in practical problems, many time series
models may not meet the independent conditions. This leads to a classical question
of whether the error terms in a model can be generalized to some more general cases.
Therefore, the idea of extending the error terms to the m-AANA sequences is proposed in
this paper. Before presenting the main asymptotic results, it is necessary to understand the
following definition:

Definition 1 ([21]). There is an fixed integer m ≥ 1, the random variable sequence {Yn, n ≥ 1} is
called m-AANA sequence if there exists a non negative sequence q(n)→ 0 as n→ ∞ such that:

Cov{ f (Yn), g(Yn+m, · · · , Yn+k)} ≤ q(n)[Var( f (Yn))Var(g(Yn+m, · · · , Yn+k))]
1/2, (5)

for all n ≥ 1, k ≥ m and for all coordinatewise nondecreasing continuous functions f and g
whenever the variances exist. The sequence {q(n), n ≥ 1} is called the mixing coefficients of
{Yn, n ≥ 1}. It is not difficult to see that NA family includes NA [22], m-NA [23], AANA [24],
and independent sequences.

Scholars have great interest in the sequences of NA family. For example, NA sequence
is opposite to PA (positively associated) sequence, but NA sequence has better property
than other existing ND (negatively dependent) sequence: under the influence of increasing
functions, the disjoint subset of NA random variable sequence is still NA. Therefore, NA
sequences appeared in many literary works. Przemysaw [25] obtained the convergence
of partial sums of NA sequences; Yang [26] obtained Bernstein type inequalities for NA
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sequences; and Cai [27] obtained the Marcinkiewicz – Zygmund type strong law of large
numbers of NA sequences.

There are many classical studies about m-NA and AANA sequences as generaliza-
tions of NA sequences. Hu [23] discussed the complete convergence of m-NA sequences;
Yuan [28] proposed a Marcinkiewics-Zygmund type moment inequality for the maximum
partial sum of AANA sequences.

For the m-AANA sequence mentioned in this paper, it is a relatively new concept and
its research results are less than those of other sequences in NA family. Ko [29] extended
Hájek–Rényi inequalities and the strong law of large numbers of Nam [21] to Hilbert space;
Ding [30] proposed the CUSUM method to estimate the abrupt change point in a sequence
with the error term of m-AANA process, but for a more general case, he did not discuss the
gradual change. Therefore, another reason for constructing the main ideas of this paper is
is to fill the research gaps of Ding [30].

The rest is arranged as follows: Section 2 describes the main results. A small simulation
study under different parameters and an example is provided in Section 3. Section 4
contains the conclusions and outlooks, and the main results are proved in Appendix A.

2. Main Results

For our asymptotic results, assume the model to satisfy the following assumptions:

Assumption 1. {Yn, n ≥ 1}is a sequence of m-AANA random variables with EYn = 0, EY2
n =

σ2 < ∞, and there is a v > 0, E|Yn|2+v < ∞.

Assumption 2. The mixing coefficient sequence {q(n), n ≥ 1} satisfies ∑∞
n=1 q(n),

∑∞
n=1 q2(n) < ∞.

Assumption 3. We note Si,n = ∑n
j=1 Yj+i, Sn = S0,n. As n→ ∞,

ES2
n

n
= s2 < ∞.

In addition, there exists strictly ascending sequence of natural numbers {nk} with n0 = 0 and

mi = ni − ni−1. And for some 0 < α ≤ 1, ∑∞
i=1

(
mi
ni

)1+α/2
< ∞, lim

i→∞

ES2
ni−1,mi
mi

= s2 < ∞.

Remark 1. Assumption 1 and 2 are the underlying assumptions, and if these assumptions cannot
be met, serious problems such as bias in the estimates, inconsistency in the estimates, and invalidity
of the estimates may arise in the proof process.

In addition, what can be verified is that the m-AANA random variables satisfy the central
limit theorem when Assumption 1–3 are ture.

Let τ = k/n, τ∗ = k∗/n, we obtain the Theorem 1.

Theorem 1. If Assumption 1 and 2 are ture, when n→ ∞,

|τ̂∗ − τ∗| = op(1).

Theorem 2. If Theorem 1 holds, when n→ ∞,

|k̂∗ − k∗| = Op(4),

4 =


(δ−2

n n2γ)1/(2γ+1), γ ∈ (0, 1/2),

δ−1
n n1/2(log(n− k∗))−1/2, γ = 1/2,

δ−1
n n1/2, γ ∈ (1/2, 1).
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Remark 2. Interestingly, these convergence rates are the same as those in Hušková [31], but
independent sequences are contained in m-AANA sequences.

Theorem 3. Case 1. Assuming that Assumption 1–3 hold true. If γ ∈ (0, 1
2 ), as n→ ∞, then:

(δ2
nn−2γ)1/(2γ+1)(k̂∗ − k∗)/(σ2 − C7)

D−→ Vγ, (6)

where Vγ = arg max
{

Zγ(i)−
∫ ∞
−∞((x + i)γ

+ − xγ
+)

2dx/2; i ∈ R
}

with {Zγ(i); i ∈ R} is
a Gaussian process with zero mean and covariance function.

Cov(Zγ(i), Zγ(s)) =
∫ ∞

−∞
((x + i)γ

+ − xγ
+)((x + s)γ

+ − xγ
+)dx, i, s ∈ R. (7)

Case 2. Assuming that Assumption 1, 2 and 3 hold true. If γ = 1
2 , as n→ ∞, then:

δn(log(n− k∗))1/2

2n1/2
k̂∗ − k∗

(σ2 − C8)1/2
D−→ V1/2 (8)

where V1/2 is a standard normal variable.
Case 3. Assuming that Assumption 1, 2 and 3 hold true. If γ ∈ ( 1

2 , 1), as n→ ∞, then:

δn

n1/2
k̂∗ − k∗

(σ2 − C9)1/2
D−→ V

′
γ (9)

where V
′
γ is a normal N(0, g−2(τ∗, γ)) random variable with:

g2(τ∗, γ) = (1− τ∗)(2γ−1)
{

2γ + 1
4

(γ− 1 + 2τ∗)2

γ2 + τ∗(1 + 2γ)
− 1

2γ− 1
((γ− 1)2 + τ∗(2γ− 1))

}
. (10)

C7, C8, C9 < σ2 are constants and are described in the proofs in Appendix A.

3. Simulations and Example

In this section, assume that there is only one gradual change point of mean at k∗ in (1),
such that:

Xt = µ + δn

(
t− k∗

n

)γ

+
+ Yt, 1 ≤ t ≤ n,

Y1, Y2, · · · , Yn satisfy:

(Y1, Y2, · · · , Yn)
d
= ω1Nn(0, In) + ω2Nn(0, Σn),

where ω1, ω2 ≥ 0, ω1 + ω2 = 1, In is a identity matrix, Σn satisfies:

Σn =


1 + 1/n ρ ρ2 · · · ρn−1

ρ 1 + 2/n ρ · · · ρn−2

ρ2 ρ 1 + 3/n · · · ρn−3

· · · · · · · · · · · · · · ·
ρn−1 · · · ρ2 ρ 2


n×n

(11)

where |ρ| < 1. It can be verified that {Y1, Y2, · · · , Yn} is a m-AANA sequence with m = 2
and q(n) = Op(|ρ|n). For comparison, we take µ = 1, τ∗ = 0.5, ω1 = ω2 = 0.5, ρ = −0.6
and δn = (n−0.1, 1, n0.1, n0.2), γ = (0.75, 0.5, 0.25). It is worth noting that after verification,
under these conditions, Σn is a non singular matrix, which can be used for simulation
experiments. Then, 1000 simulation processes are carried out. Figures 1–3 are based on the
simulation of δn = n−0.1, 1, n0.1, n0.2 from left to right.
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Figure 1. The box plots of τ̂∗ − τ∗ with γ = 0.75, δn = n−0.1, 1, n0.1, n0.2, and τ∗ = 1/2.

Figure 2. The box plots of τ̂∗ − τ∗ with γ = 0.5, δn = n−0.1, 1, n0.1, n0.2, and τ∗ = 1/2.
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Figure 3. The box plots of τ̂∗ − τ∗ with γ = 0.25, δn = n−0.1, 1, n0.1, n0.2, and τ∗ = 1/2.

In Figures 1–3, the ordinate axis represents the value of τ̂∗ − τ∗, and the abscissa is
the size of sample n. It is not difficult to find that the larger the gradual coefficient γ, the
worse the performance of our estimator. And as n increases, the estimation effect becomes
better, this also implies the result in Theorem 1. For different ρ and τ∗, similar results can
be obtained, which will not be repeated here.

Finally, we do the change-point analysis based on the sequence of monthly average
water levels of Hulun Lake in China from 1992 to 2008. For the convenience of description,
we subtract the median of the observations. Then, Figures 4 and 5 can be obtained:

Figure 4. The plot graph of monthly average water levels of Hulun Lake from 1992 to 2008.
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Figure 5. Autocorrelation function.

It can be seen from Figure 5 that we have no sufficient reason to believe that the water
levels of Hulun Lake does not meet the conditions of m-AANA sequence. According to
Sun [32], the water levels of Hulun Lake have declined rapidly since 2000, due to the
influence of the monsoon, changes in precipitation patterns, and the degradation of frozen
soil. Using the method in this paper, Table 1 shows the values of k̂∗ under different γ.

Table 1. The values of k̂∗ based on water level.

γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.35 γ = 0.4

k̂∗ = 105 k̂∗ = 105 k̂∗ = 105 k̂∗ = 105 k̂∗ = 105 k̂∗ = 105 k̂∗ = 105

The position of 105 represents the year 2000. The average water levels of Hulun Lake
have been decreasing since 2000.

4. Conclusions

This paper proposes a least-squares-type estimator of the gradual change point of
sequence based on m-AANA noise and study the consistency of the estimator. At the same
time, the convergence rates are obtained in Theorem 2:

|k̂∗ − k∗| = Op(4),

4 =


(δ−2

n n2γ)1/(2γ+1), γ ∈ (0, 1/2),

δ−1
n n1/2(log(n− k∗))−1/2, γ = 1/2,

δ−1
n n1/2, γ ∈ (1/2, 1].

Therefore, Theorems 1 and 2 generalize the results in Hušková [31]. Furthermore,
due to the asymptotic normality of m-AANA sequences, this paper also derives the limit
distributions of the estimator under different γ in Throrem 3. It can be known that the inap-
propriate γ has a great impact on the change point estimator. If γ→ 0, the gradual change
point in (2) may be very similar to the abrupt change point, and lose the gradual change
properties. If γ→ 1, the dispersion of data may be very large, which is not conducive to
determining the correct change point position. So we conduct several simulations to verify
the results, and the results show that the larger γ is, the worse the estimation effect is, but
the consistency is still satisfied. Finally, the paper discusses the gradual change of water
levels of Hulun Lake in Section 3, and the estimator successfully finds the position of the
change point.

There is also some regret in this paper. For example, for series where the variances
cannot be estimated, such as a financial heavy-tailed sequence with a heavy-tailed index
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κn < 2, the location of the change point cannot be obtained using the method in this paper.
Therefore, more suitable methods should be promoted in future works. Moreover, we
suspect that there may be more common cases in the selection of ei, this is also one of the
key points to be solved in the future.
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Appendix A

Proof of Theorem 1. Let Vk(γ) = U2
k (γ)−U2

k∗(γ), (2) can be equivalent to:

k̂∗ = min
1<k<n

{
k : k = arg max

j
Vj(γ); j = 1, 2, · · · , n− 1

}
, (A1)

after the elementary operation, Vk(γ) can be divided into five parts:

Vk(γ) = Ak,1 + Ak,2 + Ak,3 + Ak,4 + Ak,5, (A2)

where:

Ak,1 =

(
1

akk
− 1

ak∗k∗

)[ n

∑
t=1

(xtk∗ − x̄k∗)Yt

]2

,

Ak,2 =
1

akk

n

∑
t=1

[(xtk − x̄k)− (xtk∗ − x̄k∗)]Yt ·
n

∑
t=1

[(xtk − x̄k) + (xtk∗ − x̄k∗)]Yt,

Ak,3 = 2δn

(
akk∗

akk
− 1
) n

∑
t=1

(xtk − x̄k)Yt,

Ak,4 = 2δn

n

∑
t=1

[(xtk − x̄k)− (xtk∗ − x̄k∗)]Yt,

Ak,5 = δ2
n

(
a2

kk∗

akk
− ak∗k∗

)
,

and akl =
n
∑

t=1
(xtk − x̄k)(xtl − x̄l), k, l = 1, 2, 3, · · · , n − 1. At this moment, a lemma

is needed.

Lemma A1. If Assumption 1 and Assumption 2 are true, when n→ ∞, then,

max

∣∣∣∣ n
∑

t=1
(xtk − x̄k)Yt

∣∣∣∣
a1/2

kk

= Op(
√

log n). (A3)
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Proof of Lemma A1.

max

∣∣∣∣ n
∑

t=1
(xtk − x̄k)Yt

∣∣∣∣
a1/2

kk

=max

∣∣∣∣∣ 1

a1/2
kk

n

∑
t=1

xtkYt −
1

a1/2
kk

(
1
n

n

∑
t=1

xtk

)
n

∑
t=1

Yt

∣∣∣∣∣
=max

∣∣∣∣∣ 1

nγa1/2
kk

n

∑
t=k+1

(t− k)γYt −
1

nγ+1a1/2
kk

n

∑
t=k+1

(t− k)γ
n

∑
t=1

Yt

∣∣∣∣∣
≤max

1

nγa1/2
kk

∣∣∣∣∣ n

∑
t=k+1

(t− k)γYt

∣∣∣∣∣+ max
1

nγ+1a1/2
kk

n

∑
t=k+1

(t− k)γ

∣∣∣∣∣ n

∑
t=1

Yt

∣∣∣∣∣.

(A4)

Then, another result can be obtained:

akk
n

=
1
n

n

∑
t=1

(xtk − x̄k)
2

=
1
n

n

∑
t=1

x2
tk − x̄2

k

=
∫ 1

k/n

(
x− k

n

)2γ

dx−
(∫ 1

k/n

(
x− k

n

)γ

dx
)2

+ O
(

1
n

(
n− k

n

)γ)
=

1
2γ + 1

(
1− k

n

)2γ+1
− 1

(γ + 1)2

(
1− k

n

)2γ+2
+ O

(
1
n

)
(A5)

From Lemma 3.1 in Ko [29] and the proof of Theorem 1 in Ding [30], the following
truth can be obtained:

P

(
sup

1≤k≤n−1

1√
n− k

∣∣∣∣∣ n

∑
t=k+1

Yt

∣∣∣∣∣ > ε

)
≤ C

ε2

n

∑
t=1

E|Yt|2
t
≤ C1ε−2 log n. (A6)

where C, C1 are positive constants. Then,

sup
1≤k≤n−1

1√
n− k

∣∣∣∣∣ n

∑
t=k+1

Yt

∣∣∣∣∣ = Op(
√

log n), (A7)

hence,
n

∑
t=k+1

(t− k)γ
+Yt =

n

∑
t=k+1

(
t−k

∑
j=1

∫ j

j−1
γxγ−1dx

)
Yt

=
n−k

∑
j=1

∫ j

j−1
γxγ−1dx

n

∑
t=j+k

Yt

= Op(|n− k|γ+1/2√log n),

(A8)

combining Equations (A4)–(A8), the following can be obtained:

max

∣∣∣∣ n
∑

t=1
(xtk − x̄k)Yt

∣∣∣∣
a1/2

kk

≤C2 max
1

(n− k)γ+1/2

∣∣∣∣∣ n

∑
t=k+1

(t− k)γYt

∣∣∣∣∣+ C3 max
(n− k)γ+1

n(n− k)γ+1/2

∣∣∣∣∣ n

∑
t=1

Yt

∣∣∣∣∣
=Op(

√
log n).
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Similar to the proof of Equation (A5), the following can be obtained:

ak∗k∗

n
=

1
2γ + 1

(1− τ∗)2γ+1 − 1
(γ + 1)2 (1− τ∗)2γ+2 + O

(
1
n

)
, (A9)

akk∗

n
=
∫ 1

0
(x− τ)γ

+(x− τ∗)γ
+dx− 1

(γ + 1)2 (1− τ)γ+1(1− τ∗)γ+1 + O
(

1
n

)
, (A10)

from Lemma 2.2 in Hušková [31], uniformly for |k− k∗| = o(n), as n→ ∞,

akk∗ − akk
n

=
k− k∗

n
γ− 1 + 2τ

2γ + 2
(1− τ)2γ(1 + o(1)) = O(n−1|k− k∗|), (A11)

then,
Ak,5

n
=

δ2
n

n

(
a2

kk∗

akk
− ak∗k∗

)
= δ2

n(h(τ)− h(τ∗))(1 + o(1)), (A12)

where:

h(τ) =

[∫ 1
0 (x− τ)γ

+(x− τ∗)γ
+dx− (γ + 1)−2(1− τ)γ+1(1− τ∗)γ+1

]2

(2γ + 1)−1(1− τ)2γ+1 − (γ + 1)−2(1− τ)2γ+2 .

Now suppose 0 < ε < min(τ, 1− τ) and τ ∈ [0, 1). Obviously, max
τ∈[0,1)

h(τ) = h(τ∗),

max
|k−k∗ |>nε

h(τ) < h(τ∗). Therefore,

max
|k−k∗ |>nε

Ak,5

n
= max
|τ−τ∗ |>ε

δ2
n(h(τ)− h(τ∗))(1 + o(1)) < 0. a.s. (A13)

By Lemma A1, the following can be obtained:

max
|k−k∗ |>nε

|Ak,1|
n

= max
|k−k∗ |>nε

∣∣∣∣∣∣∣∣∣
1
n

(
ak∗k∗ − akk

akk

)
n
∑

t=1
(xtk∗ − x̄k∗)Yt

a1/2
k∗k∗


2
∣∣∣∣∣∣∣∣∣ = Op(n−1log n), (A14)

by the same token,

max
|k−k∗ |>nε

|Ak,2|
n
≤ Op(n−1log n), (A15)

max
|k−k∗ |>nε

|Ak,3|
n
≤ Op(n−1/2√log n), (A16)

max
|k−k∗ |>nε

|Ak,4|
n
≤ Op(n−1/2√log n). (A17)

By combining (A13)–(A17), it can be found that when |k− k∗| > nε, n→ ∞,

max
|k−k∗ |>nε

1
n
(Ak,1 + Ak,2 + Ak,3 + Ak,4 + Ak,5) < 0, (A18)

therefore, only when |k − k∗| < nε, Vk(γ) take the maximum value. Theorem 1 has
been proved.



Axioms 2023, 12, 894 11 of 16

Proof of Theorem 2. Consider Ak,5 first.

Ak,5 = δ2
n

(
a2

kk∗

akk
− ak∗k∗

)
= δ2

n

[
(akk∗ − akk)

2

akk
− (akk + ak∗k∗ − 2akk∗)

]
. (A19)

According to the Lemmas 2.2–2.4 in Hušková [31], for any D > 0, Dn → ∞, and
Dn/n→ 0 as n→ ∞. Then, the following can be accessed:

ak∗k∗ + akk − 2akk∗ =


O
(

n−2γ|k− k∗|2γ+1
)

, γ ∈ (0, 1/2),

O
(

n−1|k− k∗|2 log(n− k∗)
)

, γ = 1/2,

O
(

n−1|k− k∗|2
)

, γ ∈ (1/2, 1),

(A20)

uniformly for Dn > |k− k∗| > D4. The problem can be considered in three parts. When
γ ∈ (0, 1/2), combine (A5), (A11), (A19) and (A20), it is obvious that ∃C4, C5 > 0,

−C4δ2
nn−2γ|k− k∗|2γ+1 ≤ Ak,5 ≤ −C5δ2

nn−2γ|k− k∗|2γ+1, (A21)

uniformly for Dn > |k− k∗| > D4.
Next, for Ak,1,

max
D>|k−k∗ |>M4

|Ak,1|
δ2

nn−2γ|k− k∗|2γ+1

= max
D>|k−k∗ |>M4

δ−2
n n2γ|k− k∗|−2γ−1O(n−1|k− k∗|)Op(log n)

=Op

((
|k− k∗|

n

)−2γ log n
nδ2

n

)
.

(A22)

When n→ ∞,

max
D>|k−k∗ |>M4

|Ak,1|
δ2

nn−2γ|k− k∗|2γ+1 = op(1), (A23)

similarly,

max
D>|k−k∗ |>M4

|Ak,2|
δ2

nn−2γ|k− k∗|2γ+1 = op(1), (A24)

max
D>|k−k∗ |>M4

|Ak,3|
δ2

nn−2γ|k− k∗|2γ+1 = op(1), (A25)

max
D>|k−k∗ |>M4

|Ak,4|
δ2

nn−2γ|k− k∗|2γ+1 = op(1). (A26)

Combining (A21) and (A23)–(A26), when γ ∈ (0, 1/2), |k̂∗ − k∗| = Op(4). For the
cases of γ = 1/2 and γ ∈ (1/2, 1), the methods of proof are similar, so the article will
not repeat.

In order to obtain the asymptotic distributions of the estimator, it is necessary to prove
several lemmas about random terms.

Lemma A2. Assuming that Assumption 1, 2 are true, if γ ∈ (0, 1), as n→ ∞, then,

max
1≤k≤n−1

|∑n
t=1(xtk − x̄k)Yt|

(∑n
t=1(xtk − x̄k)2)

1/2 = Op((log n)1/2), (A27)



Axioms 2023, 12, 894 12 of 16

max
1≤k≤n(1−ε)

|∑n
t=1(xtk − x̄k)Yt|

(∑n
t=1(xtk − x̄k)2)

1/2 = op(1) (A28)

for any ε ∈ (0, 1).

Proof of Lemma A2. Prove that (A27) holds, which is equivalent to proving:

max
1≤k≤n−1

∣∣∑n
t=k+1(t− k)γ

+Yt
∣∣

(n− k)γ+1/2 = Op((log n)1/2),

by (A7), The following are available:∣∣∣∣∣ n

∑
t=k+1

(t− k)γ
+Yt

∣∣∣∣∣ = Op(|n− k|γ+1/2(log n)1/2), (A29)

uniformly for 1 ≤ k ≤ n − 1. And for the proof of (A28), just replace (A7) with
max

1≤k≤n−1

∣∣∑n
t=k+1 Yt

∣∣ = Op(n1/2).

Then, it is necessary to define that:

Qnγ(k) =
1
δn

∑n
t=1(xtk − xtk∗)Yt

∑n
t=1(xtk − xtk∗)2 , k 6= k∗, γ ∈ (0, 1) (A30)

and

Vnγ

(
k− k∗

4

)
=

(
n
4

)min(γ,1/2)+1/2 1
n1/2

n

∑
t=1

(xtk − xtk∗)Yt, γ 6= 1
2

, (A31)

Vnγ

(
k− k∗

4

)
=

1
n1/2

(
n
4

)
1

(log(n− k∗))1/2

n

∑
t=1

(xtk − xtk∗)Yt, γ =
1
2

. (A32)

It is not difficult to see that:

EQnγ(k) = 0, k 6= k,

and at this point, another lemma is required:

Lemma A3 ([21]). Let {Yn} be an m-AANA random variables sequence with EYn = 0. It has
mixing coefficients {q(n), n ≥ 1}. If ∑∞

t=1 q2(n) < ∞, there exists a positive constant Cp such that:

E max
1≤k≤n

∣∣∣∣∣ k

∑
t=1

Yt

∣∣∣∣∣
p

≤ Cpmp−1
n

∑
t=1

E|Yt|p, (A33)

where 1 < p ≤ 2.

After simple calculation, the following can be obtained:

Var(Qnγ(k)) = (σ2 − C6)

(
δ2

n

n

∑
t=1

(xtk − xtk∗)
2

)−1

, k 6= k∗

where C1 is a constant. And similarly, for i ∈ R,

EVnγ(i) = 0,
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Var(Vnγ(i)) =



(σ2 − C7)|i|2γ+1
∫ ∞

−∞
((x + 1)γ

+ − xγ
+)

2dx(1 + o(1)), γ ∈ (0, 1/2),

(σ2 − C8)i2

4
(1 + o(1)), γ = 1/2,

(σ2 − C9)i2
γ2(1− τ∗)2γ−1

2γ− 1
(1 + o(1)), γ ∈ (1/2, 1),

where C2, C3 and C4 are constants. Next, we need to break down the discussion into situations.

Lemma A4. If γ ∈ (0, 1/2), Assumption 1, 2 and 3 are true. For any η ∈ (0, 1), there exist
Hη > 0 and nη such that for n > nη ,

P

(
max

Dn>|k∗−k|>Hη4
|Qnγ(k)| ≥ η

)
< η, (A34)

where Dn is given in the proof of Theorem 2, and as n→ ∞,

Vnγ,D
D−→ (σ2 − C7)

1/2Zγ,D, (A35)

where Vnγ,D = {Vnγ(i), i ∈ (−D, D)} and Zγ,D = {Zγ(i), i ∈ (−D, D)}.

Proof of Lemma A4. By the proof of Lemma 2.3 in [33], for any H > 0,

n

∑
t=1

(xtk − xtl)
2 ≤ M1

|k− l|2γ−1

n2γ
(A36)

if k∗ − Dn < k < l ≤ k∗ −4H or k∗ +4H ≤ k < l < k∗ + Dn with some M1 > 0. Then,
for k∗ − Dn < k < l ≤ k∗ −4H,

E(Qnγ(k)−Qnγ(l))2 ≤ M2
n2γ

δ2
n

{
|k− l|2γ−1

(k∗ − k)4γ+2 + (k∗ − l)2γ+1
(

1
(k∗ − l)2γ+1 −

1
(k∗ − k)2γ+1

)2
}

≤ M3
n2γ

δ2
n

{(∫ k∗−l

k∗−k
x−2dx

)2γ+1

+

(∫ k∗−l

k∗−k
x−γ−3/2dx

)2
} (A37)

with some M2, M3 > 0. According to Theorem 12.2 of [1], for all H, η > 0, there exists
M4 > 0, then:

P

(
max

Dn>|k∗−k|>Hη4
|Qnγ(k)| ≥ η

)
≤ M4

n2γ

δ2
n

{(∫ k∗

H4
x−2dx

)2γ+1

+

(∫ k∗

H4
x−γ−3/2dx

)2
}

≤ M4

η2H2γ+1 .

(A38)

(A34) be obtained by choosing a sufficiently small H.
By the holding of Assumption 3 and Theorem 12.3 in [1] to prove the convergence

of (A35). It suffices to show that ∑
p
j=1 bjVnγ(ij)

(
Var

{
∑

p
j=1 bjVnγ(ij)

})−1/2
converges in

distribution to the N(0, 1) distributed random variables with any −D < i1 < · · · < ip < D
and b1, · · · , bp ∈ R and the tightness. Since Vnγ(i) are the sum of m-AANA random
variables, the first expected property can be obtained by applying the central limit theorem.
By the tightness conditions from Theorem 12.3 in [33], for −D < i1 < i2 < D, after a
simple calculation,

E(Vnγ(i1)−Vnγ(i2))2 ≤ M5(i2 − i1)2γ+1(1 + o(1)) (A39)
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with some M5 > 0.

Lemma A5. If γ = 1/2, Assumption 1, 2 and 3 are true. For any η ∈ (0, 1), there exist Hη > 0
and nη such that for n > nη ,

P

(
max

Dn>|k∗−k|>Hη4
|Qnγ(k)| ≥ η

)
< η, (A40)

where Dn is given in the proof of Theorem 2, and as n→ ∞,

Vnγ,D
D−→ {iY, i ∈ (−D, D)}, (A41)

where Y is a normal N(0, (σ2 − C8)/4) random variable.

Proof of Lemma A5. The proof of (A40) is very similar to (A34) and is omitted here. To
prove the tightness, then,

E(Vnγ(i1)−Vnγ(i2))2 =
σ2 − C8

42(log(m− k∗))2

n−k∗

∑
j=1−k∗

[
(j−4i1)

1/2
+ − (j−4i2)

1/2
+

]2
(1 + o(1))

=
(σ2 − C8)|i1 − i2|2
42(log(m− k∗))2

n−k∗

∑
j=1−k∗

[
(j−4i1)

−1/2
+ − (j−4i2)

−1/2
+

]2
(1 + o(1))

=
(σ2 − C8)|i1 − i2|2

4
(1 + o(1))

(A42)

and

E(Vnγ(i1)Vnγ(i2)) =
(σ2 − C8)i1i2

4
(1 + o(1)), i1, i2 ∈ R. (A43)

Therefore, the limit distribution is Gaussian with zero mean and the covariance
function vγ(i1, i2) =

(σ2−C8)i1i2
4 (1 + o(1)), which implies (A41).

Lemma A6. If γ ∈ (1/2, 1), Assumption 1–3 are true. For any η ∈ (0, 1), there exist Hη > 0
and nη such that for n > nη ,

P

(
max

Dn>|k∗−k|>Hη4
|Qnγ(k)| ≥ η

)
< η, (A44)

where Dn is given in the proof of Theorem 2, and as n→ ∞,

Vnγ,D
D−→ {iY, i ∈ (−D, D)}, (A45)

where Y is a normal N(0, γ2(σ2−C9)(1−τ∗)2γ−1

2γ−1 ) random variable.

Proof of Lemma A6. The proof of (A44) is very similar to (A34) and is omitted here. To
prove the tightness, then,

E(Vnγ(i1)−Vnγ(i2))2 =
(σ2 − C9)n2

42
1
n

n−k∗

∑
j=1−k∗

[(
j−4i1

n

)γ

+
−
(

j−4i2
n

)γ

+

]2

(1 + o(1))

= (σ2 − C9)(i1 − i2)2 γ2(1− τ∗)2γ−1

2γ− 1
(1 + o(1))

(A46)

and

E(Vnγ(i1)Vnγ(i2)) = (σ2 − C9)i1i2
γ2(1− τ∗)2γ−1

2γ− 1
(1 + o(1)), i1, i2 ∈ R. (A47)
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Therefore, the limit distribution is Gaussian with zero mean and the covariance function
vγ(i1, i2) = (σ2 − C9)i1i2(γ2(1− τ∗)2γ−1)/2γ− 1, which implies (A45).

Proof of Theorem 3. The proofs of cases 1 and 2 and 3 in Theorem 3 are similar, so we only
prove case 1 here.

To derive the limit distribution of4−1(k̂∗− k∗), we combine (A9)–(A11), for k = k∗+ i4,

Ak,1 + Ak,2 + Ak,3 + Ak,4 + Ak,5 = 2Vnγ

(
k− k∗

4

)
− |i|2γ+1

∫ ∞

−∞
((x + 1)γ

+ − xγ
+)

2dx + op(1), (A48)

(A48) links with (A35) can imply the result in case 1 of Theorem 3.
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