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Abstract: Large values and gradients of stress and strain, triggering concentrated stress and strain,
arise in angular areas of a structure. The strain action, leading to the finite loss of contact between
structural elements, also triggers concentrated stress. The loss of contact reaches an irregular point
and a line on the boundary. The theoretical analysis of the stress–strain state (SSS) of areas with
angular cutouts in the boundary under the action of discontinuous strain is reduced to the study
of singular solutions to the homogeneous problem of elasticity theory with power-related features.
The calculation of stress concentration coefficients in the domain of a singular solution to the elastic
problem makes no sense. It is experimentally proven that the area located near the vertex of an
angular cutout in the boundary features substantial strain and rotations, and it corresponds to higher
values of the first and second derivatives of displacements along the radius in cases of sufficiently
small radii in the neighborhood of an irregular boundary point. As far as these areas are concerned, it
is necessary to consider the plane problem of the elasticity theory, taking into account the geometric
nonlinearity under the action of strain, to analyze the effect of relationships between strain orders,
rotations, and strain on the form of the equation of equilibrium. The purpose of this work is to
analyze the effect of relationships between strain orders, rotations, and strain on the form of the
equilibrium equation in the polar system of coordinates for a V-shaped area under the action of
temperature-induced strain, taking into account geometric non-linearity and physical linearity.

Keywords: elastic boundary value problem; finite strain; temperature-induced strain; polar system of
coordinates; angular cutout in the boundary of a plane domain; relationships of deformation orders;
equations of equilibrium
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1. Introduction

Structures with angular boundary areas are characterized by large values and gradients
of stress and strain. Theoretical studies of areas with angular cutouts in the boundary are
reduced to singular solutions to homogeneous boundary problems of model areas that are
V-shaped and cone-shaped. The singularity of the solution in the area of the angular cutout
in the boundary is determined by the idealization of the mathematical formulation of the
boundary value problem of the theory of elasticity [1–14]. The calculation of concentration
coefficients as relative values is not possible in such areas.

Figure 1 shows interference fringes for a plane model with different angles of cutouts
in the boundary.

An experimental solution to the elastic problem of strain is illustrated for the plane
domain through the case of a composite plane model that is 180 mm long and 24 mm
wide. Deformation defrosting and photo-elasticity methods are employed to obtain the
experimental solution [15–20].

Axioms 2023, 12, 893. https://doi.org/10.3390/axioms12090893 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12090893
https://doi.org/10.3390/axioms12090893
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-3962-899X
https://doi.org/10.3390/axioms12090893
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12090893?type=check_update&version=1


Axioms 2023, 12, 893 2 of 15

Axioms 2023, 11, x FOR PEER REVIEW 2 of 17 
 

 
Figure 1. Interference fringes for a plane model with 90° and 60° angles of the cutout and tempera-
ture-induced model strain. 

An experimental solution to the elastic problem of strain is illustrated for the plane 
domain through the case of a composite plane model that is 180 mm long and 24 mm 
wide. Deformation defrosting and photo-elasticity methods are employed to obtain the 
experimental solution [15–20]. 

Temperature-induced strain ijTα δ  is created in one part of model 2Ω , while the 
other part, 1Ω , remains unloaded. A spike in temperature-induced strain along the con-
tact surface reaches irregular boundary point O (0,0), which is the vertex of the cutout. 
Different patterns of fringes are obtained for different angles of the cutout in the boundary 
(Figure 1). 

It has been experimentally proven [15–20] that substantial strain and rotations are 
observed in the area close to the vertex of the angular cutout in the boundary area, which 
corresponds to higher values of the first and second derivatives of displacements along 
the radius if the radii in the neighborhood of the irregular boundary point are small 
enough. The plane problem of elasticity theory must be considered for such areas, taking 
into account geometric nonlinearity under the action of strain. 

General methods used to solve problems of solid mechanics, based on a solution to 
the nonlinear problem of the elasticity theory, were developed in the fundamental works 
of V. V. Novozhilov [21,22], P.A. Lukash [23], and A.I. Lurie [24], and in other works [25–
29]. Geometric relationships, containing square terms, are used in the nonlinear elasticity 
theory. Equilibrium equations are formulated as the post-strain equilibria of an oblique 
parallelepiped [21,22,27,28]. 

Physical and geometric relations, addressed by problems of the theory of elasticity, 
can be interpreted as: 
(A) Physically and geometrically linear; 
(B) Physically linear and geometrically nonlinear; 
(C) Physically nonlinear and geometrically linear; 
(D) Physically and geometrically nonlinear. 

This paper considers the domain in which linear physical relations are applicable to 
strain and stress, while geometrically nonlinear expressions are applicable to strain. 

Nonlinear strain has squared strain parameters, including linear and shear parame-
ters, rotations, and their products. In some cases, linear and shear strain values are small 
compared to rotations, or rotations are small compared to linear and shear strain values 
(classical linear geometric relations). Taking into account the nonlinearity of geometric 
relations, the analysis of possible relations between orders of linear strain, shear, rotations, 
and pre-set strain becomes more complicated and requires detailed consideration. 

Displacements are continuous together with their partial derivative coordinate func-
tions within the domain. 

Figure 1. Interference fringes for a plane model with 90◦ and 60◦ angles of the cutout and temperature-
induced model strain.

Temperature-induced strain αTδij is created in one part of model Ω2, while the other
part, Ω1, remains unloaded. A spike in temperature-induced strain along the contact
surface reaches irregular boundary point O (0,0), which is the vertex of the cutout. Different
patterns of fringes are obtained for different angles of the cutout in the boundary (Figure 1).

It has been experimentally proven [15–20] that substantial strain and rotations are
observed in the area close to the vertex of the angular cutout in the boundary area, which
corresponds to higher values of the first and second derivatives of displacements along the
radius if the radii in the neighborhood of the irregular boundary point are small enough.
The plane problem of elasticity theory must be considered for such areas, taking into
account geometric nonlinearity under the action of strain.

General methods used to solve problems of solid mechanics, based on a solution to
the nonlinear problem of the elasticity theory, were developed in the fundamental works
of V.V. Novozhilov [21,22], P.A. Lukash [23], and A.I. Lurie [24], and in other works [25–29].
Geometric relationships, containing square terms, are used in the nonlinear elasticity
theory. Equilibrium equations are formulated as the post-strain equilibria of an oblique
parallelepiped [21,22,27,28].

Physical and geometric relations, addressed by problems of the theory of elasticity,
can be interpreted as:

(A) Physically and geometrically linear;
(B) Physically linear and geometrically nonlinear;
(C) Physically nonlinear and geometrically linear;
(D) Physically and geometrically nonlinear.

This paper considers the domain in which linear physical relations are applicable to
strain and stress, while geometrically nonlinear expressions are applicable to strain.

Nonlinear strain has squared strain parameters, including linear and shear parameters,
rotations, and their products. In some cases, linear and shear strain values are small
compared to rotations, or rotations are small compared to linear and shear strain values
(classical linear geometric relations). Taking into account the nonlinearity of geometric
relations, the analysis of possible relations between orders of linear strain, shear, rotations,
and pre-set strain becomes more complicated and requires detailed consideration.

Displacements are continuous together with their partial derivative coordinate func-
tions within the domain.
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The possibility of the linearization of (a) relations between strain and displacements
and (b) equations of equilibrium of a spatial element is characterized by the geometric
factor; that is, the value of elongations, shear, and rotations in comparison with one and in
comparison with each other.

Equilibrium equations and geometric relations do not depend on mechanical prop-
erties of the medium. Geometric relations deal with the measurement unit of elongation,
taken as the ratio of a change in the length of a segment in case of strain in the domain to
its original length. The types of equations of equilibrium and geometric relations depend
on relations between values of strain parameters.

As for physical relations, the phenomenological approach is applied to establish
relationships between nonlinear strain and generalized stress [21,22,27].

The concept of generalized stress is introduced in the works of V.V. Novozhilov. He
assumes that it is not stress according to its classical definition. Expressions of generalized
stress take into account a change in the geometry, or areas of faces in case of the deformation
of an element of an elastic body. V.V. Novozhilov argues that the following three functions
are sufficient to describe the mechanical properties of an ideally elastic, geometrically
nonlinear isotropic medium [21,22]: K* is the generalized modulus of dilatation; G* is the
generalized shear modulus; and ω∗ is the phase of similarity of stress and strain deviators.

The author assumes that ω∗ = 0, and this assumption determines the proportional-
ity between stress and strain components. Linear physical relations are formulated for
generalized stress and nonlinear strain. For an isotropic homogeneous body, generalized
characteristics K*, G*, and ω∗ are assumed to be constant, which corresponds to Lame’s
constant mechanical parameters or the modulus of elasticity and the Poisson’s ratio.

Geometrically nonlinear relations and linear physical relations for generalized stress
and strain are applicable to the domain where these relations are valid.

Nonlinear strain expressions and linear relations between generalized stress and strain
are used to obtain equations of equilibrium in case of strain. To obtain such equations, it
is necessary to make a mathematical model that simulates nonlinear geometric relations,
equations of statics for the deformed scheme, and applications of the phenomenological
approach to physical relations in the case of constant generalized mechanical characteristics.

The experimental data, obtained using the photo-elasticity method [15–19], show that
areas with small strain and areas with large stress and strain gradients are identified in the
area of an angular cutout in the boundary.

The purpose of this research is to analyze the effect of relations of orders of strain, and
rotations on the form of the equilibrium equation in the polar system of coordinates for
the V-shaped area under the action of forced, temperature-induced strain with regard to
geometric nonlinearity and physical linearity.

The objectives of this research undertaking are:

(1) To formulate equilibrium equations for the deformed scheme and obtain equilibrium
equations for cases of generalized stress and strain in the plane domain, taking into
account geometric nonlinearity and physical linearity;

(2) To formulate equilibrium equations for the deformed scheme in terms of possible
relations of orders of linear strain, shear, and angles of rotation, and to analyze the
effect of relations of strain orders on the form of equilibrium equations.

2. Materials and Methods
2.1. Problem Statement

The elasticity theory problem is considered for a plane domain with an irregular
boundary point, or the vertex of an angular cutout. Forced–free temperature-induced strain
αTδij, where δij is the Kronecker symbol, is pre-set in the plane domain Ω (Figure 2). In
the domain Ω = Ω1 ∪Ω2, a spike (the finite rupture) in strain along the line of contact
between domains Γ = Ω1 ∩ Ω2, extending to the vertex of the angular cutout, can be
pre-set. For example, the strain discontinuity is triggered if one of the subdomains Ω2 of
the Ω = Ω1 ∪Ω2 domain is subjected to pre-set temperature-induced strain αTδij while the
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second subdomain Ω1 is not loaded. Volumetric forces can be pre-set in the plane domain
Ω. Concentrated forces are not considered. A homogeneous elastic body is in the state of
plane deformation [3,6,29]. Mechanical characteristics include modulus of elasticity E and
Poisson’s coefficient ν; they are constant in the Ω domain. Linear expansion coefficient α in
the Ω domain is constant. Boundary conditions for stress are homogeneous.
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Figure 2. Plane V-shaped domain Ω.

Let us consider the polar system of coordinates with the pole of the polar system O (0,0)
at the vertex of the angular cutout. Let displacement, strain, and stress functions and their
derivatives be continuous everywhere in the domain Ω, except for the vertex of the angular
cutout. If there is a discontinuity of strain along the contact line of domains Γ = Ω1 ∩Ω2,
then continuity conditions are fulfilled for displacements and normal stresses along the
contact line of the domains. The vertex of the angular is removed, and its punctured
neighborhood in the domain Ω is considered.

Different relations for orders of strain values are considered depending on the approx-
imation to the irregular boundary point, in order to determine different kinds of solving
systems for equations of the elastic boundary value problem.

The objective is to formulate equations of equilibrium in the domain Ω, taking into
account geometric nonlinearity and physical linearity.

2.2. Equilibrium Equations

A spatial curvilinear orthogonal system of coordinates [17,21,22] αi is considered;

i = 1,2,3,
→
k i are unitary vectors pointed toward the positive direction of αi axes or basis

vectors of the domain before the strain action. An infinitesimal element is identified. This
element is limited by six coordinate planes; before the strain action, this element is a rectan-

gular parallelepiped. Sizes and directions of edges are determined by vectors Hi
→
k i dαi,

where Hi are the Lame’s parameters. After the strain action, a rectangular parallelepiped
transforms into an oblique one. Sizes and directions of its edges are determined by vectors

Hi(1 + Eαi)
→
k
∗
i dαi, where Eαi are relative elongations along αi axes after the strain action

and
→
k
∗
i are basis vectors of the domain after the strain action.

Equations of equilibrium of all forces, acting on the oblique parallelepiped after the
strain action [21,22,24], have the form

1
H1H2H3

{
∂

∂α1
(H2H3

→
σ
∗
n1
) +

∂

∂α2
(H3H1

→
σ
∗
n2
) +

∂

∂α3
(H1H2

→
σ
∗
n3
)

}
+
→
F = 0, (1)

where
→
σ
∗
ni =

→
σ ni S∗i /Si are generalized stresses, arising on the edges of the oblique par-

allelepiped; S∗i , Si are the areas of edges of the parallelepiped after and before the strain

action; and
→
F are generalized volumetric forces after the strain action.

Geometric relations and static equations are formulated in two different systems of
coordinates. Therefore, from the beginning, equations of equilibrium obtained for the
element after the strain action are formulated in the system of coordinates before the strain

action:
→
σ
∗
ni = s1i

→
k 1 + s2i

→
k 2 + s3i

→
k 3.
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Having formulated forces on the edges of the parallelepiped after the strain action

within the initial basis of vectors
→
k i before the strain action, Equation (1) will be formulated

as follows:

( ∂
∂α1

(H2H3s11) +
∂

∂α2
(H3H1s12) +

∂
∂α3

(H1H2s31) + H3
∂H1
∂α2

s12 + H2
∂H1
∂α3

s13−
−H3

∂H2
∂α1

s22 − H2
∂H3
∂α1

s33 + H1H2H3F1 = 0
, (2)

∂
∂α1

(H2H3s12) +
∂

∂α2
(H3H1s22) +

∂
∂α3

(H1H2s32) + H1
∂H2
∂α3

s23 + H3
∂H2
∂α1

s21−
−H1

∂H3
∂α2

s33 − H3
∂H1
∂α2

s11 + H1H2H3F2 = 0
, (3)

∂
∂α1

(H2H3s13) +
∂

∂α2
(H3H1s23) +

∂
∂α3

(H1H2s33) + H3
∂H3
∂α1

s31 + H1
∂H3
∂α2

s32−
−H2

∂H1
∂α3

s11 − H1
∂H2
∂α3

s22 + H1H2H3F3 = 0
. (4)

Here, Fi are projections of the generalized volumetric force on directions
→
k i, i = 1, 2, 3.

In relations (2)–(4), expressions sij are formulated using generalized stresses σ∗ij, strain
parameters eij, and rotations ωi:

s11 = σ∗11(1 + e11) + σ∗12(
1
2 e12 −ω2) + σ∗13(

1
2 e13 + ω2) s23 = σ∗21(

1
2 e13 −ω2) + σ∗22(

1
2 e23 + ω1) + σ∗23(1 + e33)

s12 = σ∗11(
1
2 e12 + ω3) + σ∗12(1 + e22) + σ∗13(

1
2 e23 −ω1) s31 = σ∗31(1 + e11) + σ∗32(

1
2 e12 −ω2) + σ∗33(

1
2 e13 + ω2)

s13 = σ∗11(
1
2 e13 −ω2) + σ∗12(

1
2 e23 + ω1) + σ∗13(1 + e33) s32 = σ∗31(

1
2 e12 + ω3) + σ∗32(1 + e22) + σ∗33(

1
2 e23 −ω1)

s21 = σ∗21(1 + e11) + σ∗22(
1
2 e12 −ω2) + σ∗23(

1
2 e13 + ω2) s33 = σ∗31(

1
2 e13 −ω2) + σ∗32(

1
2 e23 + ω1) + σ∗33(1 + e33)

s22 = σ∗21(
1
2 e12 + ω3) + σ∗22(1 + e22) + σ∗23(

1
2 e23 −ω1)

(5)

By substituting (5) into Equations (2)–(4), one can obtain equations of equilibrium in
the curvilinear orthogonal system of coordinates α1, α2, α3, with account taken of nonlinear
strain for generalized stress and strain parameters (5).

Using the Cartesian system of coordinates to solve the plane problem for V-shaped
domains is a challenge because basis vectors change when an element is strained. Curvi-
linear and polar (a special case) systems of coordinates are used to derive static equations
for a deformed scheme. A plane problem of the elasticity theory [3,4,6,29] is considered
for the state of plane deformation, when points of a body move in the planes that are
perpendicular to the OZ axis:

u1 = u1(α1, α2, 0), u2 = u2(α1, α2, 0), u3(α1, α2, 0) = 0. (6)

For the polar system of coordinates:

α1 = r, α2 = ϕ, α3 = z. (7)

Geometric Lame’s parameters are as follows:

H1 = 1, H2 = r, H3 = 1 (8)

Equilibrium Equations (2)–(4) will be formulated as follows:

∂s11

∂r
+

1
r

∂s21

∂ϕ
+

s11 − s22

r
+ F1 = 0, (9)

1
r

∂s22

∂ϕ
+

∂s12

∂r
+

s12 + s21

r
+ F2 = 0, (10)
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where relations for generalized stresses (5) in Equations (9) and (10) will be changed as
follows:

s11 = σ∗11(1 + e11) + σ∗12(
1
2

e12 −ω3), s22 = σ∗22(1 + e22) + σ∗21(
1
2

e12 + ω3), (11)

s12 = σ∗11(
1
2

e12 + ω3) + σ∗12(1 + e22), s21 = σ∗21(1 + e11) + σ∗22(
1
2

e12 −ω3). (12)

Taking into account (11), (12), equations of equilibrium (9), (10) will be changed as
follows:

∂
∂r

(
σ∗11(1 + e11) + σ∗12(

1
2 e12 −ω3)

)
+ 1

r
∂

∂ϕ

(
σ∗21(1 + e11) + σ∗22(

1
2 e12 −ω3)

)
+

+ 1
r

[
σ∗11(1 + e11) + σ∗12(

1
2 e12 −ω3)− σ∗22(1 + e22)− σ∗21(

1
2 e12 + ω3)

]
+ F1 = 0

, (13)

1
r

∂
∂ϕ

(
σ∗21(

1
2 e12 + ω3) + σ∗22(1 + e22)

)
+ ∂

∂r

(
σ∗11(

1
2 e12 + ω3) + σ∗12(1 + e22)

)
+

+ 1
r

[
σ∗11(

1
2 e12 + ω3) + σ∗12(1 + e22) + σ∗21(1 + e11) + σ∗22(

1
2 e12 −ω3)

]
+ F2 = 0

, (14)

where generalized stresses σ∗ij are related to stresses σij at a point in the domain: σ∗ij =
S∗i
Si

σij, i,j = 1, 2.
The form of linear equilibrium equations for generalized stresses in the polar system

of coordinates (9), (10) coincides with the form of equilibrium equations for the minor
strain:

∂σr

∂r
+

1
r

∂τrθ

∂θ
+

σr − σθ

r
+ F1 = 0, (15)

1
r

∂σθθ

∂θ
+

∂τrθ

∂r
+

2τrθ

r
+ F2 = 0. (16)

Let us formulate equations of equilibrium (13), (14) for the strain.

2.3. Deformation Relations

General strain relations for the curvilinear orthogonal system of coordinates are con-
sidered in [21,22,24]. Let us derive nonlinear relations for strain in the polar system of
coordinates [21,30]. Relative elongation EMN at an arbitrary point M of domain Ω is as
follows:

EMN =
ds∗ − ds

ds
=
|M∗N∗| − |MN|

|MN| , (17)

where ds is the length of segment MN before the strain action; ds∗ is the length of the
segment M∗N∗ obtained by displacing points M and N after the strain action.

The direct derivation of nonlinear geometric relations for an element in the polar
system of coordinates is problematic, unlike the derivation in the Cartesian system of
coordinates; hence, such relations are not addressed in research works.

Let us consider a homogeneous elastic body in the state of plane deformation, for
which [3,17,29] is satisfied:

u1 = u1(r, ϕ, 0), u2 = u2(r, ϕ, 0), u3 = u3(r, ϕ, 0) = 0,

ε33 = 0, ε13 = ε31 = 0, ε23 = ε32 = 0, e13 = e31 = 0, e23 = e32 = 0, e33 = 0, e33 = 0, (18)

σ∗13 = σ∗31 = 0, σ∗23 = σ∗32 = 0.
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Strain in the plane domain Ω for this unit of elongation (17) can be formulated as
follows:

ε11 = e11 +
1
2

[
e2

11 + (
1
2

e12 + ω3)
2
]

, ε22 = e22 +
1
2

[
e2

22 + (
1
2

e21 −ω3)
2
]

, (19)

ε12 = ε21 = e12 + e11(
1
2

e12 −ω3) + e22(
1
2

e12 + ω3). (20)

Here, displacements u1, u2 are used to formulate strain parameters in the polar system
of coordinates:

e11 =
∂u1

∂r
, e22 =

1
r

∂u2

∂ϕ
+

1
r

u1,
1
2

e12 + ω3 =
∂u2

∂r
, (21)

e12 = e21 = r
∂

∂r

(u2

r

)
+

1
r

∂u1

∂ϕ
=

∂u2

∂r
− u2

r
+

1
r

∂u1

∂ϕ
,

1
2

e12 −ω3 =
1
r

∂u1

∂ϕ
− u2

r
. (22)

Then, auxiliary expressions (11), (12) will be reformulated in terms of displacements:

s11 = σ∗11(1 +
∂u1

∂r
) + σ∗12(

1
r

∂u1

∂ϕ
− u2

r
), s22 = σ∗21(

∂u2

∂r
) + σ∗22(1 +

1
r

∂u2

∂ϕ
+

1
r

u1), (23)

s12 = σ∗11
∂u2

∂r
+ σ∗12(1 +

1
r

∂u2

∂ϕ
+

1
r

u1), s21 = σ∗21(1 +
∂u1

∂r
) + σ∗22(

1
r

∂u1

∂ϕ
− u2

r
). (24)

Taking into account (21), (22), strain can be formulated in the polar system of coordi-
nates as follows:

ε11 =
∂u1

∂r
+

1
2

[(
∂u1

∂r

)2
+

(
∂u2

∂r

)2
]

,

ε22 =
1
r

∂u2

∂ϕ
+

u1

r
+

1
2

[(
1
r

∂u2

∂ϕ
+

u1

r

)2
+

(
1
r

∂u1

∂ϕ
− u2

r

)2
]

, (25)

ε12 =
∂u2

∂r
− u2

r
+

1
r

∂u1

∂ϕ
+

∂u1

∂r

(
1
r

∂u1

∂ϕ
− u2

r

)
+

∂u2

∂r

(
1
r

∂u2

∂ϕ
+

u1

r

)
.

Continuity equations are provided in the general form in [21,22,24] for the elastic
problem with finite strain.

2.4. Physical Relations

According to [21,22,27,28], it is assumed that the form of relations for generalized
stress and strain is the same as in Hooke’s physical law applied to minor strain. Under
the action of temperature-induced strain, the Dugamel–Neumann dependence will be
formulated as follows:

εij =
1 + ν

E

(
σ∗ij −

ν

1 + ν
s∗δij

)
+ αTδij, (26)

where ε0
ij =

1+ν
E

(
σ∗ij −

ν
1+ν s∗δij

)
is the strain caused by generalized stress σ∗ij ; ε′ij = αTδij are

free temperature-induced strain actions; E is the modulus of elasticity; ν is the Poisson’s
ratio; s∗ = σ∗kk is the sum of normal generalized stresses; α is the linear expansion coefficient;
and δij is the Kronecker symbol.

If account is taken of (26), generalized stresses are formulated in the polar system of
coordinates in the following way:

σ∗11 = 2Gε11 + λε− (2µ + 3λ)αTE, (27)
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σ∗22 = 2Gε22 + λε− (2µ + 3λ)αTE, σ∗12 = σ∗21 = Gε12, (28)

Here, 2G = 2µ = E
1+ν , λ = νE

(1−2ν)(1+ν)
, 2µ + 3λ = 1

1−2ν , nonlinear strain actions εij are
determined according to (19), (20), and ε = ε11 + ε22.

Let us substitute expressions of stresses (27), (28) into equations of equilibrium (13),
(14):

∂
∂r (2Gε11 + λε) + 1

r
∂

∂ϕ Gε12 +
1
r (2Gε11 + λε)− 1

r (2Gε22 + λε)+

+ ∂
∂r

(
(2Gε11 + λε)e11 + Gε12(

1
2 e12 −ω3)

)
+ 1

r
∂

∂ϕ

(
Gε12e11 + (2Gε22 + λε)( 1

2 e12 −ω3)
)
+

+ 1
r

(
(2Gε11 + λε)e11 + Gε12(

1
2 e12 −ω3)

)
− 1

r

(
Gε12(

1
2 e12 + ω3) + (2Gε22 + λε)e22

)
+

+ (2µ+3λ)αTE
r (e22 − e11)− (2µ + 3λ)E ∂

∂r (αT(1 + e11))−
−(2µ + 3λ)E 1

r
∂

∂ϕ

(
αT( 1

2 e12 −ω3)
)
+ F1 = 0

, (29)

1
r

∂
∂ϕ (2Gε22 + λε) + ∂

∂r (Gε12) +
2G
r ε12 +

1
r

∂
∂ϕ

(
Gε12(

1
2 e12 + ω3) + (2Gε22 + λε)e22)

)
+

+ ∂
∂r

(
(2Gε11 + λε)( 1

2 e12 + ω3) + Gε12e22)
)
+ 1

r

[
(2Gε11 + λε)( 1

2 e12 + ω3) + Gε12e22)
]

+ 1
r

[
Gε12e11 + (2G∗ε22 + λε)( 1

2 e12 −ω3)
]
− 1

r (2µ + 3λ)αTEe12−

− 1
r (2µ + 3λ)E(1 + e22)

∂
∂ϕ (αT(1 + e22))− (2µ + 3λ)E ∂

∂r

(
αT( 1

2 e12 + ω3)
)
+ F2 = 0

. (30)

As a result of transformations, equilibrium Equations (29) and (30) will be formulated
as follows:

∂
∂r (2Gε11 + λε) + 1

r
∂

∂ϕ Gε12 +
1
r (2Gε11 + λε)− 1

r (2Gε22 + λε)+

+ ∂
∂r

(
(2Gε11 + λε)e11 + Gε12(

1
2 e12 −ω3)

)
+ 1

r
∂

∂ϕ

(
Gε12e11 + (2Gε22 + λε)( 1

2 e12 −ω3)
)
+

+ 1
r

(
(2Gε11 + λε)e11 + Gε12(

1
2 e12 −ω3)

)
− 1

r

(
Gε12(

1
2 e12 + ω3) + (2Gε22 + λε)e22

)
+

+ (2µ+3λ)αTE
r (e22 − e11)− (2µ + 3λ)αE ∂T

∂r − (2µ + 3λ)αE
(

T ∂e11
∂r + e11

∂T
∂r

)
−

−(2µ + 3λ)αE
(

T 1
r

∂
∂ϕ (

1
2 e12 −ω3) + ( 1

2 e12 −ω3)
1
r

∂T
∂ϕ

)
+ F1 = 0

, (31)

1
r

∂
∂ϕ (2Gε22 + λε) + ∂

∂r (Gε12) +
2G
r ε12 +

1
r

∂
∂ϕ

(
Gε12(

1
2 e12 + ω3) + (2Gε22 + λε)e22)

)
+

+ ∂
∂r

(
(2Gε11 + λε)( 1

2 e12 + ω3) + Gε12e22)
)
+ 1

r

[
(2Gε11 + λε)( 1

2 e12 + ω3) + Gε12e22)
]

+ 1
r

[
Gε12e11 + (2G∗ε22 + λε)( 1

2 e12 −ω3)
]
− 1

r (2µ + 3λ)αTEe12 − 1
r (2µ + 3λ)αE(1 + e22)

∂T
∂ϕ

−(2µ + 3λ)αE( 1
2 e12 + ω3)

∂T
∂r −

1
r (2µ + 3λ)αET ∂e22

∂ϕ − (2µ + 3λ)αTE ∂
∂r (

1
2 e12 + ω3) + F2 = 0

. (32)

Equilibrium Equations (29) and (30) or (31) and (32) are formulated for the deformed
scheme with account taken of geometric nonlinearity (19), (20) and physical linearity (27),
(28) under the action of strain and volumetric forces.

2.5. Relations of Strain Orders

A classification of geometrically nonlinear statements of elasticity theory problems
was proposed by V.V. Novozhilov [21,22,31], and it is addressed in [23,24,27,28]. Let us
apply the V.V. Novozhilov [21,22] classification to strain actions (19), (20) and equations of
equilibrium (29), (30) depending on orders of the elastic body strain for the state of plane
deformation.

Let us consider the following options:
Option I: Elongations, shears, and rotations are small and small compared to unity;
Option II: Elongations, shears, rotations are not small compared to unity.
Displacements in the area of the angular cutout in the boundary are small and continuous.
According to [21,22,31], angles of rotation, elongations, and shears enter into strain

relations (19), (20) in the following ways:
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(1) Parameters e11, e22, e12 are linear;
(2) Products of parameters e11 e12, e22 e12, e2

11, e2
22, e2

12, e2
21;

(3) Squared rotation parameter ω2
3;

(4) Products of parameters e12 ·ω3, e21 ·ω3.

The above relations between orders of strain parameters are provided in Table 1.

Table 1. Relations between strain parameters.

Options Relations between Orders of Strain Parameters

Option I

Case (A).
The value of rotation ω3 is small and of the same or a
higher order of smallness than eij.

Case (A1).
Temperature-induced strain αTδij is of the same
order of smallness as eij or of a higher order of
smallness than eij.

Case (A2).
The temperature in one domain is constant, and the
other domain is stress free.

Case (B).
Values of strain parameters eij are small and of the
same or a higher order of smallness than rotation
squares ω2

3 .

Case (B1).
Temperature-induced strain αTδij has the same order
of smallness as ω3.

Case (B2).
Temperature-induced strain αTδij has a higher order
of smallness than ω3.

Option II

Case (C).
Strain eij is of a higher order of smallness than e2

ij,
rotations ωi are of the same order as deformations eij.

Case (C1).
Temperature-induced strain αTδij has the same order
of change as eij, ω3.

Let us consider Option I.
Case (A): the value of rotation ω3 is small and of the same or a higher order of

smallness than eij.
Let us consider small parameters eij and small rotations ω3 that are smaller than unity:

e2
ij = o(eij), ω2

3 = o(ω3) or ω2
3 << eij. Values of the first order of smallness eij, ω3 are taken

as initial values.
The value of rotation ω3 is small and of the same or a higher order of smallness than

eij, so eij ω3 = o(ω3) = o(eij).

ε11 = e11 + o(e11) ≈ e11 =
∂u1

∂r
, ε22 = e22 + o(e22) ≈ e22 =

1
r

∂u2

∂ϕ
+

u1

r
, (33)

ε12 = ε21 = e12 + o(e12) ≈ e12 =
∂u2

∂r
− u2

r
+

1
r

∂u1

∂ϕ
. (34)
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In the absence of volumetric forces, equations of equilibrium (29), (30) for these orders
of smallness of strain values are formulated as follows:

∂
∂r (2Gε11 + λε) + 1

r
∂

∂ϕ (Gε12) +
2G
r (ε11 − ε22) +

(2µ+3λ)E
r αT(e22 − e11)

−(2µ + 3λ)E ∂
∂r (αT(1 + e11))− (2µ+3λ)E

r
∂

∂ϕ

(
αT( 1

2 e12 −ω3)
)
= 0

, (35)

1
r

∂
∂ϕ (2Gε22 + λε) + ∂

∂r (Gε12) +
2G
r ε12 − (2µ+3λ)αTE

r ε12−
− (2µ+3λ)E

r
∂

∂ϕ (αT(1 + ε22))− (2µ + 3λ)E ∂
∂r

(
αT( 1

2 ε12 + ω3)
)
= 0

. (36)

Taking into account the linear strain (33), (34), Equations (35) and (36) are formulated
as follows:

∂
∂r (2Ge11 + λ(e11 + e22) +

1
r

∂
∂ϕ (Ge12) +

2G
r (e11 − e22) +

(2µ+3λ)E
r αT(e22 − e11)−

−(2µ + 3λ)E ∂
∂r (αT(1 + e11))− (2µ+3λ)E

r
∂

∂ϕ

(
αT( 1

2 e12 −ω3)
)
= 0

. (37)

1
r

∂
∂ϕ (2Ge22 + λ(e11 + e22) +

∂
∂r (Ge12) +

2G
r e12 − (2µ+3λ)αTE

r e12−
− (2µ+3λ)E

r
∂

∂ϕ (αT(1 + e22))− (2µ + 3λ)E ∂
∂r

(
αT( 1

2 e12 + ω3)
)
= 0

. (38)

Case (A1).
Let the temperature-induced strain αTδij have the same order of smallness as eij or a

higher order of smallness than eij, i.e., αTεij = o(εij), αTω3 = o(ω3), and then Equations
(35) and (36) are reformulated as follows:

∂

∂r
(2Gε11 + λε) +

1
r

∂

∂ϕ
(Gε12) +

2G
r
(ε11 − ε22)− (2µ + 3λ)αE

∂T
∂r

= 0, (39)

1
r

∂

∂ϕ
(2Gε22 + λε) +

∂

∂r
(Gε12) +

2G
r

ε12 −
(2µ + 3λ)αE

r
∂T
∂ϕ

= 0. (40)

If the strain (33), (34) is taken into account, Equations (39) and (40) will be formulated
as follows:

∂

∂r
(2Ge11 + λ(e11 + e22)) +

1
r

∂

∂ϕ
(Ge12) +

2G
r
(e11 − e22)− (2µ + 3λ)E

∂

∂r
(αT) = 0, (41)

1
r

∂

∂ϕ
(2Ge22 + λ(e11 + e22) +

∂

∂r
(Ge12) +

2G
r

e12 −
(2µ + 3λ)E

r
∂

∂ϕ
(αT) = 0. (42)

Case (A2).
If the temperature in one domain is constant and the other domain is free of loading,

then the following homogeneous system of equations is obtained for Case (A1):

∂

∂r
(2Ge11 + λ(e11 + e22)) +

1
r

∂

∂ϕ
(Ge12) +

2G
r
(e11 − e22) = 0, (43)

1
r

∂

∂ϕ
(2Ge22 + λ(e11 + e22) +

∂

∂r
(Ge12) +

2G
r

e12 = 0. (44)

Case (B).
Strain parameters eij are small and of the same order of smallness as ω2

3: eij ∼ ω2
3, or

of a higher order of smallness than ω2
3:eij << ω2

3 or eij = o(ω2
3).

Strain relations (19), (20) will be formulated as follows:

ε11 = e11 +
1
2
(ω3)

2, ε22 = e22 +
1
2
(ω3)

2, ε12 = ε21 = e12, ε = e11 + e22 + ω2
3. (45)
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In this case, equilibrium equations (31) and (32) will be formulated as follows:

∂
∂r

(
2G(e11 +

1
2 ω2

3) + λ(e11 + e22 + ω2
3

)
+ 1

r
∂

∂ϕ (Ge12) +
(2µ+3λ)E

r αT(e22 − e11)−

−(2µ + 3λ)E ∂
∂r (αT(1 + e11))− (2µ+3λ)E

r
∂

∂ϕ

(
αT( 1

2 e12 −ω3)
)
= 0

, (46)

1
r

∂
∂ϕ

[
2G(e22 +

1
2 ω2

3) + λ(e11 + e22 + ω2
3)
]
+ ∂

∂r (Ge12) +
2G
r e12−

− (2µ+3λ)E
r

∂
∂ϕ (αT(1 + e22))− (2µ+3λ)αTE

r e12 = 0
. (47)

Case (B1).
Let the temperature-induced strain αTδij have the same order of smallness as ω3 or

αT ∼ ω3, and then the value αTω3 has the order ω2
3, which should be taken into account.

In this case, Equations (46) and (47) will be formulated as follows:

∂
∂r

(
2G(e11 +

1
2 ω2

3) + λ(e11 + e22 + ω2
3

)
+ 1

r
∂

∂ϕ (Ge12)−
−(2µ + 3λ)E ∂

∂r αT + (2µ+3λ)E
r

∂
∂ϕ (αTω3) = 0

, (48)

1
r

∂
∂ϕ

[
2G(e22 +

1
2 ω2

3) + λ(e11 + e22 + ω2
3)
]
+ ∂

∂r (Ge12) +
2G
r e12−

− (2µ+3λ)E
r

∂
∂ϕ (αT) = 0

. (49)

Case (B2).
Let the temperature-induced strain αTδij have a higher order of smallness than ω2

3,
and then Equations (48) and (49) will be formulated as follows:

∂

∂r

(
2G(e11 +

1
2

ω2
3) + λ(e11 + e22 + ω2

3

)
+

1
r

∂

∂ϕ
(Ge12)− (2µ + 3λ)E

∂

∂r
αT = 0. (50)

1
r

∂
∂ϕ

[
2G(e22 +

1
2 ω2

3) + λ(e11 + e22 + ω2
3)
]
+ ∂

∂r (Ge12) +
2G
r e12−

− (2µ+3λ)E
r

∂
∂ϕ (αT) = 0

. (51)

If the temperature in one domain is constant, the other domain is free of loading, and
then the following homogeneous system of equations is obtained:

∂

∂r

(
2G(e11 +

1
2

ω2
3) + λ(e11 + e22 + ω2

3

)
+

1
r

∂

∂ϕ
(Ge12) = 0, (52)

1
r

∂

∂ϕ

[
2G(e22 +

1
2

ω2
3) + λ(e11 + e22 + ω2

3)

]
+

∂

∂r
(Ge12) +

2G
r

e12 = 0. (53)

Case (C).
Displacements u1, u2 in the domain near the vertex of the angular domain have a

power form ui = rλ fi(θ), λ ∈ [0, 0.5], and the first derivatives of the displacement function
along the radius are of the order rλ−1 = 1

r1−λ . The value of 1
r1−λ increases for small radii

r → 0. Thus, at λ ∈ (0, 0.5) the value is 1
r1−λ ∈

[
1√
r , 1

r

]
, and the square of the value is

1
r2−2λ ∈

[
1
r , 1

r2

]
, so the nonlinear part of the strain relations, which takes into account the

squared strain and rotations (19), (20), is substantial in the case of small radii if compared
to the linear part of the strain relations.

For such a neighborhood, excluding the very vertex of the angular cutout in the
boundary, stress and strain of order rλ−1, or σij, εij ∼ rλ−1 f (ϕ), λ ∈ (0, 0.5), are observed
if the nonlinear part of strain relations is disregarded.

For such a neighborhood, excluding the very vertex of the angular cutout in the
boundary, strain and rotations are assumed to be of the same order of change in terms
of the radius. Strain eij has a higher order of smallness than e2

ij: eij = o(e2
ij), and rotations
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ωi are of the same order as strain eij, i.e., ω ∼ rλ−1, ωi = o(ω2
i ), with the radius being

sufficiently small.
Taking into account relations eij = o(e2

ij), ωi = o(ω2
i ), strain (19), (20) will be formu-

lated as follows:

ε22 ≈
1
2

[
e2

22 + (
1
2

e21 −ω3)
2
]

, ε11 ≈
1
2

[
e2

11 + (
1
2

e12 + ω3)
2
]

, (54)

ε12 = ε21 ≈ e11(
1
2

e12 −ω3) + e22(
1
2

e12 + ω3), ε ≈ 1
2

[
e2

11 + e2
22 +

1
2

e2
12 + 2ω2

3

]
. (55)

Let the strain and rotations be limited for the corresponding domain of the angular
cutout in the boundary and let them have the same second order of change, taken as the
initial one. Values of the strain parameters above the third order are disregarded because
they lead to a substantial increase in the potential energy of strain.

The first general equation of equilibrium (29) in the absence of volumetric forces

∂
∂r

(
(2Gε11 + λε− (2µ + 3λ)αTE)(1 + e11) + (Gε12)(

1
2 e12 −ω3)

)
+

+ 1
r

∂
∂ϕ

(
(Gε12)(1 + e11) + (2Gε22 + λε− (2µ + 3λ)αTE)( 1

2 e12 −ω3)
)
+

+ 1
r

(
(2Gε11 + λε− (2µ + 3λ)αTE)(1 + e11) + (Gε12)(

1
2 e12 −ω3)

)
−

− 1
r

(
(Gε12)(

1
2 e12 + ω3) + (2Gε22 + λε− (2µ + 3λ)αTE)(1 + e22)

)
= 0

(56)

is reformulated for these relations of strain orders (54), (55) in Case C:

∂
∂r (2Gε11 + λε) + 1

r
∂

∂ϕ (Gε12) +
1
r 2G(ε11 − ε22)

−(2µ + 3λ)E ∂
∂r αT(1 + e11)− (2µ + 3λ)E 1

r
∂

∂ϕ αT( 1
2 e12 −ω3)+

− 1
r (2µ + 3λ)αTE(1 + e11) +

1
r (2µ + 3λ)αTE(1 + e22) = 0

. (57)

The second general equation of equilibrium (30) in the absence of volumetric forces

1
r

∂
∂ϕ

(
(Gε12)(

1
2 e12 + ω3) + (2Gε22 + λε− (2µ + 3λ)αTE)(1 + e22)

)
+

+ ∂
∂r

(
(2Gε11 + λε− (2µ + 3λ)αTE)( 1

2 e12 + ω3) + (Gε12)(1 + e22)
)
+

+ 1
r

(
(2Gε11 + λε− (2µ + 3λ)αTE)( 1

2 e12 + ω3) + (Gε12)(1 + e22)
)
+

+ 1
r

(
(Gε12)(1 + e11) + (2Gε22 + λε− (2µ + 3λ)αTE)( 1

2 e12 −ω2)
)
= 0

(58)

will be formulated as follows after transformations made for these relations of strain orders
(54), (55) in Case C:

1
r

∂
∂ϕ (2Gε22 + λε) + ∂

∂r (Gε12) +
2G
r ε12 − 1

r (2µ + 3λ)αTE e12−
−(2µ + 3λ)E 1

r
∂

∂ϕ αT(1 + e22)− (2µ + 3λ)E ∂
∂r αT( 1

2 e12 + ω3) = 0
. (59)

Please note that the form of equilibrium equations (57) and (59) for the major strain
(54), (55) coincides with the form of equilibrium equations (35) and (36) for the minor strain
(33), (34); the difference is determined by substituting respective strains (54), (55) or (33),
(34).

Case (C1)
Let the temperature-induced strain αTδij have the same order of change as eij, ω3.

We take the second order of change in the strain parameters as the initial one in the
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neighborhood of the vertex of the angular cutout in the boundary in case of sufficiently
small radii, i.e., αTδij = o(e2

ij), αT = o(ω2
3). Equations (57) and (59) are changed, as follows:

∂
∂r (2Gε11 + λε) + 1

r
∂

∂ϕ (Gε12) +
1
r 2G(ε11 − ε22) +

1
r (2µ + 3λ)αTE(e22 − e11)−

−(2µ + 3λ)E ∂
∂r αTe11 − (2µ + 3λ)E 1

r
∂

∂ϕ αT( 1
2 e12 −ω3) = 0

, (60)

1
r

∂
∂ϕ (2Gε22 + λε) + ∂

∂r (Gε12) +
2G
r ε12 − 1

r (2µ + 3λ)αTE e12−
−(2µ + 3λ)E 1

r
∂

∂ϕ αTe22 − (2µ + 3λ)E ∂
∂r αT( 1

2 e12 + ω3) = 0.
(61)

where εij are determined according to (54), (55).
Further analysis is determined by a comparison between orders of strain and rotations

with orders of strain, similar to the procedure provided for Cases (A), (B) of minor strain.
Physical relations (27), (28) must be retained.

3. Results

Equations of equilibrium were obtained for a plane V-shaped domain, taking into
account geometric nonlinearity and physical linearity under the action of free temperature-
induced strain.

Equations of equilibrium (29), (30) were obtained under the action of temperature-
induced strain and volumetric forces in the polar system of coordinates with account taken
of geometric nonlinearity (19), (20) and physical linearity (27), (28).

The following options of strain relations are considered:
Option I: Elongations, shear, and rotations are small and small compared to unity;
Option II: Elongations, shear, rotations are not small compared to unity.
For Options I and II, Table 1 summarizes Cases (A), (B), and (C) of orders of strain

included in nonlinear strain relations (19), (20).
The analysis of equations of equilibrium for different relations of orders of strain

parameters, such as linear and shear strain and rotations, allows the following mathematical
model to be designed for investigating the stress–strain state in the area of the angular
cutout in the boundary domain.

The experiment shows that the solution to the linear problem of the theory of elasticity
is valid in the case of minor strain and rotations (33), (34) and in the case of equilibrium
equations (37) and (38) at a distance from the vertex of the angular cutout in the boundary.
The linearity of relations is disrupted to some extent in proximity to the angular cutout
area, and in a certain domain rotations of the cross-section are substantial; therefore, strain
relations (45) and equations of equilibrium (46), (47) are applicable to such a domain.

Nonlinear relations (54), (55) are substantial in a certain neighborhood, closer to the
vertex of the angular cutout. For these nonlinear relations, square terms are more significant
than first-order terms and equilibrium equations take the following form: (57), (59).

Displacements and their derivatives in the area of the angular cutout are continuous
from within the area.

Depending on the distance from the vertex of the angular cutout in the boundary,
static equations of equilibrium, showing the strain, take into account relations between
orders of the strain parameters. This mathematical model needed to study the stress–strain
state, allows for a clearer problem statement depending on the distance to the irregular
boundary point of the plane domain.

4. Discussion

The formulation of the elasticity theory problem with account taken of geometric
nonlinearity is determined by the type of geometric relations, which depend on relations
between orders of linear strain, shears, rotations, and pre-set forced strain. In this case,
geometric relations and equations of equilibrium for generalized stress do not depend on
mechanical properties of the continuous medium. The paper considers small and large
strains and analyzes relations between orders of their values.
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When the transition is made to equations of equilibrium, describing strain and dis-
placements, linear physical Duhamel–Neumann relations, describing generalized stress,
are applied. Equilibrium equations are formulated according to the deformed scheme
applied to different relations between orders of strain.

It is not correct to formulate (a) geometric relations, taking into account square terms,
and (b) equations in the form of linear Navier equations. The application of geometrically
nonlinear relations and geometrically linear equations of equilibrium is contradictory to
logic.

Making calculations according to the deformed scheme and taking into account
geometric nonlinearity and linear Navier equations of equilibrium are beyond the V.V.
Novozhilov theory even when geometric nonlinearity and physical linear relations are
considered for generalized characteristics of the stress–strain state.

The analysis of geometric relations and the mathematical model, proposed as an
instrument for the study of the elasticity problem in the area of the angular cutout in
the boundary, are supported by the experimental data obtained using the photoelasticity
method and the phenomenological approach that encompasses the application of the
linearity of physical relations to components of nonlinear strain and generalized stress.

In the general case of the elasticity problem, the scope of application of nonlinear
geometric relations and physical relations should be adjusted by applying the experimental
data.

It is noteworthy that under these assumptions the form of equilibrium equations,
describing relations between orders of small and large strain, coincides; the difference con-
sists of expressions describing linear and nonlinear strain substituted into the equilibrium
equation according to the deformed scheme. Therefore, the scope of application of strain
relations and physical relations is substantial, and it is determined by the mathematical
model of the continuous medium and the experimental data.

5. Conclusions

The approach to the analysis of equations of the elasticity theory problem allows for
analysis of the effect of relations between orders of strain, rotations on the equilibrium
equation in the polar system of coordinates for the V-shaped area under the action of forced
temperature-induced strain with regard for geometric nonlinearity, and physical linearity.

Further development and application of the proposed mathematical model is needed
to study the SSS in the area of the angular cutout in the boundary, consisting of numerical
or analytical analyses of the problem of the theory of elasticity for areas with an angular
cutout of the boundary and strain, and this is the subject of other independent research
projects.
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