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1. Introduction

To understand the Bernstein theorem for absolutely convergent Fourier transforms,
Beurling [1] researched the Herz space A, (R") in 1964. The Herz space K, (R") is further
explored by Herz [2] in 1968. In the 1990’s, Lu and Yang [3] introduced the homogeneous

Herz space (Kﬁs) (R") and the non-homogeneous Herz space (Kﬁs) (R™). In recent years,
Herz spaces has been extensively studied in the fields of harmonic analysis, see [4-8] and
SO On.

Wiener amalgam is an indispensable tool in time-frequency analysis [9,10] and sam-
pling theory [11]. At first, amalgam spaces is elaborated by Wiener in [12]. Still, the
systematic investigation of amalgam spaces should look at the study of Holland [13], which
contains the research of dual spaces and multipliers on R". Wiener amalgam spaces are
generalized by Feichtinger and Weisz from R or R" to Banach function spaces, see, [14-18]
and so on. A definition of the amalgam space (LY, L*)(R") is defined by:

(L)) = {1 € L (R« | iy

e L“(R“)},

LY(R™)

u 1/u
1 0,10y ey = ( I 2 dy) :

with the usual modification for v = oo or 1 = oo, denote B(y, 1) the open ball with centered
aty with the radius 1. 1p(, 1) is the characteristic function of the ball B(y, 1).

Very recently, the slice space (E}') (R") was introduced by Auscher and Mourgoglou [19],
an exceptional examples of classical amalgam spaces. Auscher and Prisuelos-Arribas [20]
researched some classical operators of harmonic analysis for generalized version slice
space (Ey),(R") in 2017, and proved that amalgam spaces and slice spaces are equivalent.
In recent years, many authors studied slice-type spaces, such as, in 2019, Zhang, Yang,
Yuan, and Wang [21] introduced Orlicz-slice spaces and Orlicz-slice Hardy spaces. In 2022,

where
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Lu, Zhou and Wang [22] introduced Herz-slice spaces. In 2023, we defined mixed-norm
Herz-slice space (KEé’i)t(R”) in [23], and the theory of the Hardy-Littlewood maximal

i,7
operator is given in this space. Given f € L] (R") and x € R", the Hardy-Littlewood
maximal function M(f) is defined by

1
M) () = sup g [ 1F Iy, 0

where the supremum is taken over all balls B € B containing x.

In 1961, the mixed-norm Lebesgue space L¥(R") was introduced by Benedek and
Panzone [24], where & = (uy, ...,uy) € (0,00]", which can be traced back to [25]. Be-
cause mixed-norm Lebesgue spaces has a more refined structure on partial differential
equations [26,27], more scholarly authors like to study problems on it. For example, the
mixed-norm amalgam space (L¥, L?)(R") was introduced by Zhang and Zhou [28] in 2022,
and the boundedness of the Calderé6n-Zygmund operator T and the commutators with
BMO(R") functions on the mixed-norm amalgam space (L”, L¥)(R") was established [29].
The properties of the BMO(R") function b are referred to [30]. A function b € L] (R"), we
define the mean of b over Q by bg := ILQ\ /. 0 b(x)dx. The bounded mean oscillation space,

namely BMO(R") space is defined by
lbllemo == ||b]]« := supi/ |b(x) — bo|dx < oo,
o 1QlJa

the supremum is taken over all cubes Q in R". For a deeper discussion about mixed-norm
spaces, we can see [26,31-33] and so on.

Our motivation is based on our introduction of the mixed-norm Herz-slice space
(KES:;)t(R"), to consider whether we can establish the boundedness of the Calderén—
Zygmund operator T and commutators with BMO(R") functions on the mixed-norm

Herz-slice space (KEg;)t(R”) In this paper, we get the boundedness of the Calderén—
Zygmund operator T on mixed-norm Herz-slice spaces, and demonstrate the necessary
and sufficient conditions for the boundedness of the commutator [b, T| on mixed-norm
Herz-slice spaces. Our results are all new when we return to the classical Herz-slice spaces,
slice spaces and Lebesgue spaces. The commutator [b, T] is defined by

[b, TIf (x) = b(x)Tf(x) = T(bf)(x).

The remainder of this paper is organized as follows. In Section 2, we introduce some
necessary space definitions and operator notation, and we also give crucial lemma. In
Section 3, we obtain the separable, weak convergence of mixed-norm Herz-slice spaces.
To get the boundedness of the Calderén—-Zygmund operator T on mixed-norm Herz-slice

spaces, we explain whether (KEs,;)t(R”) has an absolutely continuous quasi-norm and
the class C°(R") is dense in (KEg;)t(R”) C(R™) is the space of infinitely differentiable
functions with compact support in R”. Furthermore, we get the boundedness of the
Calderén-Zygmund operator T of commutators with BMO(RR") functions on mixed-norm
Herz-slice spaces by M, is bounded on (KES;)t(R") Let b € BMO(R"). The commuta-
tors of the Hardy-Littlewood maximal function with BMO(RR") functions M, are defined,
respectively, by

My f(x) = sup [B(x, )| ! / b(x) =b(y)|-f(v)ldy, 2
r>0 B(xr)

where B(x,r) = {y € R" : |y — x| < r} the ball in R" centered at x € R" with the radius

r € (0, c0). Finally, we establish the necessary and sufficient conditions for the boundedness

of the commutator [b, T| on mixed-norm Herz-slice spaces.



Axioms 2023, 12, 875

30f17

By K(R") we denote the class of Lebesgue measurable functionson R". Let N := {1,2,...}.
Denote the characteristic function of a set G by 1. Denote the Lebesgue measure of a measurable
setby |G|. Given By = B(0,2k>, let Sy := By \ By_q withk € N, 1 = 15, when k € N, and
15, = 1p,, 1s is the characteristic function of S. Let S(R") denote the collection of all Schwartz
functions on R", equipped with the well-known classical topology determined by a countable
family of semi-norms. We denote C*(R") by the space of infinitely differentiable complex-valued
functions. Denotes the unit sphere in R” by (S"71):=S§""! := {x € R" : |x| = 1}. We denote
Cc(R") by the space of all continuos, complex-valued func’aons with compact support. The
letters if, 7, . . . will denote n-tuples of the numbers in [0, 00], i = (uy, ..., um), 7= (v1,...,0m),
m € N. 0 < i < oo indicates that 0 < u; < oo foreachi = 1,---,m. Moreover, for
it = (uy,...,uy)and 0 € R, let u = (u},...,up,) beits conjugate index, that is, and 1’ satisfies

1/t +1/u' = 1. Let
(1.1 L(ﬂ Sy
i \u up) 0\ S

The letter D > 0is used for various constants, it is independent of the main parameters
and maybe change from line to line. We denote a positive constant depending on the
indicated parameters A, B,--- by D4 . We write ¢ < ¢, ¢ < Dy mean that for some
constant D > 0, especially, ¢ < ¢ indicates that ¢ < i and ¢ < ¢.

2. Definition and Preliminary Lemmas

In this section, to more clearly show the progress from the problem to the solution, we
first do some preliminary preparation. Now, we recall some basic notation.

Definition 1 ([28]). Let 0 < t < coand ¥, il € (1,00)". The mixed amalgam spaces (Eg)t(R”) is
defined as the set of all measurable functions f satisfy f € L} (R"),
< o0,
L#(R")

Definition 2 ([23]). Let 0 < t < 00,0 < s < oo, B € Rand ¥,ii € (1,00)".
(1) The homogeneous mixed-norm Herz-slice space (KEg’;)t(R”) is defined by

loc

I 1150l Lo e
(Eg)t(R ) = {f Hf”(Eg)t(]R”) = ‘ #

B(-t) ||U7(R")

where the usual modification when u; = o0,i =1,--- ,n.

(KEGHR") = {1 € Lo B 1l g, ey <1

and
1
s

, ®)

HfH(KEﬁS R” = [ Z 2 ||flsk” Eu)f Rn

where the usual modification made for s = oo.
(2) The non-homogeneous mixed-norm Herz-slice space (KES’;)t(R”) is defined by

(KERH R 1= { £ € Lhoe B 5 1 gy ) < -
and
1

”fH(KE'g’;)t(R”) = |J(Z 2k/55||f15kH E” )‘| ’ 4)

where the usual modification made for s = oo.



Axioms 2023, 12, 875

40f17

Now we introduce ball Banach function spaces. Let y € R" and R € (0,00), for
B(y,R):={z€R":|y—z| <R} and

B:={B(y,R):y € R" and R € (0,00)}. 5)

Definition 3 ([34]). A quasi-Banach space X C K(R") is called a ball quasi-Banach function
space if it satisfies
(1) ||¢l|lx = 0 means that ¢ = 0 almost everywhere;
(2) |¢| < || almost everywhere means that ||¢p||x < || ¢l x;
(3) 0 < @ T ¢ almost everywhere means that ||¢i||x T | || x;
(4) B € B means that 1g € X with B is as in (5).
and, if the norm of X satisfies the triangle inequality, then X is called a ball Banach function
space, namely
(5) Given ¢, ¢ € X
lo+¢llx < llollx + ll¢llx )

moreover, let B € B. There exists a positive constant D ), depending on B, such that,
(6) Given¢p € X

[ 1#(0)ldx < Digy19llx. )

Definition 4. A quasi-Banach function space X is said to have an absolutely continuous quasi-
norm if chj ’ « 1 0as j — oo whenever {G]-}j:1 is a sequence of measurable sets in R" satisfying
that Gj D Gjyq forany j € Nand ﬂ]?"’:l G =0.

Definition 5 (Mollifiers, [35]). Let ¢ : R" — R be a radial, decreasing, nonnegative function

pertain to CZ° (R™) and having the properties:

(1) ¢(z) =0when |z| > 1,

2 Jpnp(z)dz = 1.
Let 7 > 0. Suppose that the function 1, (x) = n~"9(z/1) is nonnegative, pertain to
C®(R™), and satisfies

(1) $y(x) = 0if 2] >y and

(2)  [gu Py (x)dx = 1, then mollifier is defined the following convolution operator:

Ye(f)(z) = | ¢y(z—y)f(y)dy.

Rn

In what follows, we give the notion of the following operators.

Definition 6 (([36])). Let 0 < T,D < oo. A function K(x,y) is called the standard kernel if
(1) vVxyeR"', x#y,

D
[K(x,y)| < =y ®)
(2)  there exist positive constants 0 < T < 1,

D|x —u|*

[K(x,y) — K(u,y)| < , )
(lx =yl +u—y)""
for [x — u| < Y max(|x —yl, [u — y).

_ T

K(xy) — K(x,0)] < —28 =2 (10)

(Jx =yl + [x = o)™

for |y — o] <} max(jx — yl, |x — o).
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Definition 7 ([36]). Let 0 < T,D < oo and K satisfying (8), (9), and (10). A Calderon-Zygmund
operator associated with K is a linear operator T defined on S(R™) that admits a bounded extension
on L2(R"),

1Tz < Bl fll2,

() = [ K fw)dy
with f € CX(R") and x ¢ supp (f).

Let us show some crucial lemmas as follow, first, we give Holder’s inequality on
(ED)i(R™).

Lemma 1 ([28]). Let 0 < t < oo and ¥,ii € (1,00)". Suppose that ¢ € (Eg)t(R”) and
IR (E;i:)t(R”), we have ¢y is integrable and

o9l 1) < H4>||<Eg)t(Rn)\II/JII(Eg)t(Rn),
with1/3+1/0 =1/ +1/u' = 1.

Lemma 2 ([23]). Let 0 < t < oo and ¥,ii € (1,00)". Then the characteristic function on
B(yo, A) satisfies

n 1
i

< AD=1 (11)

HIB(yO’A)H(Eg)t(R”) ~

where yp € R", 1 < A < o0
Lemma 3 ([37], Proposition 2.7). Let i, be a mollifier and g € L} (R"). We have

sup|y + g(x)| < Mg(x).
e>0
3. Main Result

In this part, we first establish the separability of Herz-slice spaces with a mixed-norm,
get a weak convergence on mixed-norm Herz-slice spaces, then, to show the Calderén—
Zygmund operator T is bounded on mixed-norm Herz-slice spaces, we need to indicate
that Tf is well-defined on (KEg;)t(]R”) Furthermore, we get the necessary and sufficient
conditions for the boundedness of the commutator [b, T] on mixed-norm Herz-slice spaces.

Now, we prove that (KEé’i)t(]R") is separable space.

i, 0

Theorem 1. Let 0 < t,s < oo, f € Rand d, i € (1,00)". Then (KEg’;)t(R”) is separable space.

Proof. Let ¢ € (KEué’;)t(]R”) and @ < oo, by using Corollary 2, there exist { € C.(R")
such that

||(P - l/]H(KEg’;)[(R”) < w,

which implies that ¢ is uniformly continuous. Thus, there exists dyadic cube {Qi}f\i 1
sequence and rational number { ai}f\i 1 sequence such that

M
P — Z a;ilg, < .
i=1

(KEE)1(RM)
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Denote © is a set of simple functions 7 and
M
h(x) =) axg,
i=1

with {Qi}f\il is a dyadic cube’s sequence and {ai}f\il is a rational numbers’s sequence.

It suffices to show that % is countable and dense in (KEf;';)t(R”). Thus, (KEg';)t(R”) is
separable. The proof is complete. [

Theorem 2. Let 0 < t,5s < 0o, B € Rand ¥, ii € (1,00)". Assume that there exists a positive
constant D such that

”('blH(KEg;)t(R") <D,

then there exists a subsequence {¢;_}-._, that is weakly convergent in the space (KES’;)t(Rn).

Proof. For 1 < s < oo, applying ([23], Theorem 3.1), we can see that

((KEES)(R)) " = (KELS) (R,

ur, ol
Therefore, we only need to explain that there exists a subset {¢; }le such that for any

p e (KE(R™),

iil,01

lim [ g (xy()dx = [ o)

T—00
where ¢ € (KEg'z)t(R”).
By using Theorem 1, suppose that {y;};”; is dense in (KE;,{;’,SI)t(]R”). Denote
i) = (@) = [ pow(dx
Applying the Holder inequality,

[Fi(y)] < D||1/’l||(KE;,f}f/)f(R”)

Then there exist convergent subsequences {/ ;1 (1) }}- , via the boundedness of {F ;(11)};” ;.

Repeat this step, we get a subsequence { F ;5 (1) }fozl of {F11(y2) };021 satisfying { F 1 (12) };il
is convergence. Thus, for ¢y, (ly < i) there exists a convergent subsequences {f;;(¢y,) }-
After a diagonal process, for any 1, we know that a subsequence {F ; ; (1) };-, is conver-
gence and

Fu@) = [ i@ = [ o0
For any € (KE;,>")i(R") and ¢ > 0, there exists i, have
19— 9l g, ) < 872D
Thus
[Fr®) = Froe @) < [ 01,60 = g, () 90| ax
1) = () = () |
< [ |60 =91, (1) [ + 0.
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If k and k’ are large enough, then

|F (@) — Frop ()| <28,

therefore, for any ¢ € (KE_P'),(R"), {Fii(¥)};2, is a Cauchy sequence. Let F () =

i1, o1

lim;_,o F ;;(1) and F () be a linear bounded functional on (KE:ﬁ *")¢(R"). By using ([23]

ii1,o1

Theorem 3.1), we see that there exist ¢ € (KEg’;)t(R”) such that

L 60w = @) = £ (g) = Tim £9) = lim [y (x)p(x)dx,

i—oo JR"
the proof is completed. [

In following that, we investigate the boundedness of the Calderé6n-Zygmund operator
T on (KELS)(R").

Theorem 3. Let 0 < t,5 < oo, f € R, 7, i € (1,00)" and =Y} 1/u; < p < n—
1/ Y1 4 1/u;. If the Caldeon-Zygmund operator T satisfies

(1) Given function f, supp (f) C S and |x| > 251 with k € R,
ITFCOI < Clfllpr gy %77 (12)
(2)  Given function f, supp (f) C Sy and |x| < 2k-2 with k € R,
T ()] < C275[|f | (- (13)
We have T is bounded on (KEg;)t(R”)

Before we come to the proof of the above theorem, we should to explain that Tf is
well-defined on (KE;;)t (R™).

Lemma4. Let 0 < t,5s < oo, B € Rand 7, ii € (1,00)". Then (KEg’;)t(R”) has an absolutely
continuous quasi-norm.

Proof. Let {G]'};o:1 be a sequence of measurable sets. Forany j € N, G; D Gj;1 and
ﬂ;-";l G]- = @. We see that,

1/v
- 1 (dy|
Lo (R) UBW) 6 W) y}

— 0, which, together with Definition 1,

HlGle(x,t)

when j — oo, we know that HlGle(x,t)

Lo(R")
we have
H1G~1B(x,t) o
1im’1G,H  —lim | LED — .
el OB e |
7NLY (R Li

By Definition 4, we know that (KEg';)t(R”) has an absolutely continuous quasi-norm.
This accomplishes the desired result. [

Lemma 5. Let X be a ball quasi-Banach function space having an absolutely continuous quasi-norm
and M is bounded on X. If g € X, then iy g — gin Xasn — 0T,
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Proof. Let g € X. Then the assertion is trivial. Combining Lemma 3, we have

vy *&llx < IMgllx < Cliglix,

where ¢, * ¢ € X for all7 > 0. We know that the class C.(R") is dense in X, see [38], where
Cc(R™) is continuous functions with compact support. Then there is a function 1 € C.(R")
such that

lg = hllx <e. (14)

based on these, when i € C.(R"), we have ¢, x h € CZ(R") for all 7 > 0. Namely,
iy * h — h uniformly on compact sets as 7 — 07. Thus, we get

|4y * h(x) —h(x)| — 0,
with supp (¢, * h) Usupph C K, K C R" compact. By using Definition 2.1, we get
gy b=l <. (15)
Finally by using (14) and (15),
g = gllx < llg = hllxc - {1 =y e - [[4py = o =y + 8| < C,
the proof is complete. [J

As a consequence of Lemma 5, we deduce the following result.

Corollary 1. Let X be a ball quasi-Banach function space having an absolutely continuous quasi-
norm. Suppose that M is bounded on X. We have the class C°(R") is dense in X.

We know that (K Eg;) ¢(R™) is ball quasi-Banach function space (see [23], Proposition 3.2).
We immediately get the following result, which means that T f is well-defined on (KE g;) ¢(R™).

Corollary 2. Let 0 < t,s < co, p € Rand 7, ii € (1,00)". Then the class C®(R") is dense in
(KELS):(R").

Proof of Theorem 3. Let

flx) =) f()1s,(x) ==} ful(x).

mez mez

By Corollary 2, we know T f is well defined on (KES;)t (R™), Observe that

S

_ k s
||Tf||(KE§:;.)t(R") - (kgz ﬁSHTf:lSkH(Eg)t(RH))

[P

= (22"’55 Y Thals, )

kez  [jm=-oo (ED)o(R)

k=2 §
(Z Zkﬁs Z Tfmlsk ) )
ket |lm==eo (ED)(R")

=

IN

1
k+1 § ¢
| 2% X Thals,
keZ m=k—1 (Eg)t(R")
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1
0 S s
+ | 2% Y Tfuls,
keZ m=k+2 (E;?)r(R”)
=1+ 1+ 1L
First estimate I, using Lemma 1 and (13), we have
k=2 s k=2 . s
Z Tfmls, Z ||fm||L1(]R")2_ nlSk
m=mee (ED) (R”) =T (E)e(R™)
k=2 B s
L ey en s lee g2 s
=T (EZ)e(R")
For s € (0,1], we use Lemma 2, we have
L< [(vokbs % pps . pmRs-EL, L) %
~ kz ; Hme(Eg)t(R”) !
€7 m=—co
1
S| X 2’”’“Ilfmlls ) SN sy gy
(mEZ R™) (KEg,a)f(R )
First estimate s € (1,00), we use Lemma 1 and (13),we know that
k=2 s k=2 . s
Y. Tfuls, SIY Mfmllo w271,
m==c0 (ED)p(R7) m=-00 (ED)p(RM)
k=2 s .
—Kns
S m; Hme(Eg)t(R” || Sm”(Eu (R”) ||1SkH ]R”)

We can estimate I by Lemma 2, we have

1
k=2 s B

S k 1 l[
Is<22’<ﬂ< )3 |fm||(Eg)t(Rn)> kST >>

keZ Mm=—00
1
Hlk=m) (i & -m)s/2 ) |
< (2 2k/3$< E Hfm”(gu ,(Rﬂ m)(Liy o —n)s ))
kez m=-—o00

1
B s/s'"\ s
X (( kzz Z(k_m) i= 17—”)5 /2> )
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We need to pay attention to T is bounded on (Eg )¢(R™) as in Definition 1 (see [29],
Corollary 4.1), to estimate II,

1
k+1 s )
s Y 2% Y Tf,
keZ m=k—1 (Eg)t(R")

k+1 3
S (2 2 Z(k_m)ﬁszmﬁs|fm|?Eg)ﬂR”))

keZ m=k—1

1
mps s
S (Z 2 |fm||(E§)t(R”)> 5 HfH(KEg;)t(R")

mez

Finally, we to estimate III, we use Lemma 1 and (5.1), we conclude that

S

Z Tfmlsk

m=k+2

(ED)e(R)

s S

Y Ml wn2 ™" 1s,
m=k+2

<

~

(ED)1(R")

<

Z Z_mnlsk ||fm || (Eg)t(R”) ||1Sm || (Elz,/)t(Rn)

m=k+2 (ED)i(R")

For 0 < s <1, using Lemma 2, we have

[ee] 5 s
ms |y 2% ) (2m"|fm||(E;;>t<R")||1Bm”(Ei,’)f(Rn)||1Bk“<£§>t<w>>]

keZ m=k+2

s S sy L) o e ks Ty
S (ZZ ps Z ||me?Eg)t(R")2 1uj/p—msiy 1 1)
keZ m=k+2 v

1

1
(o] s S
S (Z 2k,38 Z (zmﬁfk/ngmH(Eg),(R”)> )
keZ m=k+2 ¢

Using Lemma 1 and (12), we know that

s s

o)

Y. fmllr @2 ™",
m=k+2

N
(D) (Rr)

Z Tfmlsk

m=k+2

(ED)e(R")

i - —mn
m:Zk+2Hme(E;)r(Rn)Hlsm||(Elu7:)t(Rn)2 1s,

<

~

(ED) (Rm)

For 1 < s < oo, by Lemma 2 yields

1

111 S [Z 2k‘Bs (2—111” Z Hme(Eg)t(R”)Hle”(EZ?)AR") 1BkH(E§)t(R")> ]

keZ m=k+2 v

1
S <Z 2mﬁs||fm||?Eg)t(Rn)> 5 Hf”(KEgé)t(R")/

ke
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we got what we want. [J

The following theorem aims is to give the necessary conditions for the boundedness
of the commutator [b, T| on mixed-norm Herz-slice spaces.

Theorem 4. Let0 < t < coand ¥, il € (1,00)". Let b € BMO(R"). T be an Calderén-Zygmund
operator satisfies the local size condition

TfG)| < Cll ™ [ 1F)ldy (16)
where f € LY (R"),supp f C Ay, and |x| > 2541 with k € Z, and the condition
ITF()] < C27F £l 2 gy (17)
where f € LY(R"), supp f C Ay and |x| < 252 with k € Z. We have [b, T| is also bounded on
(KES:;)t(]R”), provided that — Y ' 1 1/u; < B <n—Y1" 11/u;and 0 < s < co.

Before we come to the proof of the above Theorem, we need give the boundedness of
My on (KEES)1(R™).

Lemma 6. Let 0 < t,s < oo, G,ii € (1,00)" and — Y ;1/u; < p < n—Y",1/u;. Let
b € BMO(R"). Forany f € L _(R"), then My, is bounded on (KES’;)t(]R").

Proof. By [23], Lemma 5.1, we find that M,f is well defined on (KES’;)t(]R"). Set
=Yoo flm = e —oo fm- We write

[e9)

1/s
1M g ={ Y 2 (M)l )}

k=—o00

o0 k=3 sy 1/s
<C{ )y 2kﬁs< Y |(bem)1k||(gg)t(Rn)> }

k=—00 m=—oo

tu U=

0 k+2 Ak
+C{ Y zkﬂ5< §2||(thm)1kll )> }

k=—o00

N sy 1/s
+C{ Z 2kﬁ9< Z ||(bem)1k|| E“)t R”)) }

k=—c0 m=k+3
= I+ 11+ L.
For the part of II, by using [29], Theorem 2.4, we get

~ S 1/5
1I S C{ Z 2kﬁ$< 2 ||fm|| Eu t(Rn ) } < CHfH KEﬁs (Rn)'

k=—0c0 m=k—2
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For I, denote by, is the mean value of b on B(0,2™). Observe that if m < k — 3, from
the properties of BMO(R") functions (see Stein [30]), by Lemma 1 and Remark 1, we have

(Mo for) el g,
(M) =) - G Dty oy ) L
< C27M| fnll g oyl (B = )L ) e

Lew B
g = BN Ll g

< szkn

(ED)e(R)

+ 2 Bt
R) (=X 57
< C||p 2" H = ,)(k—m)||fm||(Eg)t(R”).
Therefore, for s € (0,1],

o [ k-3 ) sy 1/
I§C||b||*{ 2 < 2 2mﬁ||fm||(gg)t(Rn)2(km)(ﬁn+2i1"m)(k—m)> }

k=—0c0 \Mm=—00

1/s
<C||b||*< Y. 2"l fnll g w)

m=—0oo

1/s
( Z 2k m) llul)) (k—m)s>

k=m+3

1/s
SCIIbII*{ Yo 2" full; (ED), Rn}
m=—oo
= ClipllNf1 KERS).(

For s € (1, 0), using Holder’s inequality can deduce that

) k-3 ' . sy 1/s
ISCHbll*{ )3 ( L 2ol 2 "“f”<k—m>> }

k=—o0c0 \m=—00

° 1/s
k—m n—y" s/2
§C|b||*[ Z ( Z 2785 | £ e, olk=m)(B—(n—LL 1) )1

k=—o00 \m=—00

3 s/s' ‘ 1/s
y {( 3 (k_m)s/> k) (b=~ :‘@));]

m=—0o0

o 1/s
§C|b||*{ Z Zm‘BSHfmmEg)t(R")}

m=—0oo

= ClBIIFI gy, (gory:

Since p < n — Y ; 1/u;. For part of I, when m > k + 3 and x € Ay, we have

Mofun(x) < €27 [ 1b(x) = b(y)] - |fn(y)ldy

m

< CO o) ~ bl Wflusgan) + €27 [ 10— b1 1f ()l
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Thus, by Lemmas 1 and 2, we can see that

1Mo fn) Vil 2, ey < CIIBI27 H ol gy e

o+ €Il 2% = K)ol g, e

k—m) Y
< ClJbl 2" 55 = K) | fnl i,

Hence, when s € (0,1],

0 s11/s
§ m m—k)(B+yL, L
I =< C”b”*l ( Z 2 ﬁ”me (ED); Rn)(m k)2 = JB+E ”1)> 1

k=—o00 \m=k+3

m—3 1/s
mps s (k= F
gc||b||*l 2 omp I fon |15 (B0, ) ( E (m — k) 2( m)(B+L, l)sﬂ

m—=—oo k=—oc0

= ClBIFI gy, gy

For s € (1,00), using the Holder inequality, we have

sq1/s
3 3 —(m—k no 1
HISCIIbII*[ X ( S 2| fnll gy ey — K2~ IS M
k=—oc0 \m=k+3 v
0 0 ) 1/s
m —(m—k ;1: = s
cctbl.] £ (£ 2l 20|
k=—oc0 \m=k+3 7
1/s

00 00 ) , p
x ( Y. ) (m—k)s/z’(’"*k)(ﬁ+2i:1 s /2)
k=—co m=k+3

Because B > — Y.' 1 1/u;. We got what we want. [
In what follows, we show commutators [b, T] is also bounded on (I(Eg ;) H(R™)

Proof of Theorem 4. Write f =Y 10 fly := Y1 —_o fm. We then have

1/s
8, TIf N g —{ )3 2| b, T f 1, m}

3 s\ 1/s
<c{ Y zkﬁS(H[b,T]< Y fm>1k ) }
k=—00 Mm=—00 (E;’)t(R”)
sy 1/s
0 k+2
g (o E )
k=—o00 m=k—2 (Eg)t(R”)
sy 1/s
+C{ Y. zkﬁS( [b,T]( Y fm>1k ) }
o m=k+3 (ED:(®)

=1+ 14+ 1IL
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For I, since [b, T] is bounded on (Eg)t(]R") in [29], we have

© kt2 e
IISC{ Yy 2’35< ) ||fm||E»z),(Rn> }
m=k—2 v

k=—o0

For I, when x € Ay and j < k — 3, using (16), we get

on( )

Therefore, by Lemma 6,

< Clx|” "/|b ) — b(y

k—3
)y fm(y)'dy < CM,f(x).

m=—oo

I< CHbeH KEﬂS ( ) S C”fH(KEé'i)f(R")

For part of II, when x € Ay, y € A, and m > k + 3, then 2|x| < |y|. Therefore,

T]( ggfm) (x)

Setl <s < ocoand

@) =Ixl™ [ 1)~ b)ls)dy

<C [ 1o =Byl )y = CTH(f1) ().

Thus, by Corollary 3.1,

s KGR ey

—=c s [(TH0fDg)]

Il KE_;ss y (Rn)§1
0
=C  sup \(IfI/Tbg)\
<1
Hg” E ﬁs )( n)_
< CHf” KEﬁq )e(R") sup HMbg”(KEi’jf,),(R")'
ligll —Bs' <1 ul 0!
(KEPS) )
By Lemma 6, we have
M < s
| hg” Ef ;/) (R") = ||8|| Euﬁv (R’

Thus,
I < C”fH(KEéi)t(R”)
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Now let 0 < s < 1. By Lemma 1 and (17), we first deduced that, when m > k + 3,
”[br T]fmlkH(Eg)t(Rn)
< CH|b() - bk| : ‘Tfm()‘lAkH(Eg),(R“)
k=m) Ty 4
< Cloll 2 E | fll e,

|(6() = ) 1502

‘ (ED)¢(R")

(k=m) Yty o
+C2 L Hf”’H(E,”;)t(R") :

HlB(O'Z"’) ‘(Eg)t(R")

k—m)yr, L
§C||b||*2( m) Yilq u; (m—k)”fm”(Eg)t(Rn)

By this and (1.1), we have

(e (e s 1/5
III§C||b|*{ Y ( ) Zm‘BHme(Eg)t(Rn)(m—k)z_(m—k)(ﬁ"rZilul,-) }

k=—0c0 \m=k+3

- 1/s
§C||b|*{ Y 2kﬁ5||fk|?£§)t(]R")}

k=—o0
= Il gt
because p > —Y_I' ; 1/u;. This accomplishes the desired result. []

Finally, we prove the other side, namely, the sufficient conditions for the boundedness
of the commutator [b, T] on mixed-norm Herz-slice spaces.

Theorem 5. Let —Y /' 1/u; < p<n—Y111/u;,0<t,s <ooandd,ii € (1,00)". Let T be
an Calderén—Zygmund operator with K(x) satisfying (9), (10), and K(x) € C®(S"~1). Let bbea
locally integrable function. If [b, T is bounded on (KEg’;)t(R”), then b € BMO(R").

Using a similar way of [23], Proposition 3.2, we immediately have the following lemma.

Lemma?7. Let 0 < t,s < coand ¥,ii € (1,00)". If = Y1 1 1/u; < p <n—Y",1/u;, then the
characteristic function on B(yo, Ro) satisfies

Ry, (18)

H18<yo,Ro> LB(yo,Ro)

<
. B L —B,s! ~
(KEGS): (Rr) (RES5 ) (R")

where yp € R", 1 < Ry < 0.

Proof of Theorem 5. Suppose that boundedness of commutator [b, T] on (KEg';)t(R”). We
use the same method as Janson [39]. Let us take 0 # zy € R"” and p > 0 such that

0 # B(zo, v/np). Then for x € B(zg, v/np), K(x) € C®(B(zg, \/np)) such that (K(x)) ! can
be written as the absolutely convergent Fourier series,

(K(x))flz Z amei<vm,x>‘
mez"

with Y"|a,,| < oo, where the exact form of the vectors vy, is unrelated, then we have
the expansion

(K(x))™' = P p~ " Y aye' @) for ’x - zop_l‘ < +/n.
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Given cubes Q = Q(xp,7) and Q" = Q(xo — rzo/p,7),if x € Qand y € Q/, then

X—y 2
r 4

X — X0
r

+ - (0_%) < /n.

r

<

Let T(x) =sgnBand B = (fQ’ b(y))dy). Then

1
/be(x)—bQ,;dx: @/ |B|dx
= 57 o, T 0) = b))y
= /n /}1 (b(x) —b(y))K( x*y)Zamei<vm’¥>S(x)lg(x)lgf(y)dydx.

Setting g (y) = e~ <v""r>1Q/ (y) and hy,(x) =e i{om¥) s s(x)1g(x), we have

JIb) —borld = Tam [ [ (bx) = b(y))K(x — y)gmy)lm (x)dydx
—Zam/ 16, T) (g) (x) i (x) .

Applying Holder’s inequality and Lemma 7, we have

2
|Q| / Ib(x) — boldx < @/Q;b(x)—bg,|dx

Z ‘amHHb T]fm”(KEﬁ“ (Rn)HngH KE—ﬁq ) (R”)

| mezh

<2

[~ gl

<

ZO

| eZZn|am | Hfm ” (KEg’;)t(]R”) ||gm H (KE;,ﬁ;)t(R")

X

1 ”'( ERS) ()= (KE ‘“)(Rn)

< /
SN T g oy e, ey

then b € BMO(R"). This completes the conclusion. [

4. Conclusions

We obtain the separable of on mixed-norm Herz-slice spaces, establish a weak convergence
of on mixed-norm Herz-slice spaces, and get the boundedness of the Calderén-Zygmund
operator T on mixed-norm Herz-slice spaces. Moreover, we get the necessary and sufficient
conditions for the boundedness of the commutator [b, T| on mixed-norm Herz-slice spaces.
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