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Abstract: This work uses the collocation approximation method to solve a specific type of backward
stochastic Volterra integral equations (BSVIEs). Using Newton’s method, BSVIEs can be solved
using block pulse functions and the corresponding stochastic operational matrix of integration. We
present examples to illustrate the estimate analysis and to demonstrate the convergence of the two
approximating sequences separately. To measure their accuracy, we compare the solutions with
values of exact and approximative solutions at a few selected locations using a specified absolute error.
We also propose an efficient method for solving a triangular linear algebraic problem using a single
integral equation. To confirm the effectiveness of our method, we conduct numerical experiments
with issues from real-world applications.
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1. Introduction

Backward stochastic differential equations (BSDEs) represent stochastic differential
equations with terminal conditions. The existence and uniqueness of solutions for BS-
DEs have been proven by Pardoux and Peng, who also developed a general nonlinear
BSDE [1,2]. Backward stochastic differential equations have numerous applications in
finance, stochastic games, and optimal control. The concept of backward stochastic differen-
tial equations has been extended to include backward stochastic Volterra integral equations
(BSVIEs), which depend on two specific time moments for their drift and diffusion coeffi-
cients. Nonlinearities are present in the general of BSDEs as follows.

Y(t) = ξ +
∫ T

t
g(s, Y(s), Z(s))ds−

∫ T

t
Z(s)dB(s). (1)

We will introduce a primary space (Ω,F , {Ft}t≥0,P) corresponding to a total probabil-
ity space with a filtration, where {Ft}t≥0 meets the usual criteria (i.e., it is right continuous
and F0 contains all P-null sets). In constrast, {B(t)}t∈[0,T] defines the Wiener process. The
terminal condition ξ is an FT-measurable random variable, and the driver g is a progres-
sively measurable function. The adapted solution of the BSDE (1) is the pair (Y(·), Z(·)) of
the adapted processes that satisfy (1). The adapted solution’s second component, Z(·), is
known as the martingale integrand.

Our investigation is inspired by the method for estimating the BSDEs’ adapted so-
lutions [3]. We recommend researching backward stochastic Volterra integral equations
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(BSVIEs) in light of the most recent research of [4–6]. Pardoux and Peng began this research
over a decade ago [7]. According to Lin [8], the modified solutions were studied as exis-
tence and uniqueness problems under global Lipschitz conditions. The global Lipschitz
condition on drift has been eased by Aman and N’zi [9]. For a comprehensive explanation
of the theory and applications of BSDE (1), including stochastic controls and mathematical
finance, the reader might consult El Karoui, Peng, and Quenez’s overview paper [10].
The emergence of BSVIEs of the form has significantly developed BSDEs. As a natural
progression from BSDEs, BSVIEs can be represented as follows.

Y(t) = ψ(t) +
∫ T

t
g(t, s, Y(s), Z(t, s), Z(s, t))ds−

∫ T

t
Z(t, s)dB(s). (2)

In the literature, (2) is referred to as a Type-II BSVIE. Unlike a Type-I BSVIE, solving a
Type-II BSVIE requires an extra constraint on the term Z(t, s), where 0 ≤ s ≤ t ≤ T for
the equation to demonstrated well-posedness. Researchers have developed the adapted
M solution, which was inspired by the duality principle in stochastic control problems of
stochastic Volterra integral equations, to solve the Type-II BSVIE. This equation is essential
for studying stochastic control and mathematical finance problems. Researchers have
used BSVIEs to calculate dynamic risk estimates for position operations and to examine
dynamic capital allocations. BSVIE solutions can describe time-inconsistent recursive utility
processes of general discounting, and they are strongly linked to time-inconsistent stochastic
control problems. Several researchers have proposed differentiability results, investigated
stochastic control problems for SVIE and BSVIE systems, and proven numerous comparison
theorems for adapted solutions and adapted M solutions to BSVIEs in multidimensional
Euclidean spaces. Notably, BSVIE theory is path-dependent, and numerical elements have
also been considered (see, e.g., [5,11–20] and the references therein).

Approximations for adapted M solutions of Type-II backward stochastic Volterra
integral equations were studied, where backward stochastic differential equations converge
to the adapted M solution of the original equation [21]. In addition, the convolution method
has been extended to solve the conditional expectation to solve BSDEs numerically, and a
generalized θ scheme has been applied to discretize the backward component [22].

The numerical approximations problem for Type-II BSVIEs has been completely open.
There needs to be more quantitative interest in BSVIEs. Hence, with the aid of block
pulse functions and their stochastic operational matrix of integration, backward stochastic
Volterra integral equations can be effectively solved. These equations can then be reduced
to a linear lower triangular system, which can then be solved by forward substitution (See,
e.g., [23–33] and the references therein).

The primary characteristic of BSVIEs (2) is that they include memories, which are
more accurate to reality. We seek the unknown pair (Y(·), Z(·, ·)), where Y(·) and Z(t, ·)
are adapted for each t ∈ [0, T]. In the above, the free term ψ(·), also known as the
terminal condition, is allowed to be only a B([0, T])⊗FT-measurable stochastic process
(not necessarily F -adapted). Here, B([0, T]) represents the Borel σ field of [0, T]. The
generator or the driver of the BSVIE is a given map g(·), which can be deterministic or
random. The coefficient g(·) is dependent on both t and s, and it g(·) depends not only on
Z(t, s), but also on Z(s, t). The drift generally depends on Z(t, s) and Z(s, t). In the case
where the driver g is independent of the term Z(s, t), the BSVIE becomes the following:

Y(t) = ψ(t) +
∫ T

t
g(t, s, Y(s), Z(t, s))ds−

∫ T

t
Z(t, s)dB(s). (3)

For convenience, we have rewritten the following BSVIE:

Y(t) = ψ(t) +
∫ T

t
[G0(t, s)Y(s) + G1(t, s)Z(t, s)]ds−

∫ T

t
Z(t, s)dB(s). (4)
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The structure of this work is as follows. Section 2 covers the basic characteristics of
block-pulse functions and an integration operational matrix approximation. In Section 3,
the stochastic integration operational matrix is presented. Section 4 solves stochastic
Volterra integral equations using the stochastic integration operational matrix via colloca-
tion approximation. Section 5 presents an analysis of the solution’s general error estimated
regularity properties of the solution. In Section 6, we offer numerical results and use
numerical examples to demonstrate the accuracy of the suggested approach.

2. Block-Pulse Functions BPFs

The block-pulse function (BPF) Φi over the unit interval [0, T) is defined as follows:
for 0 ≤ 1 < m, and m ∈ {1, 2, · · · },

Φi(t) =

{
1 f or (i− 1)h ≤ t < ih
0 otherwise

(5)

with t ∈ [0, T), i = 1, 2, · · · , m, and h = T
m .

The block-pulse functions have the following properties:

(1) Disjointness: The BPFs are disjointed with each other in the interval t ∈ [0, T).

Φi(t)Φj(t) =

{
Φi(t) i = j
0 i 6= j

(6)

for i, j = 1, 2, · · · , m.

(2) Orthogonality: The BPFs are disjointed with each other in the interval t ∈ [0, T).

〈Φi(t)Φj(t)〉 =
∫ T

0
Φi(t)Φj(t)dt = hδij (7)

where i, j = 1, 2, · · · , m, and δij denotes the Kronecker delta.

(3) The third property is completeness: For every f ∈ L2[0, T), when m→ ∞, Parseval’s
identity holds, that is:

∫ T

0
f 2(t)dt =

∞

∑
i=1

f 2
i ||Φi(t)||2

where fi =
1
h

∫ T
0 f (t)Φi(t)dt. The set of function can be described by an m vector.

Φm(t) = (Φ0(t), Φ1(t), · · · , Φm(t))T , t ∈ [0, T).

Therefore, we can write the relationship between BPFs and their integrals in the
following matrix form.

The above representation and disjointness property follows

Φ(t)ΦT(t) =


φ1(t) 0 · · · 0

0 φ2(t) · · · 0
...

...
. . .

...
0 0 · · · φm(t)


m×m

, (8)

Φ(t)TΦ(t) = 1,

and
Φ(t)ΦT(t)FT = DFΦ(t), (9)

where DF usually denotes a diagonal matrix whose diagonal entries are related to a constant
vector F = ( f1, f2, · · · , fm)T .
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2.1. Function Approximations

A real bounded function f (t), where f (t) ∈ L2[0, T), can be expanded into a block-
pulse series as

f (t) ' f̂m(t) =
m

∑
i=1

fiΦi(t), (10)

where fi is the block-pulse coefficient with respect to the ith BPF Φi(t).
Let g(t, s) ∈ L2([0, T1)× [0, T2)). It can be similarly expanded with respect to BPFs

such as
g(t, s) ' ĝm(t, s) = ΨT(s)GΦ(t) = ΦT(t)GTΨ(s), (11)

where Ψ(s) and Φ(t) are m1 and m2 dimensional BPF vectors, respectively, and
G = (gij), i = 1, 2, · · · , m1, j = 1, 2, · · · , m2 is the m1 × m2 block-pulse coefficient matrix
with

gij =
1

h1h2

∫ T1

0

∫ T2

0
g(t, s)Ψi(s)Φj(t)dtds,

where h1 = T1
m1

, and h2 = T2
m2

. For convenience, we put m1 = m2 = m.

2.2. Integration Operational Matrix

Computing
∫ T

0 Φi(s)ds follows to yield

∫ T

0
Φi(s)ds =


0 0 ≤ t < (i− 1)h,
t− (i− 1)h (i− 1)h ≤ t < ih,
h ih ≤ t < T.

(12)

From [34], we have: ∫ t

T
Φ(t)dt =

∫ 0

T
Φ(t)dt +

∫ t

0
Φ(t)dt, (13)

where the operational matrix of integration is given by

P = −h
2


1 0 0 · · · 0
2 1 0 · · · 0
2 2 1 · · · 0
...

...
...

. . .
...

2 2 2 · · · 1


m×m

Φ(t) (14)

Therefore, each function f (t) can be expressed as∫ t

T
f (s)ds '

∫ t

T
FTΦ(τ)dτ

= −FT PTΦ(t)
(15)

3. Stochastic Integration Operational Matrix

The Itô integral of each single BPF φi(t) can be computed as follows:

∫ t

0
φi(s)dB(s) =


0 0 ≤ t < (i− 1)h,
B(t)− B((i− 1)h) (i− 1)h ≤ t < ih,
B(ih)− B((i− 1)h) ih ≤ t < T.

(16)
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Now by expressing
∫ T

0 φi(s)dB(s) in terms of the BPFs, we have

∫ T

0
φi(s)dB(s) ' (B(ih/2)− B((i− 1)h/2)φi(t) + (B(ih)− B((i− 1)h))

m

∑
j=i+1

φj(t). (17)

Therefore, ∫ T

0
Φ(s)dB(s) ' PSΦ(t), (18)

In this case, the stochastic operational matrix of integration can be expressed as follows:

PS =


γ1 ρ1 ρ1 · · · ρ1
0 γ2 ρ2 · · · ρ2
0 0 γ3 · · · ρ3
...

...
...

. . .
...

0 0 0 · · · γm


m×m

(19)

where ρi = B(ih)− B((i− 1)h), and i = 1, 2, · · · , m− 1; γj = B(ih/2)− B(i− 1)h/2), and
j = 1, 2, · · · , m.

Therefore, the Itô integral of every function f (t) can be manipulated as follows:∫ t

T
f (s)dBs '

∫ t

T
FTΦ(τ)dτ

= −FT PT
S Φ(t)

(20)

By approximating the functions Y(t), g(t, s), z1(t, s), z2(t, s) via BPFs by relations, we
have

Y(t) ' YTΦ(t) = ΦTY,
gi(t, s) ' ΨT(t)GiΦ(s) = ΦT(t)GiΦ(s), i = 0, 1
zi(t, s) ' ΨT(s)ZiΦ(t) = ΦT(t)ZiΦ(s), i = 1, 2

.

4. Implementation in Stochastic Integral Equation

Using the block-pulse operational matrices, we first find the collocation approximation
to the functions z1(t, s) and z2(t, s) for drift and diffusion, respectively, which are defined by

z1(t, s) = Z(t, s), z2(t, s) = Z(t, s) (21)

From Equations (4) and (21), we obtain

Y(t) = ψ(t) +
∫ T

t
[G0(t, s)Y(s) + G1(t, s)z1(t, s)]ds−

∫ T

t
z2(t, s)dB(s), (22)

andz1(t, s) := Z
(

t, s, ψ(t) +
∫ T

t [G0(t, s)Y(s) + G1(t, s)z1(t, s)]ds−
∫ T

t z2(t, s)dB(s)
)

z2(t, s) := Z
(

t, s, ψ(t) +
∫ T

t [G0(t, s)Y(s) + G1(t, s)z1(t, s)]ds−
∫ T

t z2(t, s)dB(s)
) (23)

We can approximate z1(t, s) and z2(t, s), and we can assume that g(t, s) is a function
of two variables via the block-pulse series as follows:

Y(t) ' YTΦ(t) = ΦTY,
z1(t, s) ' z̃1(t, s) = ΦT(t)ZT

1 Φ(s) = ΦT(t)Z1Φ(s),
z2(t, s) ' z̃2(t, s) = ΦT(t)ZT

2 Φ(s) = ΦT(t)Z2Φ(s),
gi(t, s) ' g̃i(t, s) = ΦT(t)GiΦ(s), i = 0, 1

(24)
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such that m vectors Z1, Z2, and m×m matrix G are the block-pulse coefficients of z1(t, s)
and z2(t, s) and g(t, s), respectively. By substituting (24) in (22), we obtain∫ T

t
[G0(t, s)Y(s) + G1(t, s)z1(t, s)]ds

'
∫ T

t
[ΦT(t)G0Φ(s)ΦT(t)Y + ΦT(t)G1Φ(s)ΦT(t)Z1Φ(s)]ds

= [ΦT(t)G0

∫ T

t
Φ(s)ΦTY + ΦT(t)G1

∫ T

t
Φ(s)ΦT(t)Z1Φ(s)]ds

' ΦT(t)G0

∫ T

t
Φ(s)ΦTYds + ΦT(t)G1

∫ T

t
ΦT(t)Z̃1Φ(t)ds

' [−ΦT(t)G0Φ(s)Y−ΦT(t)G1Φ(s)ΦT(t)Z̃1PΦ(s)]

(25)

In addition, the Itôs integral of (22) can be written as∫ T

t
z2(t, s)dB(s) '

∫ T

t
ΦT(t)Z2Φ(s)dB(s) =

∫ T

t
ΦT(t)Φ(s)Z2dB(s)

' ΦT(t)
∫ T

t
Z̃2Φ(s)dB(s) ' −Φ(t)Z̃2PsΦ(s)

(26)

where Z̃1 = diag (Z1), and Z̃2 = diag(Z2). By substituting (25) and (26) into (23), as well
as by replacing ' with =, we obtain{

ΦT(t)Z1Φ(s) = Z
(
t, s, ψ(t)−ΦT(t)G1Z̃1PΦ(s) + ΦT(t)Z̃2PsΦ(s)

)
,

ΦT(t)Z2Φ(s) = Z
(
t, s, ψ(t)−ΦT(t)G1Z̃1PΦ(s) + ΦT(t)Z̃2PsΦ(s)

)
.

(27)

The collocation method with (27), in m nodes tj, sj = j
m+1 , j = 1, ..., m, is used for

determination of the following:{
ΦT(tj)Z1Φ(sj) = Z

(
tj, sj, ψ(t)−ΦT(tj)G1Z̃1PΦ(sj) + ΦT(tj)Z̃2PsΦ(sj)

)
,

ΦT(tj)Z2Φ(sj) = Z
(
tj, sj, ψ(t)−ΦT(tj)G1Z̃1PΦ(sj) + ΦT(tj)Z̃2PsΦ(sj)

)
.

(28)

After solving the nonlinear system (28), we obtain Z1 and Z2. Then, the result Y(t) of
(22) is approximated as follows:

Y(t) ' ym(t) =
1

(1 + G0)
(ψ(t)−ΦT(t)G1Z̃1PΦ(s) + ΦT(t)Z̃2PsΦ(s)). (29)

5. General Error Estimate

In this section, we will provide the general estimate used to determine the convergence.
We shall first rely the following presumptions:

(I) If g : [0, T]2 ×Rn ×Rn → Rn, there exists a constant L such that

|g(t1, s1, y, z)− g(t2, s2, y, z)| ≤ L(|t1 − t2|1/2 + |s1 − s2|1/2),

s1, s2 ∈ (max{t1, t2}, T], y, z ∈ Rn, |g(·, ·, 0, 0)| ≤ L,

with respect to y and z, and g possesses first and second partial derivatives that are both
continuous and uniformly bounded.

(II) If g : [0, T]×Rn ×Rn → Rn, there exists a constant L such that

E[
∫ T

0
|ψ(t)|2dt +

∫ T

0

∫ T

t
|g(t, s, 0, 0)|2dsdt]1/2 ≤ L

(III) There exists a constant p0 > 2 and L such that, for continuous process ψ(·), there is an
F-adapted value.
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E|ψ(t)− ψ(s)|2 ≤ L|t− s|, t, s ∈ [0, T],

E|Dθ1 ψ(t)− Dθ2 ψ(t)|2 ≤ L|θ1 − θ2|, 0 ≤ θ1, θ2 ≤ t ≤ T,

sup
0≤θ1≤θ2≤T

E[|ψ(t)|2p0 + |Dθ1 ψ(t)|2p0 + |Dθ1 Dθ2 ψ(t)|p0 ] ≤ L2p0 ,

The regularity of (Y(·), Z(·, ·)) (Theorem 3.7 and 4.1 in [5]) provide the following
result of well-posedness of the BSVIE.

Theorem 1. A unique solution (Y(·), Z(·, ·)) to the BSIVE is admissible under assumptions
(I)–(III). In addition, the following estimate holds:

E
∫ T

0
|Y(t)|2dt +E

∫ T

0

∫ T

t
|Z(t, s)|2dsdt

≤ C

{
E
∫ T

0
|ψ(t)|2dt +E

∫ T

0

(∫ T

t
|g(t, s, 0, 0)|ds

)2

dt

}
,

n

∑
i=1

E
{∫ T

0
|Di

rY(t)|2dt +
∫ T

0

∫ T

t
|Di

rZ(t, s)|2dsdt
}

≤ CE
{∫ T

0
|ψ(t)|2dt +

n

∑
i=1

∫ T

0
|Di

rψ(t)|2dt +E
∫ T

0

(∫ T

t
|g(t, s, 0, 0)|ds

)2

dt

}
, r ∈ [0, T]

(30)

Furthermore, the following BSVIE has an adapted solution (Di
rY(·), Di

rZ(·, ·)):

Di
rY(t) = Di

r(ψ(t)) +
∫ T

t

(
ψy(t, s, Y(s), Z(t, s))Di

rY(s)

+ψz(t, s, Y(s), Z(t, s))Di
rZ(t, s)

)
ds−

∫ T

r
Di

rZ(t, s)dB(s), t ∈ [r, T]

Additionally, for each 0 ≤ t < u ≤ T, 1 ≤ i ≤ n.

Zi(t, u) = Di
u(ψ(t)) +

∫ T

u

(
gy(t, s, Y(s), Z(t, s))Di

uY(s)

+gz(t, s, Y(s), Z(t, s))Di
uZ(t, s)

)
ds−

∫ T

u
Di

uZ(t, s)dB(s), t ∈ [r, T]
(31)

The convergence speed is calculated using the following result:

Lemma 1. For each t, t0 ∈ [0, T], it holds under assumptions (I)–(III) that

E|Y(t)−Y(t0)|2 +E
∫ T

t∨t0

|Z(t, s)− Z(t0, s)|2ds ≤ C|t− t0|, (32)

where C is a constant.

Proof. Assume that t0 < t. Under the assumptions (Corollary 3.6 in [5]) and (I)–(III),
we have

E|Y(t)−Y(t0)|2 +E
∫ T

t
|Z(t, s)− Z(t0, s)|2ds

≤ C
{
E|ψ(t)− ψ(t0)|2 +E

(∫ t

t0

|g(t0, s, Y(s), Z(t0, s))|ds
)

+E
(∫ T

t
|g(t, s, Y(s), Z(t, s))− g(t0, s, Y(s), Z(t, s))|ds

)2

+E
∫ t

t0

|Z(t0, s)|2ds

}

≤ C|t− t0|+ CE
∫ t

t0

(|Y(s)|2 + |Z(t0, s)|2)ds.

(33)
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In order to apply the assumptions (Corollary 3.6 in [5]) to E|Y(·)|2, one must first
apply the following:

E|Y(t)|2 +E
∫ T

t
|Z(t, s)|2ds ≤ C

{
E|ψ(t)|2 +E

(∫ T

t
|g(t, s, Y(s), 0)|ds

)2
}

≤ C + CE
∫ T

t
|Y(s)|2ds.

Grownwall’s inequality leads to the conclusion that sup0≤t≤T E|Y(t)|2 ≤ C. Thus,

E
∫ t

t0

|Y(s)|2ds ≤ C|t− t0|. (34)

We can obtain this by setting t = t0 in (31) with (Corollary 3.6 in [5]) and (30).

E|Z(t0, u)|2 +E
∫ T

u
|DuZ(t0, s)|2ds

≤ C

{
E|Duψ(t0)|2 +E

(∫ T

t
|g(t0, s, Y(s), Z(t0, s)DuY(s))|ds

)2
}

≤ C
{
E
∫ T

u
(|DuY(s)|2)ds

} (35)

Now, (33) produces the following when combined with (34) and (35):

E|Y(t)−Y(t0)|2 +E
∫ T

t
|Z(t, s)− Z(t0, s)|2ds ≤ C|t− t0|,

which is (32).

6. Numerical Results

In this section, we will provide two numerical examples to illustrate the results
obtained in Sections 3 and 4. All computations were carried out in MATLAB R2018a, with
a precision of 2.22× 10−16. To compare the values of the approximate and exact solutions
at selected points, we used the definition of the absolute error, which is as follows:

||E||∞ = max
1≤i≤m

|Xi − X̄i|, (36)

where Xi represents the exact solution, and X̄i represents the approximate solution.

Example 1 ([24]). The Hull–White Model: Hull and White investigated Vasicek model extensions
that perfectly fit the basic term structure in 1990. A single-factor interest rate model is the Hull–
White model. The short interest rate is assumed to have a normal distribution in this model,
and there is no arbitrage assumption. The short interest rate, therefore, satisfies the stochastic
differential equation.

dy(t) = k(θ(t)− y(t))dt + σdB(t), (37)

B(t) is a Brownian motion, and k, σ > 0. The exact solution of Equation (37) for 0 ≤ s < t ≤ T
is provided by

y(t) = y(s)ek(t−s) + k
∫ t

s
θ(u)e−k(t−u)du + σ

∫ t

s
e−k(t−u)dB(u) (38)

The results obtained for k = 0.5, σ = 0.2, and θ(t) = 4 sin(t) in this example are given in
Table 1. The approximate and exact solutions’ graphs and the absolute error for t = 0.7; k = 0.6,
σ = 0.8, m = 100, N1 = 20, N2 = 200, and n = 6 are plotted in Figures 1–3, respectively.
The accuracy of the generalized absolute error in Table 1 depends on the parameters Xi. The error
decreases as time steps increase.
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Table 1. Mean, standard deviation, and mean confidence interval for error.

ti χ̄E SE
95% Confidence Interval for Mean of E

Lower Upper

0.1 4.7301 × 101 3.5542 × 102 3.2465 × 101 6.0964 × 101

0.2 8.0502 × 102 8.7651 × 103 6.9504 × 102 9.3073 × 102

0.3 6.4216 × 102 6.2117 × 103 5.6333 × 102 8.7805 × 102

0.4 4.2367 × 102 5.7564 × 103 3.5854 × 102 7.8163 × 102

0.5 2.5967 × 102 4.6054 × 103 1.0986 × 102 4.4201 × 102

0.6 4.6031 × 103 2.1570 × 103 3.5834 × 103 7.2932 × 103

0.7 1.4653 × 103 6.6936 × 104 1.1032 × 103 2.1764 × 103

0.8 3.4158 × 104 1.7324 × 104 2.5766 × 104 5.0992 × 104

0.9 6.7863 × 105 3.5786 × 105 5.1752 × 105 9.9939 × 105
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Figure 1. The graph of absolute error function for Example 1.
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Figure 2. The trajectory of the approximate solution and exact solution of Example 1.
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Figure 3. Variation trend of absolute error of Example 1.

Example 2 ([24]). Consider the following nonlinear stochastic Volterra integral equation

y(t) = y(0) +
∫ t

0
ry(s)(K− y(s))ds +

∫ t

0
βy(s)dB(s), t, s ∈ [0, 0.9], (39)

with the exact solution

y(t) =
y(0) exp(βB(t) + (rK− 1

2 β2)t)

1 + ry(0)
∫ t

0 (exp βB(s) + (rK− 1
2 β2)s)ds

. (40)

Assume that y(0) = 0.5, r = 0.7, K = 2, n = 10, β = 0.4, T = 0.9, and t, s ∈ [0, 0.9].
Table 2 displays the numerical results for various values of m, including the absolute error for
the figures—both exact and approximate—for the parameters y(0) = 0.4, r = 1, K = 0.8,
n = 100, β = 1, and T = 7. Figures 4–6 show the exact and approximate solutions, as well as the
variation trend.
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Figure 4. The graph of absolute error function for Example 2.
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Figure 5. Variation trend of absolute error of Example 2.
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Figure 6. The trajectory of the approximate solution and exact solution of Example 2.

Table 2. Mean, standard deviation, and mean confidence interval for error.

ti χ̄E SE
95% Confidence Interval for Mean of E

Lower Upper

0.1 3.3385 × 104 4.7213 × 105 2.0298 × 104 4.6472 × 104

0.2 4.8302 × 103 4.9320 × 104 3.8560 × 103 7.1508 × 103

0.3 6.3021 × 103 7.0513 × 104 5.6432 × 103 9.0261 × 103

0.4 2.5038 × 102 1.2407 × 103 1.0653 × 102 3.8054 × 102

0.5 3.3707 × 102 1.5796 × 103 2.223 × 102 5.3671 × 102

0.6 6.1139 × 102 8.1845 × 103 6.0452 × 102 9.7731 × 102

0.7 1.2392 × 101 1.3858 × 102 1.0902 × 101 1.5776 × 101

0.8 2.1240 × 101 1.4726 × 102 1.7162 × 101 2.532 × 101

0.9 2.3683 × 101 1.6812 × 102 1.8664 × 101 2.8703 × 101
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7. Conclusions

The current study focuses on the so-called Type-II BSVIEs, where the coefficient g(·) is
dependent on both t and s, and g(·) depends not only on Z(t, s), but also on Z(s, t). This
paper proposed a collocation approximation method to predict an unknown function. By
implementing Newton’s method, we solve the BSVIEs using block-pulse functions and the
corresponding stochastic operational matrix of integration. In addition, we have included
examples that demonstrate estimate analysis while highlighting the separate convergence of
the two approximating sequences. We also measured the solutions against the values of the
exact and approximate solutions at a few selected locations using a specified absolute error.
According to the collocation approximation solutions, the issues raised in the work might
be applied to Type-I BSVIEs. However, this strategy requires an entirely new methodology,
and it is left to future studies to determine the error by computing conditional expectations.
It might be the focus of some future research.
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