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Abstract: In this article, the exact solutions of the stochastic conformable Broer–Kaup equations
with conformable derivatives which describe the bidirectional propagation of long waves in shallow
water are obtained using the modified exponential function method and the generalized Kudryashov
method. These exact solutions consist of hyperbolic, trigonometric, rational trigonometric, rational
hyperbolic, and rational function solutions, respectively. This shows that the proposed methods are
competent and sufficient. In addition, it is aimed to better understand the physical properties by
drawing two- and three-dimensional graphics of the exact solutions according to different parameter
values. When these exact solutions obtained by two different methods are compared with the
solutions attained by other methods, it can be said that these two methods are competent.
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1. Introduction

Partial differential equations (PDEs), mathematical models of complex physical, bio-
logical, and engineering systems, are used in various fields. The applications of nonlinear
partial differential equations (NPDEs) in various fields express their versatility and impor-
tance in helping to understand and predict the behavior of complex systems with nonlinear
behavior. The nonlinear variants of such models are actually of greater importance because
the analysis of what kind of response they might give to the nonlinear changes of the
variables is being studied with interest by researchers. From the past to the present, such
nonlinear mathematical models have been used by researchers as analytical, semi-analytical,
numerical, wave, etc. There are various effective methods or techniques in the literature
for obtaining solutions and examining the behavior of these models. Some of these were
seen as a result of the literature review as follows: the homotopy perturbation method and
homotopy analysis method [1]; Adomian decomposition method [2]; the shifted Cheby-
shev tau method [3]; semi-analytical method [4]; analytical method [5,6]; generalized
Kudryashov method [7]; sine-Gordon expansion method [8]; Jacobi elliptic function ex-
pansion method [9]; the hyperbolic trigonometric functions methods [10]; exp-function
method [11]; modified extended tanh-function method [12]; new function method [13]; and
modified exponential function method [14–16].

Until the middle of the 20th century, deterministic models were used effectively in
various engineering problems. Considering the fact that most natural events are not
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deterministic, the fractional order equations defined on the fractional derivatives and
integrals are tried to be modeled to be used instead of the integer order equations. On
the other hand, it has also emerged that in the mathematical modeling of many natural
phenomena, the traveling waves and the fractional derivatives in random situations should
be considered together [17]. The stochastic equations, which is the model used in this study,
are used in a variety of fields including physics, engineering, finance, biology, and more,
just like NPDEs. However, the stochastic equations can be difficult to solve due to the
presence of random equations, and researchers often use numerical methods and statistical
techniques to derive approximate solutions and to comment on the behavior of modeled
systems. In this study, we investigated the exact solutions of an equation with a stochastic
fractional derivative. In this case, we also search for stochastic conformable Broer-Kaup
equations for a better understanding of random wave states [18]:

du + [2 u Dα
xu + Dα

xv]dt = σ u dΨ, (1)

dv + [Dα
x(uv) + Dα

xu + Dα
xxxu]dt = σ v dΨ, (2)

where the horizontal velocity field is denoted by u(x, t); v(x, t) is the height of the fluid de-
viating from the equilibrium position; Dα is the conformable derivative; Ψ(t) is a standard
Wiener process (SWP); and σ is the noise strength.

The main template of this study can be stated as follows: In the second section,
information about the definition and properties of the conformable derivative is given. The
third section introduces the modified exponential function method in detail. The fourth
section gives detailed information about the generalized Kudryashov method. In the fifth
section, the analysis of the nonlinear conformable mathematical model with the methods is
given. In the last section, conclusions and comments, including all the outputs presented in
this study, are given.

2. Definition and Features of Conformable Derivative

Definition 1. The definition of the conformable derivative is given as follows [19]:

Dα
t {g(t)} = lim

ε→0

g
(
t + εt1−α

)
− g(t)

ε
. (3)

In this study, the preferred mathematical model has been preferred because it pro-
vides some features of the basic derivative rules. Accordingly, the salient features of the
appropriate derivative are as follows:

• Let functions h 6= 0 and g that are differentiable with respect to α be in the range
α ∈ (0, 1]. Hence, the equation that can satisfy all real numbers e, r is as follows:

Dα
x{e g(x) + r h(x)} = eDα

x{ g(x)}+ rDα
x{ h(x)}. (4)

• p is any constant providing the following equation:

Dα
x{p} = 0. (5)

•

Dα
x{g(x)h(x)} = h(x)Dα

x{ g(x)}+ g(x)Dα
x{ h(x)}. (6)

•

Dα
x

{
g(x)
h(x)

}
=

h(x)Dα
x{ g(x)} − g(x)Dα

x{ h(x)}
h2(x)

. (7)
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If α is in the (n, n + 1] range, the conformable derivative of g with respect to the order
α is defined as

Dα
x{g(x)} = lim

ε→0

g(α−1)
(

x + εx([α]−α)
)
− g([α]−1)(t)

ε
. (8)

The order α used in the above equation is the smallest integer greater than or equal
to α. Also, we can use one of the newly modified versions of the derivative known as
Abu-Shady–Kaabar fractional derivative [20].

3. Introduction to the Modified Exponential Function Method

Since this method is in the form of a rational function with exponential functions, it is
quite easy to determine the balance procedure for any problem. Therefore, it is possible to
determine whether the problem has trivial or nontrivial solutions by applying the balance
procedure on this method. If the existence of nontrivial solutions is determined, it is certain
to reach the hyperbolic, trigonometric, and rational wave solutions of the nonlinear problem
with the help of the solution functions of the trial equation existing in this method. For
these reasons, we aimed to investigate the wave solutions of this stochastic conformable
problem with the modified exponential function method as well. In this section, the steps
of the modified exponential function method will be introduced in detail. The general form
of the dependent bivariate nonlinear conformable partial differential equation expressed
by the solution function and its derivatives is as follows:

P(u, v, Dα
xu, Dα

xv, Dα
xuv, Dα

xxxu, · · ·) = 0, (9)

where x represents space and t represents time to which the functions u(x, t) and v(x, t) rep-
resent the heights deviating from the equilibrium position of the fluid. The traveling wave
transformation according to the independent variables in the general form of Equation (9)
is as follows:

u(x, t) = Φ(ξ)e(σ Ψ(t)−1/2σ2t), v(x, t) = Θ(ξ)e(σ Ψ(t)−1/2σ2t), ξ =
1
α

xα + ψ t, (10)

where ψ is any constant. When Equation (10) is substituted in Equation (9), the general
form of the nonlinear partial differential Equation (9) can be written as follows:

N
(

Φ, Φ2, Φ3, Φ′, Φ′′ , · · ·
)
= 0. (11)

It is assumed that the solution function of Equation (11) is as follows:

Φ(ξ) =

z
∑

j=0
Aj[e−ϑ(ξ)]

j

y
∑

i=0
Bi[e−ϑ(ξ)]

i
=

A0 + A1e−ϑ + . . . + Aze−z ϑ

B0 + B1e−ϑ + . . . + Bye−y ϑ
, (12)

where Aj, Bi, (0 ≤ j ≤ z , 0 ≤ i ≤ y) are any constants. The derivative terms required
for Equation (11) are found from Equation (12). In this case, while defining the derivative
of the function u with respect to ξ, the function ϑ and its derivative with respect to ϑ are
needed. For this, the following equation is used:

ϑ′(ξ) = e−ϑ(ξ) + µ eϑ(ξ) + λ. (13)

If Equation (13) is constructed, we get the following equation:

eϑ(ξ)

µ e2ϑ(ξ) + λeϑ(ξ) + 1
dϑ = dξ. (14)
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If Equation (14) is integrated according to ξ, ϑ functions in the following family cases
are obtained according to the values that the coefficients in the equation can take [14–16]:

Family 1: If µ 6= 0 and λ2 − 4µ > 0,

ϑ(ξ) = ln

[
−
√

λ2 − 4µ

2µ
tanh

(√
λ2 − 4µ

2
(ξ + E)

)
− λ

2µ

]
. (15)

Family 2: If µ 6= 0 and λ2 − 4µ < 0,

ϑ(ξ) = ln

[√
−λ2 + 4µ

2µ
tan

(√
−λ2 + 4µ

2
(ξ + E)

)
− λ

2µ

]
. (16)

Family 3: If µ = 0, λ 6= 0 and λ2 − 4µ > 0,

ϑ(ξ) = − ln
(

λ

eλ(ξ+E) − 1

)
. (17)

Family 4: If µ 6= 0, λ 6= 0 and λ2 − 4µ = 0,

ϑ(ξ) = ln
(
−2λ(ξ + E) + 4

λ2(ξ + E)

)
. (18)

Family 5: If µ = 0, λ = 0 and λ2 − 4µ = 0,

ϑ(ξ) = ln(ξ + E), (19)

where E, λ, µ are coefficients.
After the mathematical model in Equation (12) is defined under the conditions stated

above, one of the steps to be performed is to determine the boundaries in Equation (12). For
this, the balancing principle should be used. In other words, a relationship is established
between y and z by balancing the highest-order nonlinear term with the highest-order
nonlinear term in the nonlinear ordinary differential equation. Then, the appropriate
values that will provide this correlation are determined. In this way, the boundaries of
Equation (12) are determined. Then, derivative terms required in Equation (11) are obtained
from Equation (12) and written in their place. There is a system of algebraic equations con-
sisting of the coefficients in this equation. The coefficients in the A0, A1, A2, · · · , Az, B0, B1,
B2, · · · , By form are found together with the solution of this system of equations. Then,
the coefficients are substituted in Equation (12). The functions ϑ determined according to
family conditions are also written in their place. It is checked whether these found functions
provide the nonlinear mathematical model. Finally, the graphs simulating the physical
behavior of these wave solutions satisfying the equation under appropriate parameters
are obtained.

4. Introduction of the Processing Steps of the Generalized Kudryashov Method

In this section, the generalized Kudryashov method will be introduced [7]. The gener-
alized Kudryashov method is an effective method that expands the solution functions of a
trial equation to a finite series and constructs the wave solutions of the related differential
equation. This method can be easily applied to the nonlinear partial differential equations;
the nonlinear fractional partial differential equations; the nonlinear partial differential
equations with complex coefficients; and the nonlinear stochastic equations. Also, it is
clear that this method can be applied to nonintegrable equations as well as integrable ones.
In this study, from this point of view, we decided to investigate the wave solutions of a
nonlinear stochastic conformable differential equation via the generalized Kudryashov
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method. The general form of the nonlinear conformable partial differential equation with
two dependent variables is as follows:

P(u, v, Dα
xu, Dα

xv, Dα
xuv, Dα

xxxu, · · ·) = 0. (20)

The wave transformation is given as

u(x, t) = Φ(ξ)e(σ Ψ(t)−1/2σ2t), v(x, t) = Θ(ξ)e(σ Ψ(t)−1/2σ2t), ξ =
1
α

xα + ψ t, (21)

where ψ is any constant. When Equation (21) is substituted in Equation (20), the general
form of the nonlinear partial differential Equation (20) can be transformed into the equation

N
(

Φ, Φ2, Φ3, Φ′, Φ′′ , · · ·
)
= 0. (22)

The solution function of the nonlinear conformable differential equation discussed in
this article, accepted as a hypothesis, and is as follows:

Φ(ξ) =

n
∑

j=0
aj[Q]j

m
∑

i=0
bi[Q]i

=
a0 + a1Q + a2Q2 + · · ·+ anQn

b0 + b1Q + b2Q2 + · · ·+ bmQm , (23)

where aj, bi, (0 ≤ j ≤ n , 0 ≤ i ≤ m) are constants. Each of the derivative terms required
in Equation (22) is obtained by using Equation (23). In addition to all these cases, the
following information is given about the term Q in the Φ function, which is accepted as the
solution function of the mathematical model. If the equation Q′ξ = Q2 −Q is integrated
with respect to ξ, the function solution is obtained as

Q(ξ) =
1

1± eξ
. (24)

After all these calculations, the boundaries of the sum symbol in Equation (23), which
is accepted as the solution function of the mathematical model, need to be determined.
This process will be determined using the balancing procedure principle. In other words, a
relation is established between the term containing the highest-order derivative and the
nonlinear term of the highest order in the nonlinear ordinary differential equation. Accord-
ingly, a relationship is established between m and n. Then, the appropriate parameters to
achieve this equality are determined. In this case, the boundaries of Equation (23) are deter-
mined. Then, derivative terms required in Equation (22) are obtained from Equation (23)
and written in their place. A system of algebraic equations consisting of the coefficients
of the function in the mathematical model is established. The coefficients a0, a1, a2, · · · , an,
b0, b1, b2, · · · bm are obtained by solving this system of equations. These coefficients, which
are found, are written in their place in Equation (23). Finally, graphs show the behavior of
the solution functions that provide the mathematical model under appropriate parameters.

5. An Application of the Modified Exponential Function Method

In this section, the modified exponential function method will be used to obtain the
traveling wave solutions that provide stochastic conformable Broer–Kaup equations. If
wave transform (10) is applied to Equations (1) and (2), given above as stochastic con-
formable Broer–Kaup equations, the following nonlinear ordinary differential equations
are found:

ψ Φ′ + 2Φ Φ′ + Θ′ = 0, (25)

ψ Θ′ + (Φ Θ)′ + Φ′ + Φ′′′ = 0 (26)
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If Equations (25) and (26) are integrated according to ξ and the integration constants
are taken as zero, we get the following equations:

Θ = −ψ Φ−Φ2, (27)

ψ Θ + (Φ Θ) + Φ + Φ′′ = 0. (28)

If Equation (27) is substituted in Equation (28), then we can find that

Φ′′ −Φ3 − 2ψ Φ2 −
(

ψ2 − 1
)

Φ = 0. (29)

The balancing principle is applied to Equation (29), which is a nonlinear ordinary
differential equation. For this process, by balancing the term Φ′′ with the highest-order
derivative in Equation (29) and the nonlinear term Φ3 of the highest order, the following
equation is obtained:

3z− 3y = z− y + 2⇒ z = y + 1. (30)

For y = 1, we obtain z = 2. In this case, the solution function sought for the mathe-
matical model according to the method is as follows:

Φ(ξ) =
A0 + A1e−ϑ + A2e−2 ϑ

B0 + B1e−ϑ
. (31)

The derivative terms required in Equation (29) are obtained from Equation (31) and
written in their place. Then, the coefficients specified in the following cases are obtained by
establishing algebraic equation systems according to the powers of eϑ.

Case 1.

A0 = A2
24

(
−3
√

2 λ3 + λ4 + λ2(4− 8µ) + 12
√

2λ µ + 8µ(1 + 2µ)
)

,

A1 = A2
4

(
λ
(

4−
√

2λ
)
+ 4
√

2λ
)

, B0 = A2
12

(
4− 3

√
2λ + λ2 − 4µ

)
,

B1 = − A2√
2
, ψ = 1− λ2

2 + 2µ.

(32)

Substituting the above coefficients into Equation (31), we get the following wave solutions:
Family 1: when µ 6= 0 and λ2 − 4µ > 0, then

u1,1(x, t) =
eσ Ψ(t)−1/2σ2t

(
δ + 96µ2

v2 + θ
v

)
8− 6

√
2λ + 2λ2 + 2µ

(
12
√

2
v − 4

) , (33)

v1,1(x, t) =
eσ Ψ(t)−1/2σ2t

(
δ + 96µ2

v2 + θ
v

)(
−δ− 96µ2

v2 − θ
v − 2Ψ

(
4− 3

√
2λ + λ2 + µ

(
12
√

2
v − 4

)))
(

16− 12
√

2λ + 4λ2 + 4µ
(

12
√

2
v − 4

))2 , (34)

where ξ = xα

α + t ψ, δ = −3
√

2λ3 + λ4 + λ2(4− 8µ) + 12
√

2λ µ + 8µ(1 + 2µ),

v = λ +
√

λ2 − 4µ tanh
[

1
2

√
λ2 − 4µ(E + ξ)

]
, θ = 12µ

(
λ
(√

2λ− 4
)
− 4
√

2µ
)

.

For a better understanding for the readers, the behavior of Equations (33) and (34) are
graphically represented in Figures 1a and 1b, respectively.
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22
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2
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,
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φ φ φ φφ

λ λ
φ

Ψ −
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Figure 1a,b display the behavior of Equations (33) and (34) for the values of
A2 = 0.22, µ = 1, λ = 3, A0 = 0.0491369, A1 = 0.271091, B0 = −0.0683452,
B1 = −0.155563, σ = 1.25, Ψ = 0.75, ψ = −1.5, α = 0.5, E = 0.75, t = 1.

Family 2: when µ 6= 0 and λ2 − 4µ < 0, then

u1,2(x, t) =

 eσΨ(t)−1/2σ2t
(

δ + 96µ2

φ2 + θ
φ

)
8− 6

√
2λ + λ2 + 2µ

(
12
√

2
φ − 4

)
, (35)

v1,2(x, t) =

 eσ Ψ(t)−1/2σ2t
(

δ + 96µ2

φ2 + θ
φ

)(
−δ− 96µ2

(φ)2 − θ
φ − 2Ψ

(
4− 3

√
2λ + λ2 + µ

(
12
√

2
φ − 4

)))
(

16− 12
√

2λ + 4λ2 + 4
(

12
√

2
φ − 4

))2

, (36)

where φ = λ−
√

4µ− λ2 tan
[
(E+ξ)

2

√
4µ− λ2

]
.

For a better understanding for the readers, the behavior of Equations (35) and (36) are
graphically represented in Figures 2a and 2b, respectively.
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Figure 2. (a) Three−dimensional, two−dimensional, density, and contour graphics of Equation (35).
(b) Three−dimensional, two−dimensional, density, and contour graphics of Equation (36).

Figure 2a,b display the behavior of Equations (35) and (36) for the values of
A2 = 0.22, µ = 3, λ = 1, A0 = 1.79363, A1 = 1.0756, B0 = −0.206115, B1 = −0.155563,
σ = 1.25, Ψ = 0.75, ψ = 6.5, α = 0.5, E = 0.75, t = 1.

Family 3: when µ = 0, λ 6= 0 and λ2 − 4µ > 0, then

u1,3(x, t) =
λ

2
eσ Ψ(t)−1/2σ2t

λ− 2
√

2
eλ(E+ξ) − 1

−
2
√

2
(

4 + 3
√

2λ + λ2
)

4 + 3
√

2λ + λ2 + eλ(E+ξ)
(

3
√

2λ− 4− λ2
)
, (37)

v1,3(x, t) = −
eσ Ψ(t)−1/2σ2t+λ(E+ξ)λ2(8−λ2+(4+λ2) cosh[λ(E+ξ)]−3

√
2λsinh[λ(E+ξ)])

(
(4+λ2)(λ2+2ψ)+

3λ(4λ−
√

2(λ2+2ψ)sinh[λ(E+ξ)])
cosh[λ(E+ξ)]−1

)
2(4+3

√
2λ+λ2+eλ(E+ξ)(3

√
2λ−4−λ2))

2 . (38)

The behavior of Equations (37) and (38) are graphically represented in Figures 3a and 3b,
respectively.
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Figure 3. (a) Three−dimensional, two−dimensional, density, and contour graphics of Equation (37).
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Figure 3a,b display the behavior of Equations (37) and (38) for the values of
A2 = 0.22, µ = 0, λ = 1, A0 = 0.00694246, A1 = 0.142218, B0 = 0.0138849,
B1 = −0.155563, σ = 1.25, Ψ = 0.75, ψ = 0.5, α = 0.5, E = 0.75, t = 1.

Family 4: when µ 6= 0, λ 6= 0 and λ2 − 4µ = 0, then

u1,4(x, t) =
eσ Ψ(t)−1/2σ2t

(
δ + 6λ4(E+ξ)2

(2+λ(E+ξ))2 +
3λ2(E+ξ)(λ(

√
2λ−4)−4

√
2µ)

2+λ(E+ξ)

)
8 + 2λ2 − 8µ− 12

√
2λ

2+λ(E+ξ)

, (39)

v1,4(x, t) =
eσ Ψ(t)−1/2σ2t

(
δ + κ + 6λ4(E+ξ)2

(2+λ(E+ξ))2

)(
−δ− κ − 6λ4(E+ξ)2

(2+λ(E+ξ))2 − 2ψ
(

4 + λ2 − 4µ− 6
√

2λ
2+λ(E+ξ)

))
4
(

4 + λ2 − 4µ− 6
√

2λ
2+λ(E+ξ)

)2 , (40)

where κ =
3λ2(λ(

√
2λ−4)−4

√
2µ)(E+ξ)

2+λ(E+ξ)
.

The behavior of Equations (39) and (40) are graphically represented in Figures 4a and 4b,
respectively.
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Figure 4. (a) Three−dimensional, two−dimensional, density, and contour graphics of Equation (39).
(b) Three−dimensional, two−dimensional, density, and contour graphics of Equation (40).

Figure 4a,b display the behavior of Equations (39) and (40) for the values of
A2 = 0.22, µ = 1, λ = 2, A0 = 0.22, A1 = 0.44, B0 = −0.0822302, B1 = −0.155563,
σ = 1.25, Ψ = 0.75, ψ = 1, α = 0.5, E = 0.75, t = 1.

Family 5: when µ = 0, λ = 0 and λ2 − 4µ = 0, then

u1,5(x, t) =

 eσ Ψ(t)−1/2σ2t
(

δ + 6λ4(E+ξ)2

(2+λ(E+ξ))2 +
3λ2(λ(

√
2λ−4)−4

√
2µ)(E+ξ)

2+λ(E+ξ)

)
8 + 2λ2 − 8µ− 12

√
2λ

2+λ(E+ξ)

, (41)

v1,5(x, t) =
eσ Ψ(t)−1/2σ2t

(
δ + κ + 6λ4(E+ξ)2

(2+λ(E+ξ))2

)(
δ− κ − 6λ4(E+ξ)2

(2+λ(E+ξ))2 − 2ψ
(

4 + λ2 − 4µ− 6
√

2λ
2+λ(E+ξ)

))
4
(

4 + λ2 − 4µ− 6
√

2λ
2+λ(E+ξ)

)2 , (42)

The behavior of Equations (41) and (42) are graphically represented in Figures 5a and 5b,
respectively.
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Figure 5a,b display the behavior of Equations (41) and (42) for the values of
A2 = 0.22, µ = 0, λ = 0, A0 = 0, A1 = 0, B0 = 0.0733333, B1 = −0.155563,
σ = 1.25, Ψ = 0.75, ψ = 1, α = 0.5, E = 0.75, t = 1.

Case 2.

A0 = µ A2, A1 = λ A2, B0 = − A2
6

√
4 + 17λ2

2 − 16µ− 6
√

2λ2(1 + λ2 − 4µ),

B1 = −
A2

(
3
√

2λ+4
√

1+λ2−4µ
)√

8+17λ2−32µ−12
√

2λ2(1+λ2−4µ)

2(λ2−8+32µ)
,

ψ =

(
2
√

2(1+λ2−4µ)+3λ
√

1+λ2−4µ
)√

8+17λ2−32µ−12
√

2λ2(1+λ2−4µ)

(λ2−8+32µ)
.

(43)

Let us analyze the traveling wave solutions given in the following solution families
according to the above coefficients selected from the coefficient groups obtained by solving
the system of algebraic equations. Substituting Equation (43) into Equations (27) and (31),
we can easily write the following wave solutions. In this case, there are five different solu-
tion families that include various functions such as hyperbolic, rational, and trigonometric
functions. In addition, the physical behavior of the obtained solutions was examined for
some special values of the variables.

Family 1: if we take the conditions µ 6= 0 and λ2 − 4µ > 0, the hyperbolic function
solutions can be found as follows:

u2,1(x, t) =

 12eσ Ψ(t)−1/2σ2tγ
√

τ
(√

2A2(λ3 − 4λ(2 + µ) + ς)− 48µA2
√

1 + λ2 − 4µ
)
, (44)

v2,1(x, t) =
eσ Ψ(t)−1/2σ2tγA2

2

(
− λγ

τ − (ψ(v))

√
2λ(λ3−4λ(2+µ)+ς)−48µ

√
λ2(1+λ2−4µ)√

τ

)
ρ2
(√

2λ(λ3 − 4λ(2 + µ) + ς)− 48µ
√

λ2(1 + λ2 − 4µ)
)2 , (45)

where ξ = xα

α + t ψ, ρ =
(E+ξ)

√
λ2−4µ

2 , v = λ +
√

λ2 − 4µ tanh[ρ], τ =
(
8 + 17λ2 − 32µ

)
−

12λ
√

2 + 2λ2 − 8µ, γ = µ
(
λ2 − 4µ

)(
λ2 − 8 + 32µ

)
sech[ρ]2, ς =

√
λ2 − 4µ

(
λ2 − 8 + 32µ

)
tanh[ρ].

The behavior of Equations (44) and (45) are graphically represented in Figures 6a and 6b,
respectively.

Figure 6a,b display the behavior of Equations (44) and (45) for the values of
A2 = 0.22, µ = 1, λ = 3, A0 = 0.22, A1 = 0.66, B0 = −0.053716, B1 = −0.155563,
σ = 1.25, Ψ = 0.75, ψ = 2.44949, α = 0.5, E = 0.75, t = 1.

Family 2: when µ 6= 0 and λ2 − 4µ < 0, then

u2,2(x, t) =
12eσ Ψ(t)−1/2σ2tλµ

(
λ2 − 4µ

)(
λ2 − 8 + 32µ

)
sec[o]2

√
τ
(

λ−
√

4µ− λ2 tan[o]
)(√

2λ Ω− 48µ
√

λ2(1 + λ2 − 4µ)
) , (46)

v2,2(x, t) =

12eσ Ψ(t)−1/2σ2tχ

(
12A2χ

(8+17λ2−32µ)−12
√

2λ2(1+λ2−4µ)
+

1 
 

ƛ ψ(φ)
A2

√
(8+17λ2−32µ)−12λ

√
2+2λ2−8µ

)
φ2

1 
 

ƛ 2
, (47)

where o = (E+ξ)
2

√
4µ− λ2, ň=

√
2λA2

2Ω − 48A2
2λµ

√
1 + λ2 − 4µ,

Ω =
(

λ3 − 4λ(2 + µ)−
√

4µ− λ2
(
λ2 − 8 + 32µ

)
tan[o]

)
, χ = λµ

(
λ2 − 4µ

)(
λ2 − 8 + 32µ

)
sech[o]2.
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The behavior of real and imaginary parts of Equations (46) and (47) are graphically
represented in Figure 7a–d.
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Figure 7. (a) Three−dimensional, two−dimensional, density, and contour graphics for the real part 
of Equation (46). (b) Three−dimensional, two−dimensional, density, and contour graphics for the 
imaginary part of Equation (46). (c) Three−dimensional, two−dimensional, density, and contour 
graphics for real part of Equation (47). (d) Three−dimensional, two−dimensional, density, and con-
tour graphics for imaginary part of Equation (47). 
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The behavior of Equations (48) and (49) are graphically represented in Figure 8a and 
8b, respectively. 

Figure 7. (a) Three−dimensional, two−dimensional, density, and contour graphics for the real part
of Equation (46). (b) Three−dimensional, two−dimensional, density, and contour graphics for the
imaginary part of Equation (46). (c) Three−dimensional, two−dimensional, density, and contour
graphics for real part of Equation (47). (d) Three−dimensional, two−dimensional, density, and
contour graphics for imaginary part of Equation (47).
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Figure 7a–d display the behavior of Equations (46) and (47) for the values

A0 = 3, A1 = 1 A2 = 1, B0 = −
√
−71−24i

√
5

6
√

2
, B1 = −

√
−71−24i

√
5(3
√

2+4i
√

10)
178 , µ = 3,

λ = 1, σ = 1.25, Ψ = 0.75, ψ = −11, α = 0.5.
Family 3: when µ = 0, λ 6= 0 and λ2 − 4µ > 0, then

u2,3(x, t) =

(
−

e(E+ξ)λ−1/2σ2t+σ Ψ(t)λ2(λ2 − 8
)

}(ξ)
(
e(E+ξ)λ − 1

) )
, (48)

v2,3(x, t) = e−1/2σ2t+σ Ψ(t)

(
12ψe2(E+ξ)λλ2(λ2 − 8

)2

}(ξ)
(
e(E+ξ)λ − 1

) −
e2(E+ξ)λλ4(λ2 − 8

)2

√
2(}(ξ))2(e(E+ξ)λ − 1

)2

)
, (49)

where}(ξ) =
√

2
(

8 + 17λ2 + e(E+ξ)λ
(
λ2 − 8

)
+ 24λ

√
λ2 + 1

)√
8 + 17λ2 − 12

√
2λ
√

λ2 + 1.
The behavior of Equations (48) and (49) are graphically represented in Figures 8a and 8b,

respectively.
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Figure 8. (a) Three−dimensional, two−dimensional, density, and contour graphics of Equation (48).
(b) Three−dimensional, two−dimensional, density, and contour graphics of Equation (49).

Figure 8a,b display the behavior of Equations (48) and (49) for the values of
A0 = 0, A1 = 1, A2 = 1, B0 = − 1

6
√

2
, B1 = − 1√

2
, µ = 0, λ = 1, σ = 1.25, Ψ = 0.75,

ψ = −
√

2, α = 0.5, E = 0.75, t = 1
Family 4: when µ 6= 0, λ 6= 0 and λ2 − 4µ = 0, then

u2,4(x, t) = −
3e−1/2σ2+σ Ψ((E + ξ)λ(4 + (E + ξ)λ)

(
λ2 − 4µ

)
− 16µ

)(
λ2 − 8 + 32µ

)(
2(2 + (E + ξ)λ)Y(ξ)

√
8 + 17λ2 − 32µ− 12λ

√
2 + 2λ2 − 8µ

) ,

(50)

v2,4(x, t) =
−9∆2(λ2 − 8 + 32µ

)2e−1/2σ2+σ Ψ

20Y(ξ)
(

40 2(Y(ξ))2 + ∆
) , (51)

whereY(ξ) =
√

2
((

8 + λ
(
4
(
1 + λ2 − 4µ

)
(E + ξ)− λ

)
− 32µ

)
+ 6(E + ξ)λ2

√
1 + λ2 − 4µ

)
,

0 = (2 + (E + ξ)λ)2
((

8 + 17λ2 − 32µ
)
− 12λ

√
2 + 22 − 8µ

)
, ∆ = (E + ξ)λ(4 + (E + ξ)λ)(

λ2 − 4µ
)
− 16µ.

The behavior of Equations (50) and (51) are graphically represented in Figures 9a and 9b,
respectively.
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Figure 9a,b display the behavior of Equations (50) and (51) for the values of

A2 = µ = A0 = t = 1 λ = A1 = 2, B0 = −
√

11−6
√

2
3
√

2
, B1 = −

√
11−6

√
2(2+3

√
2)

14 , σ = 1.25,

ψ =

√
11−6

√
2(3+

√
2)

7 , α = 0.5, E = Ψ = 0.75.
Family 5: when µ = 0, λ = 0 and λ2 − 4µ = 0, the parameters make the solution

function undefined under these conditions; no data related to any solution could be
obtained.

6. Analysis of Wave Solutions of Mathematical Model with the Generalized
Kudryashov Method

In this section, the generalized Kudryashov method will be used to derive traveling
wave solutions that satisfy the stochastic conformable Broer–Kaup equations. In addition,
since some of the operations mentioned below are the same operations with the developed
exponential function method, the steps of the above equations will be mentioned.

If the wave transform (21) is applied to Equations (1) and (2) given as stochastic
conformable Broer–Kaup equations, just as in the modified exponential function method, the
system of nonlinear partial differential Equations (25) and (26) is transformed to a nonlinear
ordinary differential equation. Then, it is reduced to the system of Equations (27) and (28)
by integrating according to ξ in order to analyze the solution of this system of equations
more efficiently. Equation (29) is obtained by arranging this system of equations. In this
system of equations, there is a correlation between the limits of the solution function,
which is considered hypothetical according to this method, by balancing the term with
the highest-order derivative and the term with the highest degree. The solution function,
considered as the following assumption, is obtained by giving appropriate values to the m
and n parameters in the determined relation:

u(ξ) =

2
∑

j=0
aj[Q]j

1
∑

i=0
bi[Q]i

=
a0 + a1Q + a2Q2

b0 + b1Q
, (52)

where aj, bi, (0 ≤ j ≤ n , 0 ≤ i ≤ m) are constants. The derivative terms required in
Equation (29) are obtained from Equation (51) and written in their place. Then, this
system of equations is arranged according to the powers of Q, and a system of algebraic
equations is established. The unknown coefficients in the following cases are found with
the solution of this system of algebraic equations. These coefficients are written in their
place in the solution function, which is considered a hypothesis. With the program’s
help, these functions are checked in order to establish whether they provide the nonlinear
ordinary differential equation first and then the nonlinear partial differential equation
second. Then, the graphs simulating the behavior of these functions, which are considered
the mathematical model’s solution, are drawn under the appropriate parameters.

Case 1.

a0 =
6 + 5

√
2

24
b1, a1 = −1 + 2

√
2

2
b1, a2 =

√
2b1, b0 = −6 + 5

√
2

12
b1, c = −1

2
. (53)

According to the coefficients obtained by solving the algebraic equation system, the
traveling wave solutions of the mathematical model are as follows:

u1,1(x, t) =
1
6

e−1/2σ2t+σ Ψ(t)

2− 3
√

2tanh
[

ξ

2

]
−

7 cosh
[

ξ
2

]
℘(ξ)

, (54)
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v1,1(x, t) =
e−1/2σ2t+σ Ψ(t)sech2

[
ξ
2

]
(℘(ξ)− 7)((2ψ− 1)℘(ξ) + 10ψ + 7)

16 (℘(ξ))2 , (55)

where ℘(ξ) = 5 cosh
[

ξ
2

]
+ 3
√

2sinh
[

ξ
2

]
.

The behavior of Equations (54) and (55) are graphically represented in Figures 10a and 10b,
respectively.
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( )
( ) ( )( ) ( ) ( )( )

( )( )

21/2 2

1,2 2

csch 7 2 1 10 7
2,
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t te
v x t
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ξ
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Figure 10. (a) Three−dimensional, two−dimensional, density, and contour graphics of Equation (54).
(b) Three−dimensional, two−dimensional, density, and contour graphics of Equation (55).

Figure 10a,b display the behavior of Equations (54) and (55) for the values of
a0 = −0.413917, a1 = 1.4548, a2 = −1.0748, b0 = 0.827834, b1 = −0.76, ψ = −0.5,
σ = 0.77, Ψ = 1.32, α = 0.5, t = 1.

u1,2(x, t) =
1
6

e−1/2σ2t+σ Ψ(t)

2− 3
√

2coth
[

ξ

2

]
− 7

5 + 3
√

2coth
[

ξ
2

]
, (56)

v1,2(x, t) =
e−1/2σ2t+σ Ψ(t)csch2

[
ξ
2

]
(7 + ℘(ξ))((2ψ− 1)℘(ξ)− 10ψ− 7)

16(=(ξ))2 , (57)

where ℘(ξ) = 5 cosh
[

ξ
2

]
+ 3
√

2sinh
[

ξ
2

]
, =(ξ) = 5sinh

[
ξ
2

]
+ 3
√

2 cosh
[

ξ
2

]
.

The behavior of Equations (56) and (57) are graphically represented in Figures 11a and 11b,
respectively.



Axioms 2023, 12, 889 24 of 32
Axioms 2023, 12, x FOR PEER REVIEW 32 of 43 
 

 

 

  
(a) 

  

Axioms 2023, 12, x FOR PEER REVIEW 33 of 43 
 

 

 

  
(b) 

Figure 11. (a) Three−dimensional, two−dimensional, density, and contour graphics of Equation (56). 
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21/2

2,1
3 2,

t teu x t
σ σ

ξ
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Λ
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( )
( ) ( )( )

( )( )

21/2

2,1 2

3 6 2
,
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Figure 11a,b display the behavior of Equations (56) and (57) for the values of
a0 = −0.413917 a1 = 1.4548, a2 = −1.0748, b0 = 0.827834, b1 = −0.76, ψ = −0.5,
σ = 0.77, Ψ = 1.32, α = 0.5, t = 1.

Case 2.

a0 = 0, a1 = −
√

2b1, a2 =
√

2b1, , b0 = −7b1

6
, c = −

√
2. (58)

According to the coefficients obtained from the system of algebraic equations, the
traveling wave solutions of the model can be written as

u2,1(x, t) =
3
√

2e−1/2σ2t+σ Ψ(t)

Λ(ξ)
, (59)

v2,1(x, t) =
3e−1/2σ2t+σ Ψ(t)

(
−6−

√
2 ψ Λ(ξ)

)
(Λ(ξ))2 , (60)

where Λ(ξ) = 4 + 4 cosh[ξ] + 3sinh[ξ].
For a better understanding for the readers, the behavior of Equations (59) and (60) are

graphically represented in Figures 12a and 12b, respectively.
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Figure 12. (a) Three−dimensional, two−dimensional, density, and contour graphics of Equation (59).
(b) Three−dimensional, two−dimensional, density, and contour graphics of Equation (60).

Figure 12a,b display the behavior of Equations (59) and (60) for the values of
a0 = −0.413917, a1 = 1.4548, a2 = −1.0748, b0 = 0.827834, b1 = −0.76, ψ = −0.5,
σ = 0.77, Ψ = 1.32, α = 0.5, t = 1.

u2,2(x, t) = −6
√

2e−1/2σ2t+σ Ψ(t)+ξ

1− 8eξ + 7e2ξ
, (61)

v2,2(x, t) =
3
√

2ψe−1/2σ2t+σ Ψ(t)csch2
[

ξ
2

](
∇(ξ)sinh

[
ξ
2

]
− 3
)

2(∇(ξ))2 , (62)

where ∇(ξ) = 4sinh
[

ξ
2

]
+ 3 cosh

[
ξ
2

]
.

For a better understanding for the readers, the behavior of Equations (61) and (62) are
graphically represented in Figures 13a and 13b, respectively.
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t teu x t
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ξ
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( )
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21/2

3,1 2

3 2 6
,

t te
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σ σ ψ ξ

ξ
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Figure 13a,b display the behavior of Equations (61) and (62) for the values of
a0 = −0.413917, a1 = 1.4548, a2 = −1.0748, b0 = 0.827834, b1 = −0.76, ψ = −0.5,
σ = 0.77, Ψ = 1.32, α = 0.5, t = 1.

Case 3.
a0 = 0, a1 =

√
2b1, a2 = −

√
2b1, b0 =

b1

6
, c = −

√
2. (63)

According to the coefficients obtained by solving the system of algebraic equations,
the traveling wave solutions can be constructed as follows:

u3,1(x, t) =
3
√

2e−1/2σ2t+σ Ψ(t)+ξ

ℵ(ξ) , (64)

v3,1(x, t) = −
3e−1/2σ2t+σ Ψ(t)

(√
2 ψ ℵ(ξ) + 6

)
(ℵ(ξ))2 , (65)

where ℵ(ξ) = 4 + 4 cosh[ξ]− 3sinh[ξ].
For a better understanding for the readers, the behavior of Equations (64) and (65) are

graphically represented in Figures 14a and 14b, respectively.
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Figure 14. (a) Three−dimensional, two−dimensional, density, and contour graphics of Equation (64).
(b) Three−dimensional, two−dimensional, density, and contour graphics of Equation (65).

Figure 14a,b display the behavior of Equations (64) and (65) for the values of
a0 = −0.413917, a1 = 1.4548, a2 = −1.0748, b0 = 0.827834, b1 = −0.76, ψ = −0.5,
σ = 0.77, Ψ = 1.32, α = 0.5, t = 1.

u3,2(x, t) = −6
√

2e−1/2σ2t+σ Ψ(t)+ξ

7− 8eξ + e2ξ
,

v3,2(x, t) =
6e−1/2σ2t+σ Ψ(t)+ξ

(
7
√

2ψ− 4
(

3 + 2
√

2ψ
)

eξ +
√

2ψe2ξ
)

(
7− 8eξ + e2ξ

)2 . (66)

v3,2(x, t) =
6e−1/2σ2t+σ Ψ(t)+ξ

(
7
√

2ψ− 4
(

3 + 2
√

2ψ
)

eξ +
√

2ψe2ξ
)

(
7− 8eξ + e2ξ

)2 (67)

The behavior of Equations (66) and (67) are graphically represented in Figures 15a and 15b,
respectively.
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Figure 15a,b display the behavior of Equations (66) and (67) for the values of
a0 = −0.413917, a1 = 1.4548, a2 = −1.0748, b0 = 0.827834, b1 = −0.76, ψ = −0.5,
σ = 0.77, Ψ = 1.32, α = 0.5, t = 1.

7. Conclusions

Two different methods called the modified exponential function method, and the
generalized Kudryashov method are applied to stochastic conformable Broer–Kaup equa-
tions in this study. These two methods have several advantages and disadvantages. Both
methods aim to obtain solution functions with periodic function properties. Since such
behavior models obtained in a range can be generalized to an infinite range, if the solution
functions obtained are periodic, it will be possible to extend the behavior of the mathemat-
ical model in a certain range to a more general range. In this study, a package program
called “Mathematica” was used for all mathematical operations and graphs simulating
the behavior of the mathematical model in both methods and to show that the solution
functions themselves provide this mathematical model. The program used in the calcu-
lations and graphic drawings in this article is a very effective program: because, with
the help of this program, it is very easy to draw graphs to examine the behavior of the
solutions found as well as many mathematical operations such as the parametric solutions
of highly complex nonlinear algebraic equation systems; the derivatives and the integrals
of functions; and also the examining of whether the solution functions provide the relevant
differential equation or not. First of all, the hyperbolic, trigonometric, and rational solution
functions of the mathematical model handled were obtained by the modified exponential
function method. Then, similar solution functions were determined via the second method,
the generalized Kudryashov method. When a comparison is made between these two
methods, the fact that some solution families cannot be obtained due to the conditions and
properties of the modified exponential function method and obtain some fixed solution
functions can be considered as a negative behavior. On the other hand, it is seen that such a
situation is not encountered in the generalized Kudryashov method. Therefore, the solution
function models of the generalized Kudryashov method are more valuable because they
have a helpful structure. In the near future, we aim to apply these methods to obtain the
wave solutions of stochastic differential equations with beta derivatives.
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