
Citation: Akın, H. Calculation of

Thermodynamic Quantities of 1D

Ising Model with Mixed

Spin-(s, (2t− 1)/2) by Means of

Transfer Matrix. Axioms 2023, 12, 880.

https://doi.org/10.3390/

axioms12090880

Academic Editor: Leonid Plotnikov

Received: 16 August 2023

Revised: 7 September 2023

Accepted: 11 September 2023

Published: 14 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Calculation of Thermodynamic Quantities of 1D Ising Model
with Mixed Spin-(s, (2t − 1)/2) by Means of Transfer Matrix
Hasan Akın 1,2

1 Department of Mathematics, Art and Science Faculty, Harran University, Sanliurfa 63050, Turkey;
akinhasan@harran.edu.tr or hakin@ictp.it

2 The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera, 11, 34151 Trieste, Italy

Abstract: In this paper, we consider the one-dimensional Ising model (shortly, 1D-MSIM) having
mixed spin-(s, (2t− 1)/2) with the nearest neighbors and the external magnetic field. We establish
the partition function of the model using the transfer matrix. We compute certain thermodynamic
quantities for the 1D-MSIM. We find some precise formulas to determine the model’s free energy,
entropy, magnetization, and susceptibility. By examining the iterative equations associated with
the model, we use the cavity approach to investigate the phase transition problem. We numerically
determine the model’s periodicity.
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1. Introduction

Lenz introduced the one-dimensional (1D) classical spin-1/2 Ising model [1]. Com-
pared to the spin-1/2 model, the spin-1 Ising model, also known as the Blume–Capel model,
is more appropriate; hence, it was employed in the investigation of phase transitions in
systems of three states [2,3]. Then, the spin-3/2 Ising model was used to extend the spin-1
Ising model’s conclusions [4,5].

The magnetic characteristics of mixed-spin systems have recently attracted both the-
oretical and experimental attention [6–8]. These systems are especially well suited for
studying the magnetic properties of a particular class of magnetic materials, in addition
to some technical applications [9]. Therefore, mixed-spin Ising models have been exten-
sively studied in the literature lately [10]. In Ref. [11], we classified the disordered phases
corresponding to the Ising model with spin-1 and spin 1/2 on the semi-finite Cayley tree
(CT). Then, on the second-order CT, we examined the phase transition problem of the Ising
model with spin-2 and spin 1/2. Furthermore, we discussed the chaotic behavior of the
corresponding dynamical system [12]. The main methods for examining the properties of
Ising models with the mixed spin on the square lattice [10], Bethe lattice [13], and CT [11,12]
are Monte Carlo simulations [10], the cavity method [14–16], the Kolmogorov consistency
method [11,12], the iteration method, and transfer matrix method. In [17], the magneto
thermal parameters that characterize the magnetocaloric effect (MCE) behaviors, such as
entropy, entropy change, and adiabatic cooling rate, are precisely calculated using the
transfer matrix approach.

In the literature, there are numerous methods for determining the free energy of a
given model [13,18]. The free energy of the lattice models on the Bethe lattice is calculated
while boundary conditions are taken into consideration [13,18,19]. In-depth research has
been performed on the thermodynamic properties of the 1D Ising model with single spin-s
using the transfer matrix [20–22].
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The author is not aware of any research on the thermodynamic properties of 1D
Ising models with mixed spin. Due to its widespread applications, the matrix transfer
approach is one of the most commonly used methods in statistical mechanics. In [21],
the transfer matrix approach is considered to conduct an analytical study of the 1D Ising
model with spin-s. To grasp physical issues as well as statistical mechanics, it is essential to
compute thermodynamic quantities like free energy, entropy, magnetization, and magnetic
susceptibility [22].

In this paper, to determine the thermodynamic quantities related to 1D-MSIM with
the mixed spin-(s, (2t− 1)/2), we consider the transfer matrix approach. We enlarge a
specific bond and establish the transfer matrix that corresponds to the bond from site j to
site j + 1. By considering the trace of several transfer matrices multiplied simultaneously,
the partition function is reconstructed. Inspired by the results given for the 1D Ising
model with the single spin-s [21], the partition function and the free energy of 1D-MSIM
with mixed spin-(s, (2t−1)

2 ) having the nearest neighbor interactions and external field are
calculated. To calculate the model’s free energy, entropy, magnetization, and susceptibility,
some exact formulas are established via the corresponding transfer matrix. By using the
cavity approach to the corresponding iterative equations of the model, the phase transition
issue is studied. The periodicity of the model is also estimated, numerically.

2. Preliminaries

Here, we review definitions and key findings in the construction of the partition
function for the 1D-MSIM with mixed spin-(s, (2t−1)

2 ) on the one-dimensional lattice Z. We
denote the set of integers by Z and the set of strictly positive integers by N+. Two vertices x
and y, x, y ∈ N+ are called nearest-neighbor (NN) if there exists an edge ` ∈ L connecting
them, which is denoted by ` = 〈x, y〉. For x, y ∈ N+, the distance d(x, y) is the length (the
number of edges) of the shortest path connecting x with y. For any x ∈ N+, the direct
successor of the vertex x is defined by S(x) = {y ∈ N+ : d(x, y) = 1}.

Denote the set of even natural numbers by E = {2n : n ∈ N} and the set of odd
natural numbers by O = {2n− 1 : n ∈ N+}. We consider the mixed spin-state spaces
denoted by Φ = {±s : s ∈ Z+} ∪ {0} and Ψ = {± (2t−1)

2 : t ∈ Z+}. For A ⊂ N+, a spin
configuration ξA on A is defined as a function

x ∈ A→ ξA(x) =
{

ξA(x) = σ(x) ∈ Φ, x ∈ E
ξA(x) = s(x) ∈ Ψ, x ∈ O.

Let us consider finite set N2N+1 = {1, 2, · · · , 2N + 1}. Let ΩE = ΦE and ΩO = ΨO

be the spaces of infinite configurations and Ω+,N = ΦE∩N2N+1 and Ω−,N = ΨO∩N2N+1 be
the spaces of finite configurations. Ξ = ΩE ×ΩO represents the configuration space. An
element of ΩE is denoted by σ(x), for x ∈ E. Similarly, an element of ΩO is denoted by
s(x), for x ∈ O.

In this paper, the spins in Φ and Ψ can be placed on the odd-numbered vertices and
the even-numbered vertices, respectively, when mixed spins are designed on the lattice N+

(see Figure 1).

1 2 4 5
6 73

Σ1

Σ9
Σ7Σ5

Σ3Σ1
s2 s4

s6 s8

8 9

Figure 1. Configurations with a mixed spin on a one-dimensional finite block, where σ2N−1 ∈ Φ and
s2N ∈ Ψ for N ∈ N+.

Construction of the Partition Function Associated with the Model

Let us construct the partition function corresponding to 1D-MSIM with mixed spin
(s, 2t−1

2 ) on the lattice N+.
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Let ξ ∈ Ξ, so that one has

ξ(x) =

{
σ(x); x ∈ E
s(x); x ∈ O,

where σ ∈ Φ and s ∈ Ψ.
Fix a finite volume Λ ⊂ N+. Let E = {` = 〈x, y〉 : d(x, y) = 1, x, y ∈ N+} be the set of

nearest-neighbor edges with at least one endpoint in Λ ⊂ N+. We examine in detail the
1D-MSIM with mixed spin (s, 2t−1

2 ) built on the lattice N+, having the Hamiltonian

H(ξ) = − ∑
〈x,y〉∈E

Jξ(x)ξ(y)− ∑
y∈Λ

hξ(y)ξ(y), (1)

where the energy of each link tying up nearby sites is represented by the first sum, and the
energy of each site is represented by the second sum.

The partial partition functions associated with the Hamiltonian (1) can be found
as follows:

Z(2N+1)
ξ(x(0))

(β, hξ(x(0))) = ∑
ηN∈ΞN2N+1

exp{−βH(ηN)}, (2)

where ξ ∈ σ× s = Ξ, β = 1
kBT and J is the coupling constant.

Given the finite set N2N+1, by considering the boundary spins, or the spins on the
(2N + 1)-th level, we can construct the summation of Equation (2). Consequently, we state
that the density-free energy function is

F(β, hξ(x)) = −kBT lim
N→∞

1
(2N + 1)

ln Z(2N+1)(β, hξ(x)), (3)

where Z(2N+1)(β, hξ(x)) is the total partition function.
As a result of the derivatives of the free energy function with respect to certain

parameters, many authors have studied other thermodynamic properties [21,22]. If the
largest eigenvalue of the transfer matrix corresponding to the given model is λmax, the
thermodynamic quantities of this system are obtained as follows:

Bulk free energy

F(T, βhξ(x)) = −kBT ln λmax. (4)

Entropy

S(T, βhξ(x)) = −
∂F(T, βhξ(x))

∂T
. (5)

Internal energy

U(T, βhξ(x)) = −
∂ ln λmax

∂β
. (6)

3. Construction of the Partition Function for the Model via Transfer Matrices

The Kramers–Wannier transfer technique may be used to construct the partition
function. This method requires building a transfer matrix and determining its eigenvalues.

3.1. The Partition Function and the Boltzmann Weight

It is well known that the total partition function Z(2N+1)(β, hξ(x)) = Tr(−βH2N+1)
depends on the particular realization {Ji, hi} (see [21,22] for details). Also, it is well known
that the total partition function is equal to the Boltzmann weight’s sum over all possible
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states. Here, we consider blocks or configurations with (2N + 1) length, and under zero
boundary conditions, that is, the spins designed for m > 2N + 1 are regarded as ξ(m) = 0.

If we want to rewrite the Hamiltonian (1) for all configurations on the configuration
space Ξ2N+1, we can obtain the Boltzmann weight in the form:

e
−βH(η)+ ∑

x∈N2N+1

η(x)hη(x)

= e−βH(σ) (7)

From (1), for i = 1, 2, · · · , N, we denote the energy of the bond between sequential vertices
2i− 1 and 2i by

E(σ2i−1, s2i) = − ∑
〈2i−1,2i〉∈E

Jσ2i−1s2i − ∑
〈2i−1,2i〉∈E

hs2i s2i. (8)

Similarly, for i = 1, 2, · · · , N we denote the energy of the bond between sequential vertices
2i and 2i + 1 by

Ẽ(σ2i, s2i+1) = − ∑
〈2i,2i+1〉∈E

Js2iσ2i+1 − ∑
〈2i,2i+1〉∈E

h̃σ2i+1 σ2i+1. (9)

Note that, as can be seen in Equations (8) and (9), for i > 1, while the oscillating magnetic
fields hσ2i−1 and h̃s2i fluctuate depending on where the vertex is located, the coupling
constant J, which determines the energy between two successive vertices, remains constant.

It is well known that the partition function is equal to the sum of the Boltzmann weight
e−βH(η) over all possible states in the lattice N [21,22]. Therefore, for the configuration
η ∈ Ξ2N+1, we can write the Boltzmann weight e−βH(σ) in the form

e−βH(η) = e−βH(σ1,s2,σ3,··· ,σ2N−1,s2N−1,σ2N+1) (10)

= e−βE(σ1,s2)−βẼ(s2,σ3)−···−βE(σ2N−1,s2N)−βẼ(s2N ,σ2N+1)

=
(

e−βE(σ1,s2)
)(

e−βẼ(s2,σ3)
)
· · ·
(

e−βE(σ2N−1,s2N)
)(

e−βẼ(s2N ,σ2N+1)
)

.

For this system, the canonical partition function can be written as

Z2N+1 = ∑
η∈Ξ2N+1

e−βH(η) = ∑
η∈Ξ2N+1

e−β(∑N
i=1 E(σ2i−1,s2i)+∑N

i=1 Ẽ(σ2i ,s2i+1)). (11)

The next step is to decompose the bonds using the bond representation and factor the
Boltzmann weights into pairwise factors.

3.2. The Transfer Matrices

Here, we construct the transfer matrices corresponding to 1D-MSIM with the (s, (2t−1)
2 )

mixed spin on the lattice N+. We obtain two different transfer matrices. First, let us place
the spins of the set Φ on the odd-numbered vertices of the lattice N+, and the spins in the
set Ψ on the even-numbered vertices. So, we define the entries of the transfer matrix P
as follows:

Pσ2i−1s2i = exp
(

σ2i−1s2iβJ + βs2i h̃s2i

)
= e−βE(σ2i−1,s2i), (12)

where σ2i−1 ∈ Φ and s2i ∈ Ψ for i = 1, 2, · · · .
Similarly, we can define the entries of the transfer matrix Q by

Qs2iσ2i+1 = exp
(
s2iσ2i+1βJ + βσ2i+1hσ2i+1

)
= e−βẼ(s2i ,σ2i+1), (13)

where s2i ∈ Ψ and σ2i+1 ∈ Φ for i = 1, 2, · · · .
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From (10)–(13), we obtain

e−βH(η) = Pσ1s2 Qs2σ3 Pσ3s4 Qs4σ5 · · · Pσ2N−1s2N Qs2N σ2N+1 . (14)

One can easily see that the matrix P has Card(Φ)×Card(Ψ) dimensions while matrix Q
has Card(Ψ)×Card(Φ) dimensions. Assume that PQ = M. The total partition function
can be written as the trace of the product of 2N + 1 random transfer matrices.

3.3. 1D-MSIM with Mixed Spin-(1, 1/2)

Due to the difficulty of computation of the transfer matrix and its eigenvalues for s > 1
and t > 1, we restrict ourselves to the mixed spin (1, 1/2). In this subsection, we compute
the thermodynamic quantities of 1D-MSIM with mixed spin (1, 1/2). So, we consider the
mixed spins as Φ = {−1, 0, 1} and Ψ = {− 1

2 , 1
2}.

Firstly, let us construct the transfer matrix as P =
(

Pσ2i−1,s2i

)
, for σ2i−1 ∈ {−1, 0, 1} and

s2i ∈ {− 1
2 , 1

2}. So, we have

P =


e

β
2

(
J−h− 1

2

)
e
− β

2

(
J−h 1

2

)

e
− 1

2 βh− 1
2 e

1
2 βh 1

2

e
− β

2

(
J+h− 1

2

)
e

β
2

(
J+h 1

2

)

. (15)

Secondly, let us place the spins of the set {− 1
2 , 1

2} on the even-numbered vertices
of the lattice N+, and the spins in the set {−1, 0, 1} on the odd-numbered vertices (see
Figure 1). We can define the second transfer matrix Q =

(
Qs2i ,σ2i+1

)
, for s2i ∈ {− 1

2 , 1
2} and

σ2i+1 ∈ {−1, 0, 1} as

Q =

(
e

β
2 (J−2h−1) 1 e−

β
2 (J−2h1)

e−
β
2 (J+2h−1) 1 e

β
2 (J+2h1)

)
. (16)

3.4. Investigation of Thermodynamic Quantities in the Translation-Invariant Case

Assume that h = h̃j = hi for all j ∈ {− 1
2 , 1

2} and i ∈ {−1, 0, 1}. This case is called the
translation-invariant property. Thus, the transfer matrices P and Q given in (15) and (16)
are obtained as follows

P =

 e
β
2 (J−h) e−

β
2 (J−h)

e−
1
2 βh e

1
2 βh

e−
β
2 (J+h) e

β
2 (J+h)

, (17)

Q =

(
e

β
2 (J−2h) 1 e−

β
2 (J−2h)

e−
β
2 (J+2h) 1 e

β
2 (J+2h)

)
. (18)

Case I

When we multiply the transfer matrices P and Q given in Equations (17) and (18), we
obtain the square matrix:

M = PQ =


e−

1
2 (3h−2J)β + e−

1
2 (h+2J)β e−

1
2 (J−h)β + e

1
2 (J−h)β e

hβ
2

(
1 + ehβ

)
e−

1
2 (3h−J)β + e−

1
2 (h+J)β e−

hβ
2

(
1 + ehβ

)
e

1
2 (h−J)β + e

1
2 (3h+J)β

e−
3hβ

2

(
1 + ehβ

)
e−

1
2 (h+J)β + e

1
2 (h+J)β e

1
2 (h−2J)β + e

1
2 (3h+2J)β

. (19)
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After some tedious and complicated algebraic manipulations, the eigenvalues of the matrix
M are obtained as:

λ1 = 0,

λ2 = 1

2e
β
2 (3h+2J)

(
A(β, h, J)−

√
(A(β, h, J))2 − 4B(β, h, J)

)
,

λ3 = 1

2e
β
2 (3h+2J)

(
A(β, h, J) +

√
(A(β, h, J))2 − 4B(β, h, J)

)
,

where

A(β, h, J) =
(

1 + ehβ
)(

ehβ + e2Jβ + ehβ+Jβ − ehβ+2Jβ + e2hβ+2Jβ
)

,

B(β, h, J) = e2hβ
(

eJβ − 1
)2
(

eJβ
(

1 + e2hβ
)
+ ehβ

(
1 + eJβ

)2
)

.

For the sake of simplicity, substitute the variables θ = e
βJ
2 and v = e

βh
2 to obtain

λ1 = 0,

λ2 =
(1+v2)(θ4+v2(1+θ2−θ4)+v4θ4)−

√
((1+v2)(θ4+v2(1+θ2−θ4)+v4θ4))

2−4v4(θ2−1)2(θ2(1+v4)+v2(1+θ2)2)

2v3θ2 ,

λ3 =
(1+v2)(θ4+v2(1+θ2−θ4)+v4θ4)+

√
((1+v2)(θ4+v2(1+θ2−θ4)+v4θ4))

2−4v4(θ2−1)2(θ2(1+v4)+v2(1+θ2)2)

2v3θ2 .

(20)

By computing the trace of the matrix product M, we can determine the partition function as

Z(2N+1)(β, hξ(x)) = Tr[MN ] =
3

∑
i=1

λN
i , (21)

where λi denotes the eigenvalues of the transfer matrix M for i = 1, 2, 3.
From (11), we obtain

Z(2N+1)(β, hξ(x)) = Tr(MN) =
t

∑
j=1

λN
t,j = λN

max

(
1 +

t−1

∑
j=1

(
λt,j

λmax

)N
)

, (22)

where λt,j denote the eigenvalues of transfer matrix M.
So, one has Z(2N+1)(β, hξ(x)) = λN

max for N → ∞. As it is well known, the model’s
critical behavior manifests itself in the thermodynamic limit as N → ∞; therefore, the
largest eigenvalue λmax = λ3 of the transfer matrix M given in (19) stands as the only
indicator of the bulk free energy:

F(β, h) = − 1
β

lim
N→∞

1
(2N + 1)

ln Z(2N+1)(β, h) (23)

= − 1
β

lim
N→∞

1
(2N + 1)

ln λN
3 = − 1

2β
ln λ3

= − 1
2β

ln

A(β, h, J) +
√
(A(β, h, J))2 − 4B(β, h, J)

2e
β
2 (3h+2J)

.

3.5. Behavior of the Thermodynamic Quantities of 1D-MSIM with Mixed Spin-(s,(2t − 1)/2) in the
Absence of a Magnetic Field

For h = 0, we obtain the transfer matrix M given in (19) as

M̂ =


2 cosh(Jβ) 2 cosh

(
Jβ
2

)
2

2 cosh
(

Jβ
2

)
2 2 cosh

(
Jβ
2

)
2 2 cosh

(
Jβ
2

)
2 cosh(Jβ)

. (24)
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The set of eigenvalues of the matrix M̂ is obtained as follows:

{λ̂1 = 0, λ̂2 = −2 + 2 cosh(Jβ), λ̂3 = 4 + 2 cosh(Jβ)}.

It is clear that λ̂3 = λ̂max. From the formula in (23), we obtain

F(β, 0) = − 1
2β

ln(4 + 2 cosh(Jβ)). (25)

Figure 2 shows the graph of free energy F(β, 0) given in (25) as a function of β for
J = 0.2. From Figure 2, it can be seen that the free energy is approaching zero for T → 0+.
In Figure 2, the oscillating magnetic fields hs2i and h̃σ2i+1 are assumed to be zero. If hs2i and
h̃σ2i+1 are taken to be nonzero, then, by using the parametric representation, the free energy
function can be plotted in the form h→ (β(h), F(h)).

Figure 2. The graph of free energy F(β, 0) given in (25) as a function of β for J = 0.2.

In the absence of an external magnetic field, from (5), the entropy of the model is
obtained as

S(β, 0) = −∂F(β, 0)
∂T

= −
∂F(β,0)

∂β

∂T
∂β

(26)

=
(−2 ln(4 + 2 cosh(Jβ))− cosh(Jβ) ln(4 + 2 cosh(Jβ)) + Jβ sinh(Jβ))kB

2(2 + cosh(Jβ))
.

Similarly, from (6), we obtain the internal energy as

U(β, 0) =
−2 ln(4 + 2 cosh(Jβ))− cosh(Jβ) ln(4 + 2 cosh(Jβ)]) + Jβ sinh(Jβ])

2β2(2 + cosh(Jβ))
. (27)

The changes in entropy of 1D-MSIM with mixed spin (1, 1/2) are given in Figure 3.
Results show that the internal energy converges to zero at the higher temperature values,
while becoming a constant 0 as T → 0. When the temperature increases, the entropy
increases until it reaches ln(

√
6) and goes to zero at low temperature values.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

T

S
HT

,0
L

0 2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

Β

S
HΒ

,0
L

Figure 3. (Left) The graph of entropy S(β, 0) given in (26) for J = 0.2 as a function of the temperature
T in the absence of a magnetic field. (Right) The graph of entropy S(β, 0) given in (26) for J = 0.2 as
a function of β in the absence of a magnetic field.
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Case II

Note that while successively placing spins on the vertices of a one-dimensional lattice,
if the elements of Ψ are placed in the first vertex of the lattice N, then a transfer matrix
having 2× 2 dimensions is obtained, and the eigenvalues of the transfer matrix are the
same as those of the previous matrix M.

M̃ = QP =

(
e−

hβ
2 + e−

1
2 (3h−2J)β + e

1
2 (h−2J)β e

hβ
2 + e−

hβ
2 + e

3hβ
2

e−
hβ
2 + e−

3hβ
2 + e

hβ
2 e

hβ
2 + e−

1
2 (h+2J)β + e

1
2 (3h+2J)β

)
. (28)

If we substitute the variables θ = e
βJ
2 and v = e

βh
2 for simplicity, we obtain

M̃ = QP =

(
θ
v2 1 v2

θ
1

θv2 1 θv2

)
.

 θ
v

v
θ

1
v vs.
1
θv θv

 (29)

=

 (v2−vθ+θ2)(v2+vθ+θ2)
v3θ2

(1−v+v2)(1+v+v2)
v

(1−v+v2)(1+v+v2)
v3

(1−vθ+v2θ2)(1+vθ+v2θ2)
vθ2

.

We obtain the set of eigenvalues of the matrix M̃ given in (29) as λ̃1 =
(1+v2)(θ4+v2(1+θ2−θ4)+v4θ4)−

√
((1+v2)(θ4+v2(1+θ2−θ4)+v4θ4))

2−4v4(θ2−1)2(θ2(1+v4)+v2(1+θ2)2)

2v3θ2 ,

λ̃2 =
(1+v2)(θ4+v2(1+θ2−θ4)+v4θ4)+

√
((1+v2)(θ4+v2(1+θ2−θ4)+v4θ4))

2−4v4(θ2−1)2(θ2(1+v4)+v2(1+θ2)2)

2v3θ2 .
(30)

It should be noted here that the eigenvalues of the matrices M and M̃ are the same, except
for 0. Therefore, it is obtained that λ3 = λ̃2 (see Equations (20) and (30)). We can choose
any spin on the starting vertex, while mixed spins are placed on consecutive vertices of the
lattice. From (20) and (30), it is clear that λ̃max = λ̃2.

3.6. Magnetization and Magnetic Susceptibility

In this subsection, we construct magnetization and magnetic susceptibility by means
of the eigenvalue λ̃2 in the Formula (30).

Let us consider the reduced nearest neighbor spin–spin coupling interactions K = βJ
2 =

ln(θ) and the reduced magnetic field H =
βhξ(x)

2 = ln(v), we write the magnetization as

m(T, H) = −β
∂F(T, H)

∂aλ̃2
∂H, (31)

and susceptibility

χ(T, H) = −β2 ∂2F(T, H)

∂H2 = β
∂

∂H

(
1

λ̃2

∂λ̃2

∂H

)
. (32)

We do not give the exact expressions of the formulas for the magnetization and sus-
ceptibility here, because the operations are excessively long and complex. We numerically
examine the behavior of these two quantities as functions of h and T.

The Mathematica software (Version 8.0, Wolfram Research, Inc., Champaign, IL,
USA) [23] has been used to perform the calculations and to plot the figures. A three-
dimensional plot of m(T, H) is given in Figure 4. Taking into account the eigenvalue λ̃2 in
the Formula (30), for J = −2, one can easily see that, as the temperature T increases, the
smoothness of the function decreases and exhibits a behavior similar to the step function.
On the other hand, for J = 2, the surface of the function becomes smooth. In contrast to the
single-spin Ising chain’s typical single step [21], in Figure 4 (left), the magnetization graph
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shows three distinct steps at low temperatures. This phenomenon may be explained by
spins adopting distinct states within even and odd sublattices, or by all spins assuming the
same state.

Figure 4. (Left) The graph of magnetization m(T, H) given in (31) for J = −2 as a function of h and
T. (Right) The graph of magnetization m(T, H) given in (31) for J = 2 as a function of h and T.

A three-dimensional plot of χ(T, H) is given in Figure 5. Figure 5 (Left) and (Right)
show the behavior of the susceptibility function given in Equation (32). For J = −2, three
stacks resembling a boot are observed, and a stack appears for J = 2 in the chosen region
T ∈ [0.001, 7], h ∈ [−6, 6]. As seen in Figure 5 (Left), while three different susceptibility
peaks appear for J = −2 at low temperatures, the susceptibility peaks disappear as the
temperature increases. For J = 2, only a single susceptibility peak is observed at low
temperatures (see Figure 5 (Right)).

Figure 5. (Left) The graph of susceptibility χ(T, H) given in (32) for J = −2 as a function of h and T.
(Right) The graph of susceptibility χ(T, H) given in (32) for J = 2 as a function of h and T.

4. Nonexistence Phase Transition in the Absence of the External Magnetic Field

In this section, we study 1D-MSIM with the mixed spin-(1,1/2) employing the ERR.

Suppose that W(n) =
Z̃(n)
− 1

2

Z̃(n)
1
2

, X(n−1) =
Z(n−1)
−1

Z(n−1)
0

and Y(n−1) =
Z(n−1)

1

Z(n−1)
0

, from Equations (43)

and (44), we obtain

W(n) =
θ2X(n−1) + θ + Y(n−1)

X(n−1) + θ + θ2Y(n−1)
, (33)

X(n−1) =
θ2W(n−2) + 1
θ(W(n−2) + 1)

, (34)

Y(n−1) =
W(n−2) + θ2

θ(W(n−2) + 1)
, (35)

where θ = e
βJ
2 .
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If we assume x = lim
n→∞

X(n−1), y = lim
n→∞

Y(n−1) and w = lim
n→∞

W(n), then we obtain a

new three-dimensional rational dynamical system (3D-RDS) as

w =
θ2x + θ + y
x + θ + θ2y

, (36)

x =
θ2w + 1
θ(w + 1)

, (37)

y =
w + θ2

θ(w + 1)
. (38)

If the values of x and y in Equations (37) and (38) are substituted into Equation (36), one
obtains the following rational recursive equation f : R+ → R+:

f (w) :=
3θ2 + w

(
1 + θ2 + θ4)

(1 + θ2 + θ4) + 3wθ2 = w. (39)

From (39), we obtain a second-order equation

3(w− 1)(1 + w)θ2 = 0. (40)

From Equation (40), it is clear that the function f given in (39) has only one positive fixed
point, so there is no phase transition for the given model.

The graphs of the function f for antiferromagnetic (θ = 0.421) and ferromagnetic
(θ = 3.421) values are plotted in Figure 6. The diagrams show that the function in both
cases has just two fixed points. Additionally, there is only one positive fixed point. As a
result, there is just one Gibbs measure and no phase transition in the model. As it is well
known, the classical single spin 1D Ising model’s phase transition issue has attracted the
interest of statistical mechanics researchers for over a century, and it has been established
that there is no phase transition [1]. In this present paper, we demonstrated that the mixed
spin 1D Ising model has no phase transition as an example.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

w

f

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

w

f

Figure 6. (Left) The graph of the function f given in (39) for θ = 0.421. (Right) The graph of the
function f given in (39) for θ = 3.421.

Chaoticity of the Model

A dynamical system’s chaotic behavior is determined by how sensitively it depends
on the initial conditions [24,25]. It has long been a challenge to see whether a model’s phase
transition and the chaotic behavior of the corresponding dynamical system are related [26].
In this subsection, we investigate the chaoticity of the 3D-RDS given in (36)–(38). With the
help of the Lyapunov exponent, we numerically study the model’s chaotic behavior.
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From the definition of the Lyapunov exponent, we obtain

λ =
1
n

ln

∣∣∣∣∣n−1

∏
i=0

f ′θ(wi)

∣∣∣∣∣ = 1
n

n−1

∑
i=0

ln
∣∣ f ′θ(wi)

∣∣ (41)

=
1
n

n−1

∑
i=0

ln

∣∣∣∣∣
(
θ2 − 1

)2(1 + 4θ2 + θ4)
(1 + (1 + 3wi)θ2 + θ4)

2

∣∣∣∣∣.
From (41), we have

λ(θ) : = lim
n→∞

1
n

n−1

∑
i=0

ln

∣∣∣∣∣
(
θ2 − 1

)2(1 + 4θ2 + θ4)
(1 + (1 + 3wi)θ2 + θ4)

2

∣∣∣∣∣. (42)

Figure 7 shows the Lyapunov exponent of the dynamical system corresponding to
the 1D-MSIM with mixed spin-(1,1/2). It is seen that the Lyapunov exponent is always
negative in the ferromagnetic region. Therefore, the rational function f (w) given in (39) is
periodic. The behavior of the Lyapunov exponent λ(θ) in the antiferromagnetic region can
also be examined.

0 10 20 30 40 50 60

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

Θ

Λ
HΘ
L

Figure 7. The graph of the function λ(θ) given in (42) versus θ = e
J

2T in the ferromagnetic region
(J > 0).

5. The Average Magnetization for the Mixed Spin-(1,1/2) Ising Model

In this section, by using the exact recursion relations (ERRs) (see [9]), we obtain the
partial partition functions of the 1D-MSIM with mixed spin-(s, (2t−1)

2 ). Contrary to the
previous sections, here we place the spins of Ψ in the first vertex of the lattice and the spins
of Φ in the second vertex of the lattice, while placing spins at the vertices of the lattice Z+,
so for n = 0, 1, 2, · · · , we obtain s2n−1 ∈ Ψ and σ2n ∈ Φ. With the help of the cavity method
(see [14–16] for details), we obtain the partial partition functions as follows:

Z̃(n)
s1 = ∑

σ2∈Φ
exp(β(Js1σ2 + hσ2))Z(n−1)

σ2 , (43)

Z(n−1)
σ2 = ∑

s3∈Ψ
exp

(
β(Jσ2s3 + h̃s3)

)
Z̃(n−2)

s3 . (44)

The Average Magnetization

In this subsection, assuming there is an external magnetic field, we obtain the magne-
tization equations for spins s and (2t−1)

2 , respectively, as follows.

M(n)
1/2 =

∑
s1∈Ψ

s1 exp(β(Js1σ2 + hσ2))Z̃(n)
s1

∑
s1∈Ψ

exp(β(Js1σ2 + hσ2))Z̃(n)
s1

, (45)
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M(n−1)
1 =

∑
σ2∈Φ

σ2 exp
(

β(Jσ2s3 + h̃s3)
)

Z(n−1)
σ1

∑
σ2∈Φ

exp
(

β(Jσ2s3 + h̃s3)
)

Z(n−1)
σ2

. (46)

We are only concerned with the magnetization for mixed spin-(1,1/2) here, since the
operations for obtaining partition functions are excessively long for s > 1 and t > 1. So,
from (45) and (46), we obtain

M(n)
1/2 =

e
hβ
2

(
e
(
− h

2−
J
2

)
β − e

(
− h

2 +
J
2

)
β
)(

e−hβ −W(n)
)

e−3hβ
(

e
1
2 (4h−J)β + e

1
2 (4h+J)β + e2hβ

)
+ e−

Jβ
2

(
1 + e

Jβ
2 + eJβ

)
W(n)

, (47)

M(n−1)
1 =

(
eJβ − 1

)(
e2hβY(n−1) − X(n−1)

)
2
(

2ehβ+
Jβ
2 +

(
1 + eJβ

)(
X(n−1) + e2hβY(n−1)

)) . (48)

The following equation results from the simple substitutions of the variables θ = e
Jβ
2 and

v = e
hβ
2

M(n)
1/2 =

(
v2W(n) − 1

)
(θ2 − 1)(

1 + v2W(n)
)
(1 + θ + θ2)

, (49)

M(n−1)
1 = −

(
X(n−1) − v4Y(n−1)

)
(θ2 − 1)

2
(
X(n−1)(1 + θ2) + 2v2θ + v4Y(n−1)(θ2 + 1)

) . (50)

Now, let us assume that the external magnetic field h (v = 1) is zero. In this case, after
some calculations, as in Ref. [14], we can show that the fixed point for the 3D-RDS given
in (36)–(38) is only x = y =

(
1+θ2

2θ

)
and w = 1. So, we obtain zero average magnetization

around this fixed point. That is, we have

M(n)
1/2 = M(n−1)

1 = 0.

6. Conclusions

There are many methods for calculating the free energy of lattice models on the Bethe
lattices or the d-dimensional integer lattice Zd (d ≥ 1). Some of these are the exact recursion
relations [9], the cavity method [18], and vector-valued boundary conditions. One of the
most widely used methods to examine thermodynamic quantities corresponding to a 1D
Ising model is the transfer matrix technique [21,22]. In this present work, we constructed
the partial partition functions associated with 1D-MSIM having mixed spin-(s, (2t−1)

2 )
via the transfer matrix. We have computed some thermodynamic quantities such as the
free energy, entropy, magnetization, and susceptibility of the model. To the best of my
knowledge, the thermodynamic properties of the 1D Ising model with the single spin have
been investigated in several studies to date. Using the transfer matrix method, we evaluated
the thermodynamic features of the 1D-MSIM for the first time. For the single spin-Isign
model, Amin et al. [21] plotted the magnetization and susceptibility in two dimensions.

In our previous studies, we proved that there is a phase transition for the mixed-
spin Ising model on the CT using many methods [11,12,14]. As it is known, there is no
phase transition for a single spin 1D Ising model [1]. In this study, we investigated how
mixed spins affect thermodynamic quantities and the existence of the phase transition.
We demonstrated the uniqueness of limiting Gibbs measures associated with 1D-MSIM
having mixed spin-(1,1/2). We have shown that if the external magnetic field is zero, for
the aforementioned model, there is no phase transition. Our next research will deal with
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other issues in statistical mechanics. By considering the approach given by Albayrak [9],
the isothermal entropy change of the average magnetization for 1D-MSIM will be analyzed.

The findings obtained in our present article exhibit different behaviors from the results
given in previous studies [21,22]. Frankly, we cannot comment on the physical meaning of
such behavior. These topics are covered in introductory courses in statistical mechanics at
the undergraduate level. Therefore, we believe that the results of our present study will be
of interest to a wide readership of statistical mechanics.
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