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Abstract: This study investigates the oscillatory properties of a fourth-order delay functional differen-
tial equation. This study’s methodology is built around two key tenets. First, we propose optimized
relationships between the solution and its derivatives by making use of some improved monotonic
features. By using a comparison technique to connect the oscillation of the studied equation with some
second-order equations, the second aspect takes advantage of the significant progress made in the
study of the oscillation of second-order equations. Numerous applications of functional differential
equations of the neutral type served as the inspiration for the study of a subclass of these equations.
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1. Introduction

In this study, we consider the functional differential equation with p-Laplacian-like
operators

d
dt

[
a0(t)φ

(
d3

dt3 x(t)
)]

+ a1(t)φ
(

d3

dt3 x(t)
)
+ a2(t)φ(x(g(t))) = 0, (1)

where t ∈ I := [t0, ∞), φ(u) = |u|p−2u, and the following assumptions are satisfied:

(A1) p > 1 is a constant;
(A2) a0 ∈ C1(I,R+), ai ∈ C(I, [0, ∞)) for i = 1, 2, a′0(t) ≥ 0, and a2(t) > 0;
(A3) g ∈ C(I,R), g(t) ≤ t, g′(t) ≥ 0, and limt→∞ g(t) = ∞;
(A4) limt→∞A0(t) = ∞, where

A0(t) :=
∫ t

t1

(
â(z)
a0(z)

) 1
p−1

dz,

and

â(t) := exp
[
−
∫ t

t1

a1(z)

a0(z)
dz
]

.

Functional differential equations (FDEs) are used in the natural sciences, engineering
technology, and automatic control, as stated by Hale [1–5]. According to [6], the p-Laplace
FDE has a wide variety of applications in continuum mechanics.

The great development witnessed by various sciences has been accompanied by many
nonlinear mathematical models. However, it is difficult to find solutions to these models
using traditional methods. Therefore, researchers resort to obtaining approximate solutions
through numerical methods, or studying the properties of the solutions of these equations.
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Many biological, chemical, and physical phenomena have mathematical models that
use differential equations of the fourth-order delay. Examples of these applications include
soil settlement and elastic issues. The oscillatory traction of a muscle, which takes place
when the muscle is subjected to an inertial force, is one model that can be modeled using a
fourth-order oscillatory equation with delay.

The qualitative study of differential equations contributes significantly to understand-
ing and analyzing phenomena and problems without obtaining solutions. Qualitative
studies have been developed in many theoretical and numerical ways. The qualitative stud-
ies include the study of stability, control, oscillation, bifurcation, periodicity, boundedness,
and others.

One type of differential equation in which oscillatory behavior is frequent is the class
of FDEs. It is known that deviating arguments that express the phenomenon’s prior and
present times are present in equations of this type when they deal with the aftereffects of
life phenomena, which increase the likelihood that oscillatory solutions will exist (see [7]).
One of the fundamental subclasses of FDEs is the delayed functional differential equation,
also known as the delay differential equation. This type is based on the past and present
values of the temporal derivatives, which results in forecasts for the future that are more
precise and successful.

Oscillation theory, as one of the branches of qualitative theory, is interested in in-
vestigating the asymptotic and oscillatory properties of the solutions of FDEs. Studies
in oscillation theory began by relating the oscillatory behavior of the linear differential
equation to complex solutions of the characteristic equation, see [8,9]. Then, many methods
and techniques have been developed that investigate the oscillatory behavior of different
FDEs, which include delay, advanced, neutral, and mixed, as well as in canonical and
noncanonical cases, see [10,11].

Here, we mention the basic definitions and some elementary previous results that we
use to prove our results.

Definition 1. A function x ∈ C(n−1)([t∗, ∞),R), t∗ ∈ I, is said to be a solution of (1) if
a0 · φ

(
x(n−1)

)
∈ C1([t∗, ∞),R), x satisfies (1), and sup{|x(t)| : t ≥ t1} > 0 for t1 ≥ t∗.

Definition 2. Such a solution x is called nonoscillatory if x is positive or negative, eventually;
otherwise, x is called oscillatory.

Definition 3. FDE (1) is called oscillatory if every solution to it is oscillatory.

Next, we review some of the previous results that contributed to the development of
the oscillation theory for equations of the middle term and for equations of the fourth order.

In 1979, Onose [12] studied the oscillation of the FDEs

d2

dt2

[
a0(t)

d2

dt2 x(t)
]
+ w(t, x(g(t))) = 0

and
d2

dt2

[
a0(t)

d2

dt2 x(t)
]
+ w(t, x(g(t))) = r(t),

under the condition ∫ ∞

t0

a−1
0 (z)dz = ∞.

In [13], Grace et al. presented some oscillation conditions for the FDE

d3

dt3

[
a0(t)

d
dt

x(t)
]
+ a2(t)w(x(g(t))) = 0.
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Wu [14] and Kamo and Usami [15] addressed the oscillatory properties of the equation

d2

dt2

[
a0(t)

∣∣∣∣ d2

dt2 x(t)
∣∣∣∣α−1 d2

dt2 x(t)

]
+ a2(t)|x(t)|β−1x(t) = 0,

where α, β ∈ R+.
For even-order equations, Zhang et al. [16,17] and Baculikova et al. [18] studied

the FDE
d
dt

[
a0(t)

(
dn−1

dtn−1 x(t)
)α
]
+ q(t) f (x(g(t))) = 0, (2)

where α > 0 is a quotient of odd integers. In [16,17], under the condition∫ ∞

t0

a−1/α
0 (z)dz < ∞, (3)

Zhang et al. used the Riccati approach, and provided some oscillation criteria for
Equation (2) when f (x) = xβ, β ≤ α, whereas Baculikova et al. [18] used the comparison
technique to test the oscillation of FDE (1), and considered the two cases (3) and∫ ∞

t0

a−1/α
0 (z)dz = ∞.

For equations with a middle term, Grace [19] inspected the oscillatory behavior of
the FDE

d
dt

[
a0(t)

d
dt

x(t)
]
+ a1(t)x(h(t)) + a2(t)w(x(g(t))) = 0. (4)

In [20], Saker et al. obtained Kamenev-type criteria for FDE (4), and improved results
in [19]. Tunc and Kaymaz [21] studied the neutral FDE

d2

dt2 z(t) + a1(t)
d
dt

z(t) + a2(t)x(g(t)) = 0,

under the condition ∫ ∞

t0

exp
(
−
∫ t

t0

a1(z)dz
)

dt = ∞,

where z(t) = x(t) + a3(t)x(h(t)), and h(t) ≤ t. Graef et al. [22] studied the oscillation of
the mixed neutral FDE

d
dt

[
a0(t)

d
dt

z(t)
]
+ a1(t)

d
dt

z(t) + a2(t)x(g(t)) = 0, (5)

under the condition ∫ ∞

t0

a−1
0 (z) exp

(
−
∫ z

t0

a1(s)
a0(t)

ds
)

dz = ∞, (6)

where
z(t) = x(t) + c0(t)x(h0(t)) + c1(t)x(h1(t)), h0(t) < t, and h1(t) > t.

Jadlovská and Džurina [23] derived Kneser-type criteria to test the oscillation of
the FDE

d
dt

[
a0(t)φ

(
d
dt

x(t)
)]

+ a2(t)φ(x(g(t))) = 0. (7)

Theorem 1 ([23], Theorem 2). Assume that p ≥ 2 and

α := lim inf
t→∞

η(t)
η(g(t))

< ∞.
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FDE (7) is oscillatory if

lim inf
t→∞

[
a1/(p−1)

0 (t)ηp−1(g(t))η(t)a2(t)
]
> δ,

where

δ = (p− 1)max

{
`(1− `)p−1

α(p−1)`
: ` ∈ (0, 1)

}
and

η(t) :=
∫ t

t0

a−1/(p−1)
0 (z)dz.

Using the comparison method with second-order equations, Elabbasy et al. [24]
studied the oscillation of FDE (1) when φ(u) = u.

Theorem 2 ([24], Theorem 2). If the differential equations

d
dt

(
a0(t)

d
dt

w(t)
)
+

κ

2
a2(t)g2(t)w(t) = 0

and
d2

dt2 w(t) + w(t)
∫ ∞

t

[
1

a0(s)

∫ ∞

s
a2(u)

g2(u)
u2 du

]
ds = 0

are oscillatory, where κ ∈ (0, 1), then FDE (1) is oscillatory.

2. Main Results

Assume first that x is an eventually positive solution of FDE (1), i.e., x(t) > 0 for
t ≥ t1 ∈ I. According to Lemma 4 in [25], we have, eventually,

x′(t) > 0, x′′′(t) > 0, and x(4)(t) ≤ 0,

under the condition (A4). Therefore, we can classify the solutions of FDE (1) into the
following two cases:

[C1] x(i)(t) ≥ 0 for i = 0, 1, 2, 3, and x(4) ≤ 0;
[C2] x(i)(t) ≥ 0 for i = 0, 1, 3, x′′(t) < 0, and x(4) ≤ 0.

For convenience, we define

Ai(t) :=
∫ t

t1

Ai−1(z)dz, for i = 1, 2.

2.1. Monotonic Properties of Solutions in [C1]

In the following, we deduce some monotonic properties of the solutions in [C1] and
their derivative.

Lemma 1. Assume that x satisfies [C1], eventually. Then,

d
dt

[
x(i)(t)
A2−i(t)

]
≤ 0, (8)

for i = 0, 1, 2.

Proof. Assume that x satisfies [C1] for t ≥ t1 ∈ I. From FDE (1), we have

d
dt

[
a0(t)
â(t)

φ
(
x′′′(t)

)]
≤ 0.



Axioms 2023, 12, 876 5 of 11

Thus,

x′′(t) ≥
∫ t

t1

(
â(z)
a0(z)

) 1
p−1
[

a0(z)

â(z)
φ
(

x′′′(z)
)] 1

p−1
dz

≥
[

a0(t)
â(t)

φ
(
x′′′(t)

)] 1
p−1
A0(t)

=

(
a0(t)
â(t)

) 1
p−1
A0(t)x′′′(t).

This leads to

d
dt

[
x′′(t)
A0(t)

]
=

1
A2

0(t)

[
A0(t)x′′′(t)−

(
â(t)
a0(t)

) 1
p−1

x′′(t)

]
≤ 0.

Next, using this fact, we obtain

x′(t) ≥
∫ t

t1

x′′(z)
A0(z)

A0(z)dz ≥
x′′(t)
A0(t)

A1(t),

which in turn gives
d
dt

[
x′(t)
A1(t)

]
≤ 0.

Similarly, we obtain
d
dt

[
x(t)
A2(t)

]
≤ 0.

The proof is complete.

Lemma 2. Assume that x satisfies [C1], eventually. Then,

A0(t)x(t) ≥ A2(t)x′′(t)

and

x(t) ≥ A2(t)
(

a0(t)
â(t)

) 1
p−1

x′′′(t).

Proof. Assume that x satisfies [C1] for t ≥ t1 ∈ I. From Lemma 1, we have that (8) holds.
Thus,

x(t) ≥ A2(t)
A1(t)

x′(t) ≥ A2(t)
A1(t)

A1(t)
A0(t)

x′′(t)

=
A2(t)
A0(t)

x′′(t)

≥ A2(t)
A0(t)

(
a0(t)
â(t)

) 1
p−1
A0(t)x′′′(t)

= A2(t)
(

a0(t)
â(t)

) 1
p−1

x′′′(t).

The proof is complete.

2.2. Comparison Theorem

The comparison technique is usually used to benefit from the development of oscilla-
tion criteria for solutions to first- and second-order equations. This is acheived by linking
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the oscillation of higher-order equations to one or more equations of the first or second
order. This technique relies primarily on the relationships between the solution and the
derivatives of the second and third orders, so improving these relationships is reflected
in turn in improving the results derived from the use of the comparison technique. In the
following theorem, we use a comparison approach to relate the oscillation of FDE (1) with
a pair of equations of the second order.

Theorem 3. Assume that p ≥ 2. FDE (1) is oscillatory if the second-order FDEs

d
dt

[(
a0(t)
â(t)

) 1
p−1

w′(t)

]
+

1
p− 1

a2(t)
â(t)

Ap−1
2 (g(t))
A0(g(t))

w(g(t)) = 0 (9)

and

x′′(t) + x(g(t))
∫ ∞

t

[
â(r)
a0(r)

∫ ∞

r

a2(z)

â(z)
dz
] 1

p−1
dr = 0 (10)

are oscillatory.

Proof. Based on the converse hypothesis, we assume that FDE (1) has a nonoscillatory
solution, which in turn inevitably leads to the existence of an eventually positive solution
to this equation. Therefore, there is a t1 ∈ I such that x satisfies [C1] or [C2] for t ≥ t1.

Suppose first that x satisfies [C1]. Then, we have

d
dt

[(
a0(t)
â(t)

) 1
p−1

x′′′(t)

]

=
d
dt

[(
a0(t)
â(t)

φ
(
x′′′(t)

)) 1
p−1
]

=
1

p− 1

((
a0(t)
â(t)

) 1
p−1

x′′′(t)

)2−p
d
dt

[
a0(t)
â(t)

φ
(
x′′′(t)

)]

= − 1
p− 1

((
a0(t)
â(t)

) 1
p−1

x′′′(t)

)2−p
a2(t)
â(t)

φ(x(g(t))). (11)

From Lemma 2, we have

x(t) ≥ A2(t)
(

a0(t)
â(t)

) 1
p−1

x′′′(t), (12)

Since x/A2 is nonincreasing, we have that

x(g(t))
A2(g(t))

≥ x(t)
A2(t)

,

which, with (12), gives

(
x(g(t))
A2(g(t))

)2−p
≤
((

a0(t)
â(t)

) 1
p−1

x′′′(t)

)2−p

.
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Thus, (11) becomes

d
dt

[(
a0(t)
â(t)

) 1
p−1

x′′′(t)

]
≤ − 1

p− 1

(
x(g(t))
A2(g(t))

)2−p a2(t)
â(t)

φ(x(g(t)))

= − 1
p− 1

Ap−2
2 (g(t))

a2(t)
â(t)

x(g(t)). (13)

From Lemma 2, we obtain

x(g(t)) ≥ A2(g(t))
A0(g(t))

x′′(g(t)). (14)

Combining (13) and (14), we arrive at

d
dt

[(
a0(t)
â(t)

) 1
p−1

x′′′(t)

]
+

1
p− 1

a2(t)
â(t)

Ap−1
2 (g(t))
A0(g(t))

x′′(g(t)) ≤ 0.

Now, if we set w := x′′ > 0, then w is a positive solution of the inequality

d
dt

[(
a0(t)
â(t)

) 1
p−1

w′(t)

]
+

1
p− 1

a2(t)
â(t)

Ap−1
2 (g(t))
A0(g(t))

w(g(t)) ≤ 0.

Using Corollary 1 in [26], the corresponding FDE (9) also has a positive solution; this is
a contradiction.

Next, suppose first that x satisfies [C2]. Multiplying FDE (1) by 1/â(t), we find

d
dt

[
a0(t)
â(t)

φ
(

x′′′(t)
)]

+
a2(t)
â(t)

φ(x(g(t))) = 0. (15)

Integrating (15) from t to ∞, we obtain

a0(t)
â(t)

φ
(
x′′′(t)

)
≥

∫ ∞

t

a2(z)

â(z)
φ(x(g(z)))dz

≥ φ(x(g(t)))
∫ ∞

t

a2(z)

â(z)
dz,

and then

x′′′(t) ≥ x(g(t))
[

â(t)
a0(t)

∫ ∞

t

a2(z)

â(z)
dz
] 1

p−1
.

By integrating from t to ∞, we obtain

−x′′(t) ≥
∫ ∞

t
x(g(r))

[
â(r)
a0(r)

∫ ∞

r

a2(z)

â(z)
dz
] 1

p−1
dr

≥ x(g(t))
∫ ∞

t

[
â(r)
a0(r)

∫ ∞

r

a2(z)

â(z)
dz
] 1

p−1
dr,

or

x′′(t) + x(g(t))
∫ ∞

t

[
â(r)
a0(r)

∫ ∞

r

a2(z)

â(z)
dz
] 1

p−1
dr ≤ 0.

Then, x is a positive solution of this inequality. Using Corollary 1 in [26], the corresponding
FDE (10) also has a positive solution; this is a contradiction.

The proof is complete.
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Corollary 1. Suppose that p ≥ 2,

α0 := lim inf
t→∞

A0(t)
A0(g(t))

< ∞,

and
α1 := lim inf

t→∞

t
g(t)

< ∞.

FDE (1) is oscillatory if

lim inf
t→∞

[
a2(t)
â(t)

(
a0(t)
â(t)

) 1
p−1
A0(t)A

p−1
2 (g(t))

]
> (p− 1)δ0 (16)

and

lim inf
t→∞

[
tg(t)

∫ ∞

t

[
â(r)
a0(r)

∫ ∞

r

a2(z)

â(z)
dz
] 1

p−1
dr

]
> δ1, (17)

where

δi = max

{
`(1− `)

α`i
: ` ∈ (0, 1)

}
, for i = 0, 1.

Proof. Based on the converse hypothesis, we assume that FDE (1) has a nonoscillatory
solution, which in turn inevitably leads to the existence of an eventually positive solution
to this equation. Therefore, there is a t1 ∈ I such that x satisfies [C1] or [C2] for t ≥ t1.
As in the proof of Theorem 3, the second-order FDEs (9) and (10) have positive solutions.
However, according to Theorem 1, conditions (16) and (17) confirm the oscillation of
FDEs (9) and (10), respectively, which is a contradiction.

The proof is complete.

The following corollary is obtained directly by setting p = 2 and a0(t) = 1. This
corollary studies the oscillation of the linear state of FDE (1).

Corollary 2. Suppose that

α := lim inf
t→∞

t
g(t)

< ∞.

The FDE
d4

dt4 x(t) + a1(t)
d3

dt3 x(t) + a2(t)x(g(t)) = 0

is oscillatory if

lim inf
t→∞

[
a2(t)
â2(t)

A0(t)A2(g(t))
]
> δ

and

lim inf
t→∞

[
tg(t)

∫ ∞

t
â(r)

∫ ∞

r

a2(z)

â(z)
dzdr

]
> δ,

where

δ = max
{
`(1− `)

α`
: ` ∈ (0, 1)

}
.

Example 1. Consider the FDE

d
dt

[
1
t

d3

dt3 x(t)
]
+

1
t2

d3

dt3 x(t) +
c0

t5 x(λt) = 0, (18)
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where t > 0, c0 > 0 and λ ∈ (0, 1). We note that p = 2, φ(t) = u, a0(t) = 1/t, a1(t) = 1/t2,
a2(t) = c0/t5, and g(t) = λt. Thus, we have

â(t) =
1
t

, A0(t) = t, A1(t) =
1
2

t2,

and
A2(t) =

1
6

t3.

Moreover, from the definition of α1 and α2, we find that α1 = α2 = 1/λ.
Now, conditions (16) and (17) reduce to

λ3

6
c0 > δ0

and
λ

c0

6
> δ1,

where
δi = max

{
`(1− `)λ` : ` ∈ (0, 1)

}
, for i = 0, 1.

Thus, using Corollary 1, FDE (18) is oscillatory if

λ3c0 > 6δ0. (19)

Remark 1. Using Theorem 2, FDE (18) is oscillatory if the second-order FDEs

d
dt

(
1
t

d
dt

w(t)
)
+

κc0λ2

2
1
t3 w(t) = 0 (20)

and
d2

dt2 w(t) +
c0λ2

8
1
t2 w(t) = 0 (21)

are oscillatory.
Now, From Theorem 1, FDEs (20) and (21) are oscillatory if

1
8

λ4c0 > δ2

and
1
8

λ3c0 > δ0

respectively, where
δ2 = max

{
`(1− `)λ2` : ` ∈ (0, 1)

}
.

Therefore, FDE (18) is oscillatory if

c0 > max
{

8δ2

λ4 ,
8δ0

λ3

}
. (22)

To compare the two criteria (19) and (22), we consider different values of parameter λ and determine
the most efficient criterion through the following table.

We notice from Table 1 that Criterion (19) provides wider intervals for the parameter c0, and
this means that it is more efficient in testing the oscillation.
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Table 1. The lower bounds of the parameter c0 at which conditions (19) and (22) are satisfied.

λ 0.1 0.5 0.7 0.9

Criterion (19) 635.114 8.74015 3.68796 1.95338

Criterion (22) 5159.99 17.9293 6.01641 2.75110

3. Conclusions

Based on the comparison principle with equations of the second order, we established
a new criterion of the Kneser type that confirms the oscillation of all solutions of fourth-
order half-linear differential equations. After classifying the positive solutions according to
their derivatives, we excluded the existence of positive solutions in each case separately.
Then, we obtained a criterion that ensures the oscillation of the solutions to DE (1). By
applying the new results to some examples and special cases, we clarified the importance
of the new results. Extending our results to the neutral case is a suggested research
point. Also, improving the monotonic properties of the studied equation can improve the
oscillation criteria.
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