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Abstract: In this article, we investigate the utilization of Riemann–Liouville’s fractional integral and
the Caputo derivative in the application of the Optimal Auxiliary Function Method (OAFM). The
extended OAFM is employed to analyze fractional non-linear coupled ITO systems and non-linear
KDV systems, which feature equations of a fractional order in time. We compare the results obtained
for the ITO system with those derived from the Homotopy Perturbation Method (HPM) and the New
Iterative Method (NIM), and for the KDV system with the Laplace Adomian Decomposition Method
(LADM). OAFM demonstrates remarkable convergence with a single iteration, rendering it highly
effective. In contrast to other existing analytical approaches, OAFM emerges as a dependable and
efficient methodology, delivering high-precision solutions for intricate problems while saving both
computational resources and time. Our results indicate superior accuracy with OAFM in comparison
to HPM, NIM, and LADM. Additionally, we enhance the accuracy of OAFM through the introduction
of supplementary auxiliary functions.

Keywords: optimal auxiliary function method (OAFM); riemann–liouville integral; modified
riemann–liouville derivatives; time fractional coupled ITO system; non-linear KDV system of time
fractional order; Caputo fractional derivative

MSC: 35R11; 35G50

1. Introduction

Fractional calculus has applications in several areas, including dynamical system
manipulation, electrical community optics and signal processing, which may be successfully
described using linear or non-linear fractional differential equations (FDEs). The concept
of fractional derivatives and integrals was first introduced by Riemann and Liouville [1].
In the past 200 years, it has gained significant scientific attention globally in theory and
applications with research on integrals and derivatives of fractional orders. In particular,
some of the areas include remarkable applications in a variety of technical and medicinal
fields.
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The discipline of fractional calculus has seen a large number of innovative and in-
triguing models develop throughout time [2–4]. In order to demonstrate various scientific
phenomena in the fields of fluid mechanics, plasma physics, solid-state physics, population
dynamics, chemical kinetics, nonlinear optics, soliton theory, protein chemistry, etc, many
of the above-mentioned applied science fields [5–11] involve a variety of processes for
which nonlinear models are essential. The most elected type of equations which have been
used are partial differential equations (PDEs), however, it makes practical sense to model a
variety of complicated processes in applied sciences by using fractional partial differen-
tial equations (FPDEs) due to the fractional nature and allowable generalisation. The El
Nino-Southern oscillation mannequin and groundwater oat are two significant models that
are represented by FPDEs. These extended FPDE mathematical models underpin why it is
crucial to use them for understanding natural processes. Researchers have attempted to
numerically and analytically solve these models in order to analyse the precise dynamics
of the stated processes [12,13]. There are a few numerical and analytical techniques which
have been recommended for such problems, e.g., the control volume scheme, Laplace
transformation method, finite element method (FVM), a domain decomposition method
(ADM) [5], variation iteration method (VIM), homotopy analysis method (HAM) [14],
and many more. These methods have many advantages but are still not applicable for
this class of problem. The suggested method presented by Vasile Marinca is a powerful
technique called the optimal auxilury function method (OAFM) [6]. This approach was
developed to use minimal processing and obtain an accurate result after just one repe-
tition. Fractional order issues are also solved using numerical techniques. S. Momani
et al. compared linear and differential fractional order issues numerically. The numerical
techniques for resolving partial differential equations of a fractional order were expanded
by Obedit et al. The Korteweg-de Vries (KDV) equation has been used in a wide range of
physical processes as a model for the development and interaction of nonlinear waves. It
was initially developed as an evolution equation for a shallow water channel where it is
one-dimensional, with a small-amplitude and long surface gravity waves [15,16]. More
recently, the KDV equation may be found in a wide range of additional physical contexts,
such as collision-less hydro-magnetic waves, stratified internal waves, ion-acoustic waves,
plasma physics, lattice dynamics, and more. Some quantum mechanical theoretical physics
events can be explained using the KDV model. It serves as a model for mass transport in
fluid dynamics, aerodynamics, and continuum mechanics as well as the formation of shock
waves, solitons, turbulence, boundary layer behaviour, and many more phenomena. Since
all of the physical events are non-conservative, fractional differential equations may be
used to explain them. However, the formulation of fractional differential equations (FDEs)
as well as their solutions have grown to be important mathematical-physical issues [17,18].
The FDEs are the fractional generalisation of ordinary and partial differential equations. It
is a very efficient and effective tool, which is not affected by any small or large parameter
changes as with the perturbation method; it also controls error management. Furthermore,
it deals with linear and non-linear problems without any limitation and loss of generality.
This method was applied by many researchers for solutions of different types of differential
equations [19–22].

In the recent past, the modified form of an optimal auxiliary function to the PDEs has
been utilised for the solution of Lax’s seventh order KDV and the Sawada-Kotera equation
which was introduced by Laiq Zada et al. [23]. The same problem has been solved by Rashid
Nawaz by converting it to a fractional order and it was utilised for higher dimensions [24].
Several recent methods of fractional differential equations and their applications were
studied and investigated by many researchers, see [25–29].

The objective of this article is to extend OAFM to the solution of fractional non-linear
coupled ITO system and time fractional non-linear KDV system. The ITO system is quite
sophisticated and was introduced by Masaaki Ito. In the present work, OAFM has been
extended to the solution of fractional non-linear coupled ITO systems and non-linear KDV
systems of time fractional order equations. The following suggested ITO system will be very
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helpful to understand the continuous quantum measurement and estimation. Consider the
following FPDE system,

∂γσ(v, ψ)

∂ψγ
− ∂ν(v, ψ)

∂v
= 0, 0 < γ ≤ 1 ,

∂βν(v, ψ)

∂ψβ
+ 2
(

∂3ν(v, ψ)

∂v3 + 3σ(v, ψ)
∂ν(v, ψ)

∂v
+ 3 (v, ψ)

∂σ(v, ψ)

∂v

)
+ 12ϑ(v, ψ)

∂ϑ(v, ψ)

∂v
= 0,

∂ηϑ(v, ψ)

∂ψη − ∂3ϑ(v, ψ)

∂v3 − 3σ(v, ψ)
∂ϑ(v, ψ)

∂v
= 0.

(1)

Coupled with the initial conditions

σ0(v, 0) =
dv

3z
, ν0(v, 0) = −d2v2

2z2 , ϑ0(v, 0) = 0. (2)

The non-linear KDV system of time fractional order equation is expressed as

∂γσ(v, ψ)

∂ψγ
+ d

∂3σ(v, ψ)

∂v3 + 6dσ(v, ψ)
∂σ(v, ψ)

∂v
− 6ν(v, ψ)

∂ν(v, ψ)

∂v
= 0,

∂βν(v, ψ)

∂ψβ
+ d

∂3ν(v, ψ)

∂v3 + 3dσ(v, ψ)
∂ν(v, ψ)

∂v
= 0.

(3)

Additionally, coupled with the following initial conditions

σ(v, 0) = χ2sech2
( z

2
+

χv

2

)
ν(v, 0) =

√
d
2

χ2sech2
( z

2
+

χv

2

) (4)

The contents of this article are organised as follows. In Section 2, the basic terminolo-
gies are discussed. The section thereafter, Section 3, investigates the suggested scheme for
obtaining the solutions of the current model. In Section 4, different problems are tested
while the results are discussed and the conclusions are given in Section 5.

2. Preliminaries

To understand the concept of OAFM, the following definitions are the basic terminolo-
gies required [7,24,30].

Definition 1. Let f (v) be a piece-wise continous (0, ∞) and integrable on any subinterval, then
the Riemann–Liouville (R-L) fractional integral of order γ is defined as

Iγ
v f (v) =

 1
Γ(γ)

v∫
0
(v− r) γ−1 f (r)dr i f γ > 0, v > 0,

f (r) i f γ = 0,
(5)

where gamma function is the special function denoted by Γ.

Definition 2. The fractional derivative of a function f of order γ in the Riemann–Liouville sense
is defined as

Dγ
v f (v) =

1
Γ(q− γ)

dq

dvq

v∫
0

(v− r)q−γ−1 f (r) dr i f γ > 0, v > 0. (6)
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Here, q is a non negative integer which satisfies

q− 1 < γ ≤ q.

Definition 3. The fractional derivative of order γ in the Caputo sense, is defined as

Dγ
r f (v) =

{
Iq−γ

[
∂q

∂rq f (r)
]

i f q− 1 < γ ≤ q, q ∈ N
dγ

drγ f (r) i f γ ∈ N.
(7)

where
q ∈ N, v > 0, r ≥ −1 and ϕ ∈ Tr.

3. Mathematical Model Formulation

The general form of the fractional order partial differential equation is given as

∂γσ(v, ψ)

∂ψγ
= ℘(v, ψ) + M(σ(v, ψ)) (8)

coupled with the boundary conditions

Dγ−k
0 σ(v, 0) = hk(v). (k = 0, 1, ..........., j− 1), Dγ−n

0 σ(v, 0) = 0, j = [γ].
Dk

0σ(v, 0) = gk(v). (k = 0, 1, ..........., j− 1) Dn
0 σ(v, 0) = 0, j = [γ].

(9)

The partial derivative ∂γ

∂ ψγ indicates the Caputo or R-L operator, where σ(v, ψ) stands
for unknown function and ℘(v, ψ) stands for known analytic function. The following
comprise the construction of the proposed method listed in seven steps:

Step 1: To find the estimated result of Equation (8), two component forms will be
taken under consideration, which can be given as

σ̃(v, ψ) = σ0(v, ψ) + σ1(v, ψ, Ti), i = 1, 2, 3, . . . , `. (10)

Step 2: By putting Equation (10) in Equation (8), we obtain the solution of the zero-
and first-order, which is given as

∂γσ0(v, ψ)

∂ψγ
+

∂γσ1(v, ψ)

∂ψγ
+ ℘(v, ψ) + M

[
∂γσ0(v, ψ)

∂ψγ
+

∂γσ1(v, ψ), Ti
∂ψγ

]
= 0. (11)

Step 3: With the help of linear equations, we obtain an initial approximation of
the form given below because non-linear equations are complicated and obtaining their
solution is not possible, so we take the linear part and find its solution, then use that
solution as our initial estimation.

∂γσ0(v, ψ)

∂ψγ
+ ℘(v, ψ) = 0. (12)

Using the inverse operator, we obtain σ0(v, ψ) as the following,

σ0(v, ψ) = ℘(v, ψ). (13)

Step 4: The expanded form of the non-linear term presented in Equation (11) is

M
[

∂γσ0(v, ψ)

∂ψγ
+

∂γσ1(v, ψ, Ti)

∂ψγ

]
= M[σ0(v, ψ)] +

∞

∑
k=1

σk
1

k!
N(k)[σ0(v, ψ)]. (14)
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Step 5: To interpret Equation (14) smoothly and increase the convergence of the first-
order approximation, we introduce an expression which is given below

∂γσ1(v, ψ, Ti)

∂ψγ
= −B1[σ0(v, ψ)]M[σ0(v, ψ)]− B2

[
σ0(v, ψ), Tj

]
, (15)

where B1 and B2 are the auxiliary functions depending on σ0(v, ψ) and the convergence
control parameter Ti and Tj, where i = 1, 2, 3, 4, . . . , ` and j = `+ 1, `+ 2, . . . , k.

Remark 1. B1 and B2 are of the form σ0(v, ψ) or M[σ0(v, ψ)] or the combination of both σ0(v, ψ)
and M[σ0(v, ψ)] but they are not unique.

For example, if σ0(v, ψ) or M[σ0(v, ψ)] is a polynomial function, then B1 and B2 are sums
of polynomial functions; if σ0(v, ψ) or M[σ0(v, ψ)] is an exponential function, then B1 and B2
are sums of exponential functions; if σ0(v, ψ) or M[σ0(v, ψ)] is a trigonometric function, then B1
and B2 are sums of trigonometric function and so on. In a special case, M[σ0(v, ψ) = 0], then it is
clear that σ0(v, ψ) is an exact solution.

Step 6: Using the inverse operator (Definition 1), after the substitution of the auxiliary
function to Equation (15), we achieve the first-order solution σ1(v, ψ) by OAFM.

Step 7: For finding the square of the residual error to obtain the values of Ti and Tj, we
use either the Collocation method, Galerkin’s method, Ritz method, or the Least Square
method.

B
(
Ti, Tj

)
=

ψ∫
0

∫
Ω

R2(v, ψ; Ti, Tj
)
dvdψ. (16)

Here, R is the residual and it is defined as follows:

R
(
v, ψ, Ti, Tj

)
=

∂γσ̃(v, ψ), Ti, Tj

∂ψ
+ ℘(v, ψ) + M

[
σ
(
v, ψ, Ti, Tj

)]
i = 1, 2, 3, . . . , `, j = `+ 1, `+ 2, `+ 3, . . . , k.

(17)

For the convergence control parameter, the following system will occur

∂J
∂T1

=
∂J

∂T2
=

∂J
∂T3

=
∂J
∂Ti

= 0, i = 1, 2, ... (18)

4. Applications

The motivation of this part is to take some examples to show the effectiveness and
accuracy of the suggested method in the previous section.

Problem 1:

Take the time-fractional ITO system [31] for 0 < γ ≤ 1, 0 < β ≤ 1 and 0 < η ≤ 1 to be

∂γσ(v,ψ)
∂ψγ − ∂ν(v,ψ)

∂v = 0,
∂βν(v,ψ)

∂ψβ + 2
(

∂3ν(v,ψ)
∂v3 + 3σ(v, ψ) ∂ν(v,ψ)

∂v + 3ν(v, ψ) ∂σ(v,ψ)
∂v

)
+ 12ϑ(v, ψ) ∂ϑ(v,ψ)

∂v = 0,
∂ηϑ(v,ψ)

∂ψη − ∂3ϑ(v,ψ)
∂v3 − 3σ(v, ψ) ∂ϑ(v,ψ)

∂v = 0.

(19)
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coupled with the subsidiary boundary conditions

σ0(v, 0) =
dv

3z
, ν0(v, 0) = −d2v2

2z2 , ϑ0(v, 0) = 0. (20)

An accurate solution of Equation (19) when γ = β = η = 1 is

σ(v, ψ) =
dv

3(3bψ + z)
, ν(v, ψ) =

d2v2

2(3bψ + z)2 , ϑ(v, ψ) = 0. (21)

In Equation (19), we consider linear and non-linear terms as{
L(σ(v, ψ)) =

∂γσ(v,ψ)
∂ψγ

M(σ(v, ψ)) = − ∂ν(v,ψ)
∂v

L(ν(v, ψ)) =
∂βν(v,ψ)

∂ψβ

M(ν(v, ψ)) = 2
(

∂3ν(v,ψ)
∂v3 + 3σ(v, ψ) ∂ν(v,ψ)

∂v + 3ν(v, ψ) ∂σ(v,ψ)
∂v

)
+

12ϑ(v, ψ) ∂ϑ(v,ψ)
∂v ,

L(ϑ(v, ψ)) =
∂η σ((v,ψ)

∂ψη ,

M(ϑ(v, ψ)) = − ∂3ϑ(v,ψ)
∂v3 − 3σ(v, ψ) ∂ϑ(v,ψ)

∂v .

(22)

As stated by the OAFM, the initial condition will help to obtain the zero-order problem.
The zero-order system can be stated as follows

∂γσ(v,ψ)
∂ψγ = 0, σ0(v, 0) = dv

3(3bψ+z) ;
∂βν(v,ψ)

∂ψβ = 0, ν0(v, 0) = d2v2

2(3bψ+z)2 ,
∂ηϑ(v,ψ)

∂ψη = 0, ϑ0(v, 0) = 0.

(23)

By using Definition 1, we obtain the zero-order solution for the system (23) as,

σ0(v, ψ) =
dv

3(3bψ + z)
. ν0(v, ψ) =

d2v2

2(3bψ + z)2 . ϑ0(v, ψ) = 0. (24)

Then, by using Equation (24) and substituting it into Equation (22), the non-linear
terms become

M(σ0(v, ψ)) = − ∂v0(v,ψ)
∂v ,

M(ν0(v, ψ)) = 2
(

∂3ν0(v,ψ)
∂v3 + 3σ0(v, ψ) ∂ν0(v,ψ)

∂v + 3ν0(v, ψ) ∂σ0(v,ψ)
∂v

)
+ 12ϑ(v, ψ) ∂ϑ0(v,ψ)

∂v ,

M(ϑ0(v, ψ)) = − ∂3ϑ0(v,ψ)
∂v3 − 3σ0(v, ψ) ∂ϑ0(v,ψ)

∂v .

(25)

Applying OAFM, the first order approximation can be obtained as

∂γσ1(v,ψ)
∂ϑγ = −B1[σ0(v, ψ), Tι]M[σ0(v, ψ)]− B2

[
σ0(v, ψ), Tj

]
.

∂βν1(v,ψ)
∂ϑβ = −B3[ν0(v, ψ), Tι]M[ν0(v, ψ)]− B4

[
ν0(v, ψ), Tj

]
.

∂ηϑ1(v,ψ)
∂ϑη = −B5[ϑ0(v, ψ), Tι]M[ϑ0(v, ψ)]− B6

[
ϑ0(v, ψ), Tj

]
.

(26)
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Thus, we obtain B1, B2, B3, B4, B5, B6, using the initial approximation,

B1 = −
(

T1

(
1− 3bψ1

z +
9(d2)ψ2

z2 − 27(d3)ψ3

z3 +
81(d4)ψ4

z4 − 243(d5)ψ5

z5

))
,

B2 = 0,

B3 = −
(

T2

(
1− 9dψ

2z + 18d2ψ2

z2 − 135d3ψ3

2z3 + 243d4ψ4

z4 − 1701d5ψ5

2z5

))
,

B4 = 0,
B5 = −T3,
B6 = 0.

(27)

From here, if we use Equations (25) and (27) and then substituting them in Equa-
tion (26), we obtain the first approximation as

σ1(v, ψ) =
b2T1ψγ(−z+3dψ)(z2−3dzψ+9d2ψ2)(z2+3bzψ+9d2ψ2)v

z7Γ(1+γ)
.

ν1(v, ψ) =
3bdT3ψγ(−2z5+9dz4ψ−36d2z3ψ2+135d3z2ψ3−486b4dzψ4+1701d5ψ5)v2

2z8Γ(1+γ)
.

ϑ1(v, ψ) = 0.

(28)

By adding Equations (27) and (28), we obtain the first-order approximate solution as

σ̃(v, ψ) = σ0 (v, ψ) + σ1 (v, ψ, T1).
ν̃ (v, ψ) = ν0 (v, ψ) + ν1 (v, ψ, T2).
ϑ̃ (v, ψ) = ϑ0 (v, ψ) + ϑ1 (v, ψ, T3).

(29)

σ̃(v, ψ) = bv
3(3bψ+z) +

d2T1ψγ(−z+3dψ)(z2−3dzψ+9b2ψ2)(z2+3dzψ+9bdψ2)v

z7Γ(1+γ)
.

ν̃ (v, ψ) = d2v2

2(3bψ+z)2 +
3d3T2

γ(−2z5+9dz4ψ−36d2z3ψ2+135d3z2ψ3−486d4zψ4+1701d5ψ5)v2

2z8Γ(1+γ)
.

ϑ̃ (v, ψ) = 0.

(30)

The results of Problem 1 are presented in Tables 1–3, and visualized in Figures 1–8.

Table 1. Convergence control parameters for different values of γ for Problem 1.

γ = 1 γ = 0.75 γ = 0.5

T1 1.00000000000000005 1.1106291281240243 1.57032523295656778

T2 −0.999999993169958 −1.0987316755026958 −1.5570896342028568

Table 2. Comparison of absolute error obtained by the OAFM solution with the HPM and NIM
solution σ(v, ψ) for Problem 1, when γ = β = 1 and z = 9.

(v, ψ)
OAFM

Solution at
γ = 0.5

OAFM
Solution
γ = 0.75

σ(v, ψ)
γ = 1 Exact Solution

Absolute
Error HPM

[31]

Absolute
Error NIM [31]

Absolute
Error OAFM

(0.1,0.1) 0.0030652 0.00344689 0.0035843 0.0035842 4.42497 × 10−9 2.90082 × 10−9 1.63888 × 10−13

(0.3,0.1) 0.0091677 0.01034448 0.0107526 0.0107529 1.32731 × 10−8 8.70278 × 10−9 4.91643 × 10−13

(0.5,0.1) 0.0151789 0.01723468 0.0179217 0.017927 2.21288 × 10−8 1.45031 × 10−8 8.19489 × 10−13

(0.1,0.2) 0.0027889 0.00328556 0.0034724 0.0034725 6.85856 × 10−8 4.42077 × 10−8 2.03231 × 10−11

(0.3,0.2) 0.0083496 0.00985699 0.0104162 0.0104164 2.05787 × 10−7 1.32697 × 10−7 6.09690 × 10−11

(0.5,0.2) 0.0139345 0.01642709 0.0173665 0.0173617 3.42976 × 10−7 2.21056 × 10−7 1.01633 × 10−11

(0.1,0.3) 0.0026764 0.00315397 0.003356 0.0033679 3.3677 × 10−7 2.13289 × 10−7 3.36787 × 10−10

(0.3,0.3) 0.0078438 0.00946156 0.0101037 0.0101012 1.0121 × 10−6 6.39743 × 10−7 1.01109 × 10−10

(0.5,0.3) 0.0130722 0.01576956 0.016889 0.0168351 1.6865 × 10−6 1.06633 × 10−6 1.68333 × 10−10
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Table 3. Comparison of absolute error obtained by the OAFM solution with the HPM and NIM
solution ν(v, ψ) for Problem 1, when γ = β = 1 and z = 9.

(v, ψ)
OAFM
β= 0.5

OAFM
β= 0.75

ν(v, ψ)
β= 1 Exact Solution Absolute error

HPM [31]
Absolute

Error NIM [31]
Absolute

Error OAFM

(0.1,0.1) −0.000789 −0.000983 −0.000578 −0.000458 3.6876 × 10−11 1.2940 × 10−11 4.8516 × 10−15

(0.3,0.1) −0.003596 −0.008090 −0.005209 −0.005207 3.4567 × 10−10 1.1746 × 10−10 4.3678 × 10−14

(0.5,0.1) −0.009789 −0.013999 −0.015852 −0.014488 9.1597 × 10−10 3.2142 × 10−10 1.2123 × 10−13

(0.1,0.2) −0.000783 −0.000223 −0.000545 −0.000556 5.6445 × 10−10 1.9564 × 10−10 2.7675 × 10−13

(0.3,0.2) −0.002956 −0.045352 −0.004834 −0.007882 5.0767 × 10−9 1.7232 × 10−9 2.4667 × 10−12

(0.5,0.2) −0.008090 −0.009909 −0.001763 −0.001565 1.4450 × 10−8 4.7936 × 10−9 6.8567 × 10−12

(0.1,0.3) −0.000566 −0.000784 −0.000589 −0.000340 2.7556 × 10−9 9.0244 × 10−10 4.4566 × 10−12

(0.3,0.3) −0.009962 −0.006798 −0.007861 −0.004891 2.4233 × 10−8 8.1490 × 10−9 4.0420 × 10−11

(0.5,0.3) −0.07640 −0.098705 −0.013753 −0.012753 6.6770 × 10−7 2.2609 × 10−7 1.1144 × 10−9

-4 -2 0 2 4

-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15

v

sHv,y
L

OAFM
Exact

Figure 1. Two-dimensional plots of exact and OAFM solution σ(v, ψ) of Problem 1.
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Figure 2. Impact of γ on OAFM solution of Problem 1.
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Figure 3. Two-dimensional plots of exact and OAFM solution ν(v, ψ) of Problem 1.
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Figure 4. Impact of β on OAFM solution ν(v, ψ) for Problem 1.
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Figure 5. The OAFM solution of σ(v, ψ) for Problem 1.
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Figure 6. The exact solution of σ(v, ψ) for Problem 1.

Figure 7. The OAFM solution of ν(v, ψ) for Problem 1.

Figure 8. The exact solution of ν(v, ψ) for Problem 1.
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Problem 2:

Consider the non-linear KDV system of time-fractional order equation [32]

∂γσ(v,ψ)
∂ψγ + d ∂3σ(v,ψ)

∂v3 + 6dσ(v, ψ) ∂σ(v,ψ)
∂v − 6ν(v, ψ) ∂ν(v,ψ)

∂v = 0,
∂βν(v,ψ)

∂ψβ + d ∂3ν(v,ψ)
∂v3 + 3dσ(v, ψ) ∂ν(v,ψ)

∂v = 0.
(31)

coupled with the initial conditions

σ(ω, 0) = χ2sech2( z
2 + χω

2
)

ν(ω, 0) =
√

d
2 χ2sech2( z

2 + χω
2
) (32)

An accurate result of Equation (31) when γ = β = 1 is

σ(v, ψ) = χ2sech2
(

z
2 + χv

2 −
dχ3ψ

2

)
.

ν(v, ψ) =
√

d
2 χ2sech2

(
z
2 + χv

2 −
dχ3ψ

2

) (33)

In Equation (32), we take the linear and non-linear terms as L(ν(ω, ψ)) =
∂γσ(v,ψ)

∂ψγ

M(σ(v, ψ)) = d ∂3σ(v,ψ)
∂ω3 + 6dσ(v, ψ) ∂σ(v,ψ)

∂ω − 6ν(v, ψ) ∂ν(v,ψ)
∂ω L(ν(ω, ψ)) =

∂βν(v,ψ)
∂ψβ

M(ν(ω, ψ)) = d ∂3ν(ω,ψ)
∂ω3 + 3dσ(ω, ψ) ∂ν(ω,ψ)

∂ω .

(34)

According to the OAFM, the zero-order problem can be obtained as follows

∂γσ0(v,ψ)
∂ψγ = 0, σ0(v, 0) = χ2sech2( z

2 + χv
2
)
.

∂βν0(v,ψ)
∂ψβ = 0, ν0(v, 0) =

√
d
2 χ2sech2( z

2 + χv
2
) (35)

Using the R-L operator on Equation (35), its solution becomes

σ0(v, 0) = χ2sech2( z
2 + χv

2
)
.

ν0(v, 0) =
√

d
2 χ2sech2( z

2 + χv
2
) (36)

By using Equation (36) and substituting into Equation (34), then the non-linear opera-
tor becomes

M(σ0(v, ψ)) = d ∂3σ0(v,ψ)
∂v3 + 6dσ0(v, ψ) ∂σ0(v,ψ)

∂v − 6ν0(v, ψ) ∂ν0(v,ψ)
∂v ,

M(ν0(v, ψ)) = d ∂3ν0(v,ψ)
∂v3 + 3dσ0(v, ψ) ∂ν0(v,ψ)

∂v .
(37)

According to the OAFM, the first-order problem can be obtained as

∂γσ1(v,ψ)
∂ψγ = −B1[σ0(v, ψ), Tι]M[σ0(v, ψ)]− B2

[
σ0(v, ψ), Tj

]
,

∂βν1(v,ψ)
∂ψβ = −B3[ν0(v, ψ), Tι]M[ν0(v, ψ)]− B4

[
ν0(v, ψ), Tj

]
.

(38)

Now, we select B1 and B2 as according to our initial approximation,

B1 = −(T1), B2 = 0; B3 = −(T2); B4 = 0 (39)
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By using Equation (36), Equation (39) and substituting into Equation (38), then we
obtain the first approximation as

σ(v, ψ) = − 8bT1ψγχ5cosech3(z+vχ)sinh4( 1
2 (z+vχ))

Γ(1+γ)
.

ν(v, ψ) = − 4
√

2d
3
2 T2ψβχ5cosech3(z+vχ)sinh4( 1

2 (z+vχ))
Γ(1+γ)

(40)

By combining Equations (36) and (40), we obtain the first-order approximate solution as

σ̃ (v, ψ) = σ0 (v, ψ) + σ1 (v, ψ, T1).
ν̃ (v, ψ) = ν0 (v, ψ) + ν1 (v, ψ, T2).

(41)

σ̃ (v, ψ) = χ2sech2( z
2 + χv

2
)
− 8bT1ψγχ5cosech3(z+vχ)sinh4( 1

2 (z+vχ))
Γ(1+γ)

ν̃ (v, ψ) =
√

d
2 χ2sech2( z

2 + χv
2
)
− 4
√

2d
3
2 T2ψβχ5cosech3(z+vχ)sinh4( 1

2 (z+vχ))
Γ(1+γ)

.
(42)

The results of Problem 2 are presented in Tables 4–6, and visualized in Figures 9–16.

Table 4. Convergence control parameters for different values of γ for Problem 2.

γ = 1 γ = 0.75 γ = 0.5

T1 −0.999999999999999 −1.1107207345376926 −1.5707944267948912

T2 −1 −1.1107207343495915 −1.5707966767948968

Table 5. Comparison of absolute error obtained by the OAFM solution σ(v, ψ) with the LADM
solution for Problem 2, when γ = 1.

σ(v, ψ)
σ(v, ψ)
γ = 0.5

σ(v, ψ)
γ = 0.75

σ(v, ψ)
γ = 1 Exact Solution Absolute Error

Of LADM σ [32]
Absolute Error

OAFM σ

(−10,0.1) 0.0156829 0.0179767 0.0175892 0.0179965 7.449 × 10−6 3.0897 × 10−7

(−10,0.3) 0.0170899 0.0171973 0.0177834 0.0173434 2.238 × 10−5 2.76564 × 10−6

(−10,0.5) 0.0166835 0.0145741 0.0171706 0.0171892 3.727 × 10−5 7.6875 × 10−6

(0,0.1) 0.1983382 0.1979706 0.1971987 0.1971780 3.975 × 10−5 6.94561× 10−7

(0,0.3) 0.2001215 0.1999765 0.1988955 0.1984591 1.192 × 10−4 6.34342 × 10−6

(0,0.5) 0.2099428 0.2008858 0.1994672 0.1967333 1.987 × 10−4 1.7789 × 10−5

(10,0.1) 0.0067212 0.0025761 0.0024988 0.0024898 1.073 × 10−6 4.75781 × 10−8

(10,0.3) 0.0088613 0.0025981 0.0025785 0.0025789 3.221 × 10−6 4.29878 × 10−7

(10,0.5) 0.0034889 0.0089657 0.0025782 0.0025884 5.368 × 10−6 1.19453 × 10−6

Table 6. Comparison of absolute error obtained by the OAFM solution ν(v, ψ) with the LADM
solution for Problem 2, when β = 1.

(v, ψ)
ν(v, ψ)
β = 0.5

ν(v, ψ)
β = 0.75

ν(v, ψ)
β = 1 Exact Solution Absolute Error

LADM [32]
Absolute Error

of OAFM ν

(−10,0.1) 0.0087814 0.0087883 0.0086781 0.0087792 4.928× 10−7 1.53935× 10−8

(−10,0.3) 0.0083424 0.0084566 0.0035717 0.0086731 1.478× 10−6 1.38052× 10−6

(−10,0.5) 0.0023067 0.0084450 0.0078653 0.0085689 2.464× 10−6 3.82125× 10−6

(0,0.1) 0.0913191 0.0988753 0.0984598 0.0985867 2.629×10−6 3.47491× 10−7

(0,0.3) 0.1023607 0.0996782 0.0976577 0.0991675 7.889× 10−6 3.17276× 10−6

(0,0.5) 0.1005674 0.1008929 0.0989256 0.0997176 1.314× 10−5 8.93948× 10−6

(10,0.1) 0.0018906 0.0013480 0.0012409 0.0012429 7.100× 10−8 2.37791× 10−8

(10,0.3) 0.0017806 0.0012670 0.0016762 0.0012764 2.131× 10−7 2.14889× 10−7

(10,0.5) 0.0012964 0.0012848 0.0012796 0.0012782 3.552× 10−7 5.99366× 10−7
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Figure 9. Two-dimensional plots of exact and OAFM solution σ(v, ψ)of Problem 2.
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Figure 11. Two-dimensional plots of exact and OAFM solution ν(v, ψ) of Problem 2.
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Figure 12. Impact of β on OAFM solution for Problem 2.

Figure 13. The OAFM solution of σ(v, ψ) for Problem 2.

Figure 14. The exact solution of σ(v, ψ) for Problem 2.
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Figure 15. The OAFM solution of ν(v, ψ) for Problem 2.

Figure 16. The exact solution of ν(v, ψ) for Problem 2.

5. Discussion and Conclusions

The extended OAFM was used to solve the time-fractional order equations of the
non-linear KDV system and the time-fractional ITO system. The findings produced by
OAFM for the time-fractional order equation with HPM, NIM, and LADM are presented in
Section 4, with the associated tables and figures for the ITO system and non-linear KDV
system.

In Problem 1, Table 1 shows the different values of T1 and T2, Tables 2 and 3 display the
comparison of the absolute errors of the first-order OAFM solution for σ(v, ψ) and ν(v, ψ)
of time fractional coupled ITO equation with a third-order HPM solution and second-order
NIM solution using γ = β = 1.

Figures 1 and 3 depict 2D plots as a comparison of the exact and OAFM solutions of
σ(v, ψ) and ν(v, ψ) for Problem 1 at γ = 1. Figures 2 and 4 show the impact of γ and β on
OAFM solution, respectively. Figures 5–8 display the 3D plot of the OAFM and the exact
solutions of σ(v, ψ) and ν(v, ψ) for Problem 1 at γ = 1.

In Problem 2, Table 4 shows the different values of T1 and T2 for convergence control
parameters. Tables 5 and 6 show the comparisons of the absolute errors of the first-order
OAFM solution with LADM for σ(v, ψ) and ν(v, ψ) of a coupled non-linear KDV system
of time fractional equations. Additionally, Figures 9 and 11 depict the 2D plots of the
OAFM and the exact solutions of σ(v, ψ) and ν(v, ψ) while Figures 10 and 12 display the
2D plots obtained by the OAFM solution of σ(v, ψ) and ν(v, ψ) for different values of γ
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and β. Figures 13–16 display the 3D plots of the OAFM and the exact solutions of σ(v, ψ)
and ν(v, ψ) for Problem 2 at γ = 1.

In this work, we have carefully proposed a consistent modification to the Optimal
Auxiliary Function Method (OAFM) for addressing fractional differential equations. The
objective of this paper is to apply the OAFM using the Riemann-–Liouville fractional
Integral (R-L) and the Caputo derivative. It is observed that the proposed modification
in OAFM has rendered it more effective, efficient, and influential than before in finding
analytical as well as numerical solutions for a wide range of linear and non-linear fractional
differential equations. The key advantage compared to other approaches is that OAFM
requires fewer computational resources, making it accessible even on machines with modest
specifications. There are currently no limitations on the applicability of this approach,
making it suitable for addressing more complex models arising from real-world challenges
in the future. In summary, it is a quick and efficient method. Based on the tables and
figures presented, we can conclude that the suggested technique is advantageous and
straightforward for solving fractional order partial differential equations.
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