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Abstract: Typhoons often cause huge losses, so it is significant to accurately predict typhoon tracks.
Nowadays, researchers predict typhoon tracks with the single step, while the correlation of adjacent
moments data is small in long-term prediction, due to the large step of time. Moreover, recursive multi-
step prediction results in the accumulated error. Therefore, this paper proposes to fuse reanalysis
images at the similarly historical moment and predicted images through Laplacian Pyramid and
Discrete Wavelet Transform to reduce the accumulated error. That moment is determined according
to the difference in the moving angle at predicted and historical moments, the color histogram
similarity between predicted images and reanalysis images at historical moments and so on. Moreover,
reanalysis images are weighted cascaded and input to ConvLSTM on the basis of the correlation
between reanalysis data and the moving angle and distance of the typhoon. And, the Spatial Attention
and weighted calculation of memory cells are added to improve the performance of ConvLSTM. This
paper predicted typhoon tracks in 12 h, 18 h, 24 h and 48 h with recursive multi-step prediction.
Their MAEs were 102.14 km, 168.17 km, 243.73 km and 574.62 km, respectively, which were reduced
by 1.65 km, 5.93 km, 4.6 km and 13.09 km, respectively, compared with the predicted results of the
improved ConvLSTM in this paper, which proved the validity of the model.

Keywords: ConvLSTM; reanalysis data; typhoon track; recursive multi-step prediction

MSC: 68T07; 42C40

1. Introduction

A typhoon is a kind of tropical cyclone. It is called a typhoon when the maximum
wind near the tropical cyclone center reaches the 12th level, namely, over 32.7 m/s [1].
When a typhoon occurs, in addition to causing strong winds and heavy rain, it may also
cause secondary disasters, such as floods and mudslides, and result in huge losses to
people’s lives and property. For example, typhoon Lionrock that occurred in Japan in
2016 led to the death of 22 people after landing [2]. Typhoon Yolanda hit the Philippines
in 2013, resulting in 6293 people’s deaths, 1061 people missing and 28,689 people injured,
and also caused the loss of USD 904,680,000 [3]. Furthermore, because of global warming,
the number of strong typhoons may increase further [4]. Therefore, it is important for the
development of disaster prevention and mitigation work to accurately predict typhoon
tracks. At present, researchers mainly predict typhoon tracks with single-step prediction
and multi-step prediction.

Researchers have conducted a lot of work on typhoon tracks single-step prediction.
Numerical prediction was used to predict typhoon tracks by researchers earliest. Hong
Kong Observatory predicted typhoon tracks with AAMC-WRF (Asian Aviation Meteoro-
logical Centre -Weather Research and Forecast), which achieved a small predicted error [5].

Axioms 2023, 12, 874. https://doi.org/10.3390/axioms12090874 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12090874
https://doi.org/10.3390/axioms12090874
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-4393-6250
https://orcid.org/0000-0002-6603-2019
https://doi.org/10.3390/axioms12090874
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12090874?type=check_update&version=2


Axioms 2023, 12, 874 2 of 21

Numerical prediction mainly uses atmospheric dynamics, numerical mathematics and
so on. Although the method can achieve relatively high accuracy, the complexity of the
formula is high, calculation is large, and the requirements for hardware are also relatively
high. To reduce the difficulties of prediction, with the continuous development of Deep
Learning, researchers have begun to predict typhoon tracks with Deep Learning methods.
Therefore, researchers mainly choose LSTM (Long Short-Term Memory) and its variant
models during their research, such as GRU (Gate Recurrent Unit), ConvLSTM (Convolu-
tional LSTM) and so on. Jie Lian et al. considered the influence of meteorological factors
on typhoon tracks, adopting coordinates of typhoon centers and meteorological data, and
extracting underlying deep features of multi-dimensional datasets with AE (Auto-encoder)
and prediction time series with GRU [6]. B. Tong et al. predicted tropical cyclone tracks
and intensity in the short term with ConvLSTM on four kinds of tropical cyclone best track
datasets [7]. But, ConvLSTM is mainly used for the prediction of time image series, and
it is more suitable for extracting temporal and spatial features of time image series at the
same time, with poor performance on features extraction of pure data. Furthermore, the
influent area of typhoons is relatively large. In the research of Kazuaki Yasunaga et al.,
the maximum radius of the typhoon can be over 500 km [8]. It explains that the typhoon
has spatial features, and predicting typhoon tracks only with best track datasets does not
consider the spatial features of the typhoon. Therefore, there are researchers who predict
typhoon tracks with satellite images and reanalysis images. Mario Rüttgers et al. adopted
reanalysis images and satellite images marking typhoon centers and generated predicted
images with GAN (Generative Adversarial Network) to achieve the predicted coordinates
of the typhoon center at the next moment [9]. However, compared with ConvLSTM, gener-
ated images with GAN are more random. Xiaoguang Mei et al. proposed Spectral–spatial
Attention Network, which added Spectral–spatial Attention to RNN (Recurrent Neural
Network) and CNN (Convolutional Neural Networks) to achieve hyperspectral image
classification and improve the abilities that the model learns for the correlation of the
spectrums in the continuous spectrum and the significant features and spatial correlation
between adjacent pixels [10]. Adding Spatial Attention to the model can help the model
to extract more spatial features. In addition, compared with satellite images, reanalysis
images not only reflect the temporal and spatial features of typhoons, but also reflect the
influence of meteorological data on typhoons. So, this paper adopts reanalysis images and
ConvLSTM to realize the typhoon tracks prediction in the process of research.

The method that predicts typhoon tracks with single-step time series is more suitable
for short-term prediction in 3 h and 6 h. And, for long-term in the future, like predicting
typhoon tracks in the next 12 h, 24 h and 72 h, steps of time series are large, with single-step
prediction and correlation between data at two continuous moments being small, which
results in the model having some difficulties learning temporal features. Because it is
necessary for advanced arranging of disaster prevention and mitigation work to accurately
predict typhoon tracks as early as possible, long-term prediction is also important in the re-
search of typhoon tracks prediction. Therefore, when researching the problem of long-term
prediction in the future, multi-step prediction is more suitable for predicting typhoon tracks
with time series of short sampling time intervals to increase the correlation between data at
continuous moments. Multi-step time series prediction includes a recursive multi-step pre-
diction strategy, direct multi-step prediction strategy, direct-recursive hybrid strategy and
multi-output strategy [11]. Chia-Yuan Chang et al. promoted that the multi-step prediction
is the more common application in their research, and they recursively predicted extreme
weather with the MCF (Markov conditional forward) model [12]. However, research studies
of multi-step prediction in the field of typhoon tracks prediction are few at present. Some
researchers predict cyclone intensity with multi-step prediction. For example, Ratneel
Deo et al. multi-step predicted cyclone intensity in the South Pacific with Bayesian Neural
Networks and the multi-output strategy [13]. Additionally, in other fields, researchers have
performed much related research by multi-step prediction. Qichun Bing et al. predicted
short-term traffic flow using Variational Mode Decomposition and LSTM with recursive
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the multi-step prediction strategy [14]. The recursive multi-step strategy involves adding
predicted results at the current moment to time series to predict the next moment; so, it
will cause the problem of accumulated error. Zhenhong Du et al. predicted chlorophyll a in
the future with WNARNet (Wavelet Nonlinear Autoregressive network) and multi-step
prediction, splitting time series with wavelet transform to simplify the complex time series,
so as to reduce the accumulated error from multi-step prediction [15]. Feng Zhao et al.
improved DTW (Dynamic Time Warping), proposing DMPSM (Dynamic Multi-perspective
Personalized Similarity Measurement) to determine the historical stock series, which was
similar to the predicted series, and using it to improve the results of multi-step prediction
of the model in order to reduce the accumulated error [16].

But, the Wavelet Transform and DTW mentioned above are more often applied to
handle time series data, and less often applied to time series images. Therefore, to reduce
the accumulated error created by recursive multi-step prediction, this paper determines
historical reanalysis images, which are similar to predicted images, and then fuses pre-
dicted images with similarly historical reanalysis images to adjust the predicted images.
Researchers have also conducted many research studies on image fusion. Run Mao et al.
proposed Multi-directional Laplacian Pyramid to realize image fusion in order to solve
the problem of the traditional Laplacian Pyramid image fusion algorithm, in which fused
images are fuzzy and have a low contrast ratio [17]. Features of images in different sizes
can be acquired by Laplacian Pyramid. Akansha Sharma et al. decomposed images into
high-frequency and low-frequency images with DWT (Discrete Wavelet Transform) and
then fused images using CNN in order to ensure the clearness and integrity of fused
images [18]. DWT can decompose images to extract high-frequency and low-frequency
features. So, this paper combines DWT and Laplacian Pyramid, so as to keep features of
images as high as possible.

Through the above analysis of previous studies, this paper proposes weighted cascade
reanalysis images of physical variables, which are input to ConvLSTM, according to the
correlation between reanalysis data of physical variables and the moving angle and distance
of the typhoon, in order to improve the proportion of reanalysis images of physical variables
with a high correlation among input images. Meanwhile, Spatial Attention is added into
ConvLSTM to improve the ability of the model to extract spatial features. The memory
cells at the last two moments of ten moments in series are weighted and added, and every
memory cell in the ConvLSTM unit is weighted, which is added to the gate unit calculation
to improve the memory ability of the model in order to improve the predicted accuracy of
the model. Moreover, this paper determines the historical moment that is similar to the
predicted moment, according to the moving angle difference and absolute value of the
moving distance difference of the typhoon at the predicted moment and historical moments;
color histogram similarity between predicted images and reanalysis images at historical
moments; and so on, fusing reanalysis images at the similarly historical moment and
predicted images, in order to reduce the accumulated error resulting from recursive multi-
step prediction to improve the predicted results. Regarding the method in this paper, by
firstly combining CCA (Canonical Correlation Analysis) and GRA (Grey Relation Analysis),
the physical variables group is selected with the highest correlation with the typhoon
moving angle and distance, transferring its reanalysis data into reanalysis images marking
the location of the typhoon center at the previous moment on images. The weights are set
according to the correlation coefficient between every physical variable and the moving
angle and distance of the typhoon, and reanalysis images are weighted cascaded, inputting
to the ConvLSTM to achieve predicted images and calculating latitude and longitude
coordinates of the typhoon center at the predicted moment according to the predicted
images. To reduce the influence of the accumulated error on the predicted accuracy, the
historical moment is determined that is similar to the predicted moment, according to the
Euclidean distance of the pixel coordinates of marked points on the reanalysis images at
historical moments and predicted images, the color histogram similarity between predicted
images and reanalysis images at historical moments, the moving angle difference and
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absolute value of the moving distance difference of the typhoon at historical moments
and the predicted moment, and the absolute value of the latitude difference and longitude
difference of the typhoon centers at historical moment and the predicted moment. Predicted
images and reanalysis images at the historical moment are fused by Wavelet Transform
and Laplacian Pyramid, extracting coordinates of marked points on the fused images using
the method of contour detection and the fitting minimum enclosing rectangle, and then
eliminating marked points on fused images as much as possible. The new marked points
representing the coordinates of the typhoon center at the previous moment are marked
on the fused images, which are processed, to adjust the predicted images. The predicted
latitude and longitude coordinates of the typhoon center of every physical variable are
calculated through the relative position of the marked point on fused images and the
center of the image, fitting them with a six-degree polynomial to achieve coordinates
of the typhoon center at the predicted moment. The predicted images and latitude and
longitude coordinates achieved from the above process are added into the time series of
next step prediction to obtain reanalysis images and latitude and longitude coordinates of
the typhoon center at the next moment through recursive multi-step prediction.

The structure of this paper is as follows: Section 2.1 introduces related theoretical
research results. Section 2.2 introduces the established and optimized ConvLSTM and the
improved method of multi-step prediction that this paper proposes. Section 2.3 introduces
the establishment of the dataset in this paper, including the data acquirement and data
process. Section 3 introduces the experimental results of this paper and the comparison with
the work results of other researchers. Sections 4 and 5 are the discussion and conclusion of
this paper’s research, respectively.

2. Materials and Methods
2.1. Related Work
2.1.1. ConvLSTM

ConvLSTM was proposed by Xingjian Shi et al. initially to predict short-term rainfall
intensity in the local area [19]. ConvLSTM is a variant of LSTM. Adding the convolution
operation on the basis of LSTM can not only make the model learn the temporal features of
images and matrix data, but also spatial features. The ConvLSTM model uses the convo-
lution operation instead of the multiplication operation when performing the LSTM unit
gate operation, as shown in Formulas (1)–(5), where “*” and “◦” represent the convolution
operation and the Hadamard product operation, respectively [20].

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi) (1)

ft = σ(Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f ) (2)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc) (3)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo) (4)

Ht = ot ◦ tanh(Ct) (5)

2.1.2. Spatial Attention

Sanghyun Woo et al. proposed Spatial Attention, which calculates which part has
important information through the spatial information of inner features [21]. The model
can calculate the weight matrixes, which represent the important degree of features at
some position, through Spatial Attention to strengthen the more important features and
weaken the less important features. The calculation process of Spatial Attention is as
follows [22]:
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1. Firstly, Fs
mp ∈ RH×W×1 and Fs

ap ∈ RH×W×1 are obtained by operating maximum
pooling and average pooling to input feature F ∈ RH×W×C along the channel direction,
as shown in Formula (6) and (7).

Fs
mp = MaxPool(F) (6)

Fs
ap = AveragePool(F) (7)

2. Then, Ms(F) ∈ RH×W×1, namely, the weight matrix, is obtained by cascading Fs
mp

and Fs
ap, the convolution operation and the Sigmoid activation function operation, as

shown in Formula (8),

Ms(F) = F · σ
(

f 7×7([Fs
ap; Fs

mp])
)

(8)

where f 7×7(·) means that it is the convolution operation, in which the kernel size is 7;
and σ(·) represents the Sigmoid activation function.

3. Finally, the output features are calculated by Formula (9).

Fs = F ·Ms(F) (9)

2.1.3. Laplacian Pyramid

Laplacian Pyramid is an improvement of Gaussian Pyramid, which aims to preserve
the lost high-frequency information of images in the process of convolution and the subsam-
pling operation in Gaussian Pyramid [23]. Laplacian Pyramid consists of difference images
between two adjacent layers of the Gaussian Pyramid, and the size of images in every layer
is different, so the image in the next layer needs to be upsampled to be the same size as the
image in the previous layer; the process of calculation is shown in Formula (10) [24],

Ll = Gl − EXPAND(Gl+1) (10)

where l represents the number of pyramid layers (0 ≤ l ≤ N); Ll represents the image in
the l layer of the Laplacian Pyramid; Gl represents the image in the l layer of the Gaussian
Pyramid; and the EXPAND function represents the image upsampling to enable the image
to be the same size as the image in the previous layer, the setting LN = GN .

2.1.4. Discrete Wavelet Transform

Discrete Wavelet Transform can not only be used to deal with data series, but also
image decomposition. A one-dimensional wavelet can decompose the discrete signal
S = s0s1s2 · · · sq−1 with length q into a low-pass filtered subband L, including low-
frequency features of the signal, and a high-pass filtered subband H, including high-
frequency features of the signal [25]. The mathematical formula of Discrete Wavelet
Transform is as shown in Formulas (11) and (12) [26],

W f (j, k) =

+∞∫
−∞

f (t)ψ∗j,k(t)dt (11)

ψj,k(t) = a−j/2
0 ψ(a−j

0 t− b0k) (12)

where a0 and b0 are constants, j is the decomposition level, and k is the time translation factor.
For a two-dimensional image, Discrete Wavelet Transform can also compress and

decompose images. Firstly, a one-dimensional filter is applied to every row of the image
and then every column of the image, which can achieve a low-frequency image and three
high-frequency images, whose size is half of the original images, to realize decomposing
images [27].
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2.2. ConvLSTM Establishment and Prediction

The method of this paper firstly determines the physical variables group, which is most
related to the typhoon moving angle and distance, with CCA and GRA, and then transfers
the reanalysis data into reanalysis images, marking the location of the typhoon center at the
previous moment on images. Spatial Attention and weighted calculation of memory cells
are added into ConvLSTM in order to improve the abilities of extracting spatial features and
memory ability, respectively. And, then, according to the correlation of physical variables,
weighted cascaded reanalysis images are input to the improved ConvLSTM to obtain the
preliminary predicted images. The predicted results of the typhoon center coordinates at
the predicted moment that each physical variable corresponds to are calculated according
to the relative position of the marked point and the image center and coordinates of the
typhoon center at the previous moment, fitting them with a six-degree polynomial to
obtain preliminary predicted results of latitude and longitude coordinates of the typhoon
center at the predicted moment. The similarly historical moment is determined according
to the Euclidean distance of pixel coordinates of marked points on reanalysis images at
historical moments and predicted images, the color histogram similarity between predicted
images and reanalysis images at historical moments, the moving angle difference and
absolute value of the moving distance difference of the typhoon at historical moments
and the predicted moment, and the absolute value of the latitude difference and longitude
difference of typhoon centers at historical moments and the predicted moment. Predicted
images and reanalysis images at the similarly historical moment are fused, extracting
the pixel coordinates of marked points, and then eliminating the marked points after
fusing as much as possible, remarking new marked points on fused images. Latitude and
longitude coordinates of the typhoon center, which each physical variable corresponds
to, are calculated according to coordinates of the new marked point, which each physical
variable corresponds to, fitting them with a six-degree polynomial to obtain improved
latitude and longitude coordinates of the typhoon center at the predicted moment, and
fused images and the improved coordinates are as the input of next step, continuing to
recursive multi-step prediction.

2.2.1. Correlation Analysis of Reanalysis Data

Typhoon tracks may be influenced by various physical factors together, so the phys-
ical variables group needs to be selected, which is most related to typhoon tracks from
11 physical factors in the ERA5 dataset by the correlation analysis method. Because there is
not necessarily a direct correlation between the latitude and longitude coordinates of the
typhoon tracks and the physical variables, this paper transfers latitudes and longitudes
coordinates into the moving angle and distance of typhoons. The moving distance of
a typhoon is the spherical distance d between coordinates of the typhoon center at the
previous moment and coordinates of the typhoon center at the current moment, calculating
with the Haversine Formula [28], as shown in Formula (13), where R is the radium of the
Earth, whose value is 6371 km.

d = 2sin−1

√
sin
(

lat2 − lat1

2
× π

180

)2
+ cos

(
lat1 ×

π

180

)
cos
(

lat2 ×
π

180

)
sin
(

lon2 − lon1

2
× π

180

)2
× R (13)

The calculation of the moving angle of the typhoon is that the location of the typhoon
center at the previous moment is the origin, calculating the angle (0◦ ≤ angle < 360◦)
between the Northern Hemisphere longitude and the line of coordinates of the typhoon
centers at two continuous moments, as shown in Figure 1.
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Here, latdis is the distance of typhoon centers at two continuous moments in the latitude
direction, and londis is the distance of typhoon centers at two continuous moments in the longi-
tude direction, whose calculation methods are as shown in Formulas (14) and (15), respectively:

latdis = |lat2 − lat1|×111.11 (14)

londis = cos
lat1π

180
× 111.11×

∣∣∣∣lon2 − lon1

∣∣∣∣ (15)

where lat2 is the latitude coordinate of the typhoon center at the next moment, lat1 is the
latitude coordinate of the typhoon center at the previous moment, lon2 is the longitude
coordinate of the typhoon center at the next moment, lon1 is the longitude coordinate of
the typhoon center at the previous moment.

The calculation of the moving angle of the typhoon is as shown in Formula (16):

angle =



0, latdis = 0, londis = 0

cos−1
(
|latdis |

d

)
×180

π , latdis > 0, londis > 0

90, latdis = 0, londis > 0

cos−1
(
|londis |

d

)
×180

π + 90, latdis < 0, londis > 0

180, latdis < 0, londis = 0

cos−1
(
|latdis |

d

)
×180

π + 180, latdis < 0, londis < 0

270, latdis = 0, londis < 0

cos−1
(
|londis |

d

)
×180

π + 270, latdis > 0, londis < 0

(16)

The values of physical variables at the previous moment and at the location of coor-
dinates of the typhoon center at the next moment correspond to the moving angle and
distance of typhoon centers at the next moment relative to the previous moment. The
11 physical variables are arranged and combined, with a total of 2046 combinations. The
physical variables group is the independent variable of the correlation analysis, and the
moving angle and distance of the typhoon are the dependent variable of the correlation
analysis. Because the moving angle and distance of the typhoon are two-dimensional
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vectors, however, the dependent variable of the traditional correlation analysis is one-
dimensional data; so, this paper first reduces the independent variables and the dependent
variables to one dimension with CCA and then calculates the correlation between inde-
pendent variables and dependent variables with GRA, determining the physical variables
group with the highest correlation. The values of physical variables in the typhoon area
of 1300 km × 1300 km, whose center is the typhoon center, are transferred into reanalysis
images by Basemap as the input of the predicting model.

2.2.2. The Establishment and Optimization of ConvLSTM

ConvLSTM can extract temporal and spatial features of data, which are mainly used to
predict time series images. In this paper, the reanalysis images series of physical variables
are used as the input of the model, using reanalysis images at ten previous moments to
predict the reanalysis images of physical variables at the next moment. In order to improve
the ability of the model to extract spatial features, this paper adds Spatial Attention to the
model on the basis of adding a convolutional layer. Furthermore, every reanalysis image
with RGB channels is resized to 64 px × 64 px. The weight w1, w2, w3 · · ·wn is set according
to the correlation coefficient between the moving angle and distance of the typhoon and
each physical variable in the physical variables group, where n is the number of physical
variables in the physical variables group. The reanalysis images of physical variables
are weighted cascaded to multi-channel images with weights w1, w2, w3 · · ·wn to add the
proportion of reanalysis images with higher correlation in the input images. Figure 2 shows
the training process of the above improved ConvLSTM.
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Furthermore, to improve the features extracting ability of the model for reanalysis
images, a convolutional layer is added to each ConvLSTM unit, normalizing after every
convolutional layer in order that the values of the input gate, forget gate and output
gate of the gate units are not always 1. Figure 3 is the diagram of the ConvLSTM unit
structure, and three ConvLSTM layers in the model this paper used consist of the above
ConvLSTM units.
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In the process of gate units calculation, to preserve more information in memory cells
and improve the memory ability of the network, this paper adds the information of memory
cells into the gate units calculation, according to the Formulas (1)–(5) in Section 2.1.1, and
adds weight matrices to memory cells, as shown in Figure 4. The initial values of weight
matrices are random numbers conforming to uniform distribution, ranging from [−1, 1) in
order to partly activate and partly inhibit the information of memory cells and prevent the
results of the multiplication of the memory cell and the weight matrixes from being too
large or small to change the resulting value of the gate unit calculation. Meanwhile, the
memory cells at the last two moments in every series are weighted and added in order to
keep more memory information at the final predicted moment.
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Additionally, this paper changes the original CE Loss (Cross Entropy Loss) to MSE
Loss (Mean Squared Error Loss) in order to enable the model to be more suitable for the
problem of time series prediction.

The pixel coordinates of marked points on images are obtained by transferring pre-
dicted images of each physical variable from RGB three-channel images into HSV three-
channel images, and detecting contours and the fitting minimum enclosing rectangle on
the V (Value) channel. If the marked points cannot be localized and recognized directly,
images of the V channel will be enhanced by Histogram Equalization, detecting contours in
the range of [4:60, 4:60] of the image. Corresponding latitude and longitude coordinates of
the typhoon center at the predicted moment are obtained according to the pixel coordinates
of marked points on the predicted images of each physical variable, as shown in Formulas
(17) and (18), using a six-degree polynomial to fit the predicted latitude and longitude
coordinates corresponding to predicted images of each physical variable in order to obtain
the predicted values of latitude and longitude coordinates of the typhoon center at the
next moment.

latpred = latpre + (y− 32)× (11.8÷ 64) (17)

lonpred = lonpre − (x− 32)×
1300

111×cos(latpred× π
180 )

64
(18)

where (x, y) is the coordinates of the marked point on the predicted image, latpred is the
latitude coordinate of the typhoon center at the predicted moment, lonpred is the longitude
coordinate of the typhoon center at the predicted moment, latpre is the latitude coordinate
of the typhoon center at the previous moment, lonpre is the longitude coordinate of the
typhoon center at the previous moment.

2.2.3. Fusion with Similar Images

In this paper, the historical moment that is similar to the predicted moment is deter-
mined using the moving angle and distance of typhoon centers at predicted and historical
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moments, the difference of latitude and the difference of longitude of typhoon centers
at predicted and historical moments, the color histogram similarity between predicted
images and reanalysis images at historical moments and the Euclidean distance of pixel
coordinates of marked points.

There are some relations between the moving direction of the typhoon and the latitude
coordinate of the typhoon center. Tables 1 and 2 are the statistics of the relation between the
value of the latitude coordinate of the typhoon at the current moment and the difference of
latitude coordinates and the difference of longitude coordinates of typhoon centers at the
current moment and at the previous moment in the dataset of this paper. It is determined
that in the case of latitude coordinates of the typhoon center at the current moment >15◦,
the number of typhoon moments with the difference of latitude coordinates of typhoon
centers at the current moment and the previous moment≥0◦ accounts for 89.56%, and in the
case of latitude coordinates of the typhoon center at the current moment <15◦, the number
of typhoon moments with the difference of longitude coordinates of typhoon centers at the
current moment and the previous moment ≤0◦accounts for 96.42%. Therefore, this paper
first weeds out the typhoon moment that the difference of latitude coordinates of typhoon
centers at the current moment and the previous moment <0◦ when latitude coordinates of
the typhoon center at the current moment >15◦, or the difference of longitude coordinates
of typhoon centers at the current moment and the previous moment >0◦ when latitude
coordinates of the typhoon center at the current moment <15.

Table 1. The statistics of the relation between the value of the latitude coordinate of the typhoon
at the current moment and the difference of latitude coordinates of typhoon centers at the current
moment and at the previous moment in the dataset.

The Difference of Latitude
Coordinates of Typhoon Centers

at Current and Previous
Moments ≥0◦

The Difference of Latitude
Coordinates of Typhoon Centers

at Current and Previous
Moments <0◦

Total Typhoon
Moments

Latitude coordinates of the typhoon
center at the current moment < 15◦ 706 187 893

Latitude coordinates of the typhoon
center at the current moment > 15◦ 3559 415 3974

Latitude coordinates of the typhoon
center at the current moment = 15◦ 7 4 11

Total typhoon moments 4272 606 4878

Table 2. The statistics of the relation between the value of the latitude coordinate of the typhoon at
the current moment and the difference of longitude coordinates of typhoon centers at the current
moment and at the previous moment in the dataset.

The Difference of Longitude
Coordinates of Typhoon Centers

at Current and Previous
Moments >0◦

The Difference of Longitude
Coordinates of Typhoon Centers

at Current and Previous
Moments ≤0◦

Total Typhoon
Moments

Latitude coordinates of the typhoon
center at the current moment < 15◦ 32 861 893

Latitude coordinates of the typhoon
center at the current moment > 15◦ 1713 2261 3974

Latitude coordinates of the typhoon
center at the current moment = 15◦ 0 11 11

Total typhoon moments 1745 3133 4878
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Then, the historical moments meeting the following conditions are screened out: (1) the
color histogram similarity between predicted images and reanalysis images at the historical
moment >0.8; (2) the difference of the moving angle of the typhoon at the historical moment
and the predicted moment <30◦; (3) the absolute difference of the moving distance of the
typhoon at the historical moment and the predicted moment <30 km; (4) the Euclidean
distance of pixel coordinates of marked points on the predicted images and reanalysis
images at the historical moment <1.5 px; (5) the Euclidean distance of the difference of
latitude coordinates and the difference of longitude coordinates of the predicted typhoon
center and the typhoon center at the historical moment <20◦.

Historical moments are sorted according to the Euclidean distance of pixel coordinates
of marked points on reanalysis images at historical moments and predicted images, the
color histogram similarity between predicted images and reanalysis images at historical
moments, the difference of moving angle of the typhoon at historical moments and at the
predicted moment, the absolute value of the difference of the moving distance at historical
moments and at the predicted moment and the absolute value of the difference of latitude
coordinates and the absolute value of the difference of longitude coordinates of the typhoon
center at the historical moment and the predicted typhoon center at the same time, with
the difference from small to large and the similarity from large to small. The first historical
moment is the similar historical moment determined.

The calculation of the moving angle is as shown in Formulas (19)–(25), where angle_pred
is the moving angle of the typhoon center at the predicted moment, and angle_similar is
the moving angle of the typhoon center at the historical moment.

If angle_pred > 180 and angle_similar < 180, then

angle_di f f 1 = 360− angle_pred + angle_similar (19)

angle_di f f 2 = abs(angle_pred− angle_similar) (20)

angle_di f f = min(angle_di f f 1, angle_di f f 2) (21)

Else, if angle_similar > 180 and angle_pred < 180, then

angle_di f f 1 = 360− angle_similar + angle_pred (22)

angle_di f f 2 = abs(angle_similar− angle_pred) (23)

angle_di f f = min(angle_di f f 1, angle_di f f 2) (24)

Otherwise
angle_di f f = abs(angle_pred− angle_similar) (25)

After, the reanalysis images at the similarly historical moment are fused with predicted
images. The method of this paper uses Laplacian Pyramid when fusing reanalysis images
at the similarly historical moment with predicted images. Laplacian Pyramid is on the basis
of Gaussian Pyramid, which consists of the difference images of images in two layers of
Gaussian Pyramid. But, the process establishment of Laplacian Pyramid may make images
distorted and blurred. To preserve image information as much as possible, in the method
of this paper, images are decomposed by Discrete Wavelet Transform before establishing
Gaussian Pyramid, preserving the high-frequency images achieved by decomposition.
When establishing Laplacian Pyramid to upsample images, the high-frequency images
obtained by discrete wavelet decomposition are used for discrete wavelet reconstruction.
Furthermore, to preserve the features of marked points on predicted images as much as
possible, the pixel values are selected by using the V channel of the HSV color model, and
if the number of selected pixel values is small, the V-channel image will be enhanced by
Histogram Equalization, selecting pixel values again in the range of [4:60, 4:60] of images,
remarking the marked point. Figure 5 is the process of establishing Laplacian Pyramid.
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When fusing the difference images in each layer of Laplacian Pyramids, firstly, the
gradient means are calculated that are in the neighborhood of 5 × 5 with every pixel center
as the center in the image LA0 and LB0, which are in the top layer (the layer where the size
of images is smallest) of the Laplacian Pyramids established by reanalysis images at the
similarly historical moment and predicted images, as shown in Formula (26).

G(i, j) =
1

5× 5× 3

3

∑
1

5

∑
k

5

∑
m


√

∆Ix(i, j)2 + ∆Iy(i, j)2

2

 (26)

where ∆Ix(i, j) is the first derivative of x direction in the neighborhood of 5 × 5, with (i, j)
as the center in the image; ∆Iy(i, j) is the first derivative of y direction in the neighborhood
of 5 × 5, with (i, j) as the center in the image. Comparing the gradient means of every pixel
point of two images in the top layer, the pixel values of the points in the images are selected
whose gradient means are smaller, as shown in Formula (27).

LF0(i, j) =

{
LA0(i, j)GLA(i, j) < GLB(i, j)
LB0(i, j)GLA(i, j) ≥ GLB(i, j)

(27)

When fusing images in other layers of the Laplacian Pyramids, the absolute value
of the sum of all pixel values in the neighborhood of 3 × 3, with the (i, j) as the center in
images, is calculated, and pixel values of the points in the images are selected whose results
are smaller, as shown in Formulas (28)–(30), where N is the layer N of the Laplacian Pyramid.

LASN(i, j) =
3

∑
1

3

∑
k

3

∑
m
(|LAN(k, m)|) (28)

LBSN(i, j) =
3

∑
1

3

∑
k

3

∑
m
(|LBN(k, m)|) (29)

LFN(i, j) =

{
LAN(i, j)LASN(i, j) < LBSN(i, j)
LBN(i, j)LASN(i, j) ≥ LBSN(i, j)

(30)
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After, fusing images in each layer of the new Laplacian Pyramid, the image contrast
of images in the Laplacian Pyramid is adjusted. Upsampling the image in the previous
layer and comparing the gray values of images in two adjacent layers, if the gray values of
images in the previous layer are smaller than the gray values of images in the next layer,
the pixel values of images in the previous layer will be taken; if the gray values of images
in the previous layer are equal to the gray values of images in the next layer, the average of
the pixel values of the images in two layers will be taken; otherwise, the pixel values of
images in the next layer will be taken.

2.2.4. Multi-Step Prediction of Typhoon Tracks

When predicting typhoon tracks in the long term, recursive multi-step prediction is
adopted, as shown in Figure 6, where t1–t10 are the truths at the first to tenth moments,
and the predicted values begin from t11′. Predicting time series with the predicting
model in Section 2.2.2, when predicting the coordinate location of the second and all
subsequent predicted points, the improved predicted result at the previous moment is
used to predict the result at the next moment. Determining the historical moment that
is similar to the predicted moment, predicted images are fused with reanalysis images
at the similarly historical moment by the method in Section 2.2.3. If a historical moment
meeting the similar requirements cannot be determined, the reanalysis images are not used
to improve the predicted results. Taking the fused images in the range of [4:60, 4:60], the
pixel coordinates of the marked points of the typhoon center at the previous moment are
extracted from the fused image by using the contour detection and fitting the minimum
enclosing rectangle method. If the coordinates of marked points are not to be extracted
directly, images will be enhanced by Contrast Limited Adaptive Histogram Equalization,
setting the threshold. Pixel coordinates of marked points are extracted by setting the gray
values as 0, and then detecting contours and fitting the minimum enclosing rectangle.
Moreover, screening out the pixel points in fused images in which pixel values are smaller
10, if both pixel values that corresponded to the position of the predicted images with
remarked points and reanalysis images at the similarly historical moment are not 0, the
pixel values corresponded position of fused images will take the average; if the pixel values
that corresponded to the position of reanalysis images at the similarly historical moment
are 0, the pixel values corresponded position of fused images will take pixel values that
corresponded to the position of predicted images with remarked points; if pixel values
that corresponded to the position of the predicted images with remarked points are 0, the
pixel values that corresponded to the position of fused images will take pixel values that
corresponded to the position of reanalysis images at the similarly historical moment in
order to reduce the influence of original marked points on continuous predicted results.
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The position of the marked point on the fused image that is fused by the method in
Section 2.2.3 is extracted, remarking it on the new fused image and calculating the latitude
and longitude coordinates of the typhoon center corresponding to the remarked point in
order to obtain the coordinates of the typhoon center at the next moment.

2.3. Datasets Establishment
2.3.1. Data of Typhoon Center Coordinates

The typhoon coordinates data used in this experiment are from the “Digital Typhoon”
dataset of the Japan National Institute of Informatics. Data in this dataset include satellite
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images of the typhoon, latitude and longitude coordinates of the typhoon center, maximum
weed speed, central pressure and so on [29]. The dataset used in this paper includes the
latitude and longitude coordinates of typhoon centers of 169 typhoons that occurred in the
Northwest Pacific from 2014 to 2022, with a time step of 6 h.

2.3.2. Reanalysis Data

The reanalysis dataset used in this experiment is from ERA5 hourly data on single
levels from 1940 to present. Compared with the ERA-Interim database, which has also been
widely used before, ERA5 is currently promoted and gradually replaces the ERA-Interim
database, and its spatial resolution and temporal resolution are higher and updated more
frequently [30]. The dataset of this paper uses reanalysis data from 11 commonly used
variables in the Northwest Pacific from 2014 to 2022, which are 10 m u-component of wind,
10 m v-component of wind, 2 m dewpoint temperature, 2 m temperature, Mean sea level
pressure, Mean wave direction, Mean wave period, Sea surface temperature, Significant
height of combined wind waves and swell, Surface pressure and Total precipitation. The
time step of data is 6 h, and the spatial resolution is 0.125◦ × 0.125◦.

2.3.3. Data Processing

Because the data in the dataset will be partially missing, and if the typhoon sequence
is too short, it cannot be predicted. Therefore, when the data are initially processed, these
data missing and too short typhoon sequences are deleted, avoiding the impact of too short
typhoon sequences on the accuracy of subsequent correlation analysis and other results.

In addition, the latitude and longitude coordinates of typhoon centers in the exper-
imental dataset are accurate to 0.1◦, and the spatial resolution of the reanalysis data is
0.125◦ × 0.125◦. In order to make their spatial resolution the same, this paper performs
linear interpolation on the reanalysis data during data preprocessing to make reanalysis
data accurate to one decimal point. In order to transfer the reanalysis data into reanalysis
images, this paper takes typhoon centers as the center points of the images, and intercepts
the reanalysis data of each physical variable in the corresponding latitude and longitude
range with the length and width of 1300 km.

After data processing, the size of the dataset in this paper includes a total of 136 ty-
phoon processes in the training set of the ConvLSTM model, including 2685 typhoon
sequences and 16,176 typhoon images, where each sequence includes 11 typhoon points,
and the 11th moment is the true value; 34 typhoon processes in the single-step prediction
test set, including 672 typhoon sequences and 4048 typhoon images; 34 typhoon processes
in the multi-step prediction test set, including 1012 typhoon moments and 4048 typhoon
images; and 135 typhoon processes in the dataset used to determine the similarly historical
moment, including 3894 typhoon moments and 15,576 typhoon images.

3. Results
3.1. Experimental Environment

The experiment of this paper was conducted in the environment as shown in Table 3.

Table 3. Experimental environment.

Parameters and the Name of Equipment Version

GPU NVIDIA GeForce RTX 3060
epoch 50

batch_size 10
learning rate 0.001

Furthermore, parameters of ConvLSTM adopted in this paper, which is designed and
improved according to Section 2.2.2, were set as shown in Table 4.
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Table 4. Parameters of the model.

Parameters Values

Input dimension (batch_size, 12, 64, 64)
Kernel sizes (3 × 3)

Number of Gate units nodes 12
Number of layers 3

Compared with the high cost and large calculation of numerical prediction methods,
for example, the numerical model of South Korean that needs to run on a Cray XC40 super-
computer with 139,329 CPUs [9], the costs of equipment and the calculating complexity
of our method are lower. In addition, the average predicted time of predicting typhoon
tracks in 12 h, 18 h, 24 h and 48 h with our method was 12.63 s, 21.11 s, 28.96 s and 60.47 s,
respectively, which was much faster than numerical prediction methods.

3.2. Model Evaluation Index

The MAE and RMSE are calculated by calculating the distance between the predicted
latitude and longitude coordinates of the typhoon center and truth to evaluate the effect
of the mode. Distance, namely, the absolute error, is calculated by the Haversine formula,
dividing the total number of test series to obtain the MAE, and the RMSE is also calculated
on the basis of the absolute error, as shown in Formulas (31)–(33).

E = 2Rsin−1

√
sin
( latreal − latpred

2
× π

180

)2

+ cos
(

latpred ×
π

180

)
cos
(

latreal ×
π

180

)
sin
( lonreal − lonpred

2
× π

180

)2

(31)

MAE =
1
n

n

∑
i = 1

Ei (32)

RMSE =

√
1
n

n

∑
i = 1

E2
i (33)

3.3. Experimental Results

This paper obtained that the physical variables group with the highest correlation with
the typhoon moving angle and distance was the Mean wave direction, Mean wave period,
Significant height of combined wind waves and swell and 10 m v-component of wind,
according to the method of correlation analysis between reanalysis data and the typhoon
moving angle and distance in Section 2.2.1 and the dataset of this paper. The reanalysis
data of the physical variables group were transferred into reanalysis images with marked
points, as shown in Figure 7.
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Reanalysis images were weighted cascaded according to the correlation between four
physical variables in the above physical variables group and the typhoon moving angle
and distance, and input to ConvLSTM. The values of the correlation and weight are as
shown in Table 5.

Table 5. The correlation between physical variables and typhoon moving angle and distance and
their weights.

Physical Variables
The Correlation with

Typhoon Moving
Angle and Distance

Weights

Mean wave direction 0.6827636635668061 0.45
Mean wave period 0.6709704103073449 0.15

Significant height of combined wind waves and swell 0.6650877022571118 0.1
10 m v-component of wind 0.6774975957516751 0.3

Moreover, this paper trained the model and predicted with a single step by changing
the weights of memory cells at the last two moments in each series, achieving the error
results as shown in Figure 8. The weight group achieving the smallest error was that where
the weight of memory cells at the last two moments were 0.5 separately by comparing the
predicted errors with different weights.
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Through the improvement of the weighted calculation of the memory cells in ConvL-
STM and the improvement of the detection and recognition algorithm of marked points, the
multi-step prediction results have been greatly improved. Additionally, fusing reanalysis
images at the historical moment that is similar to the predicted moment with predicted
images can also reduce the accumulated error. Table 6 is the comparison of multi-step
prediction results in 12 h of different models and methods in the improvement process of
the method in this paper, where Model 1 is the model that uses ConvLSTM with weighted
cascading reanalysis images and Spatial Attention and enhances predicted images with
Histogram Equalization and recognizes the marked point by the method of contour detec-
tion and the fitting minimum enclosing rectangle; Model 2 is the model that adds weighted
calculation of memory cells to ConvLSTM and enhances V-channel images of predicted
images with Histogram Equalization and recognizes the marked point by the method of
contour detection and the fitting minimum enclosing rectangle, on the basis of Model 1;
Model 3 is the final method proposed in this paper that fuses reanalysis images at the
similarly historical moment and predicted images to calculate the new predicted results in
order to reduce the influence of the accumulated error on the predicted accuracy.
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Table 6. The comparison of multi-step prediction results in 12 h of different models and methods in
the improvement process of the method in this paper.

Methods MAE RMSE

Model1 131.88 186.59
Model2 103.79 130.80
Model3 102.14 127.77

Moreover, predicted images obtained by predicting with recursive multi-step of the
method in this paper were clear and close to the real picture shape. Shown in Figure 9
is the comparison of predicted images and real images at two steps in 12 h prediction of
Typhoon IN-FA (202106) (at 18 o’clock on 22 July 2021 and at 0 o’clock on 23 July 2021) and
Typhoon RAI (202122) (at 6 o’clock on 19 December 2021 and at 12 o’clock on 19 December
2021); at the pixel-level fusion of the predicted images and the reanalysis data images at
the historical moment, fused images will have some color distortion problems.
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Figure 9. The comparison of predicted images and real images at two steps in 12 h prediction of
Typhoon IN-FA (202106) (at 18 o’clock on 22 July 2021 and at 0 o’clock on 23 July 2021) ((a) Predicted
images at first step; (c) Real images at first step; (b) Predicted images at second step; (d) Real images
at second step) and Typhoon RAI (202122) (at 6 o’clock on 19 December 2021 and at 12 o’clock on
19 December 2021) ((e) Predicted images at first step; (g) Real images at first step; (f) Predicted images
at second step; (h) Real images at second step).

The spherical distance between the predicted coordinates and the real coordinates
of the typhoon center was also small. Figure 10 is the diagram of comparison between
predicted tracks and real tracks in 12 h, 18 h, 24 h and 48 h of Typhoon CEMPAKA (202107),
which occurred from 18 o’clock on 18 July 2021 to 0 o’clock on 25 July 2021. Figure 11 is
the diagram of comparison between predicted tracks and real tracks in 12 h, 18 h, 24 h and
48 h of Typhoon KOMPASU (202118), which occurred from 3 o’clock on 8 October 2021 to
9 o’clock on 14 October 2021. In the two diagrams, the blue series is real tracks from the
first moment to the tenth moment, the yellow series is real tracks at predicted moments and
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the red series is predicted tracks, and it can be seen that the gaps between the predicted
paths and the real paths are small. The predicted errors of Typhoon CEMPAKA (202107) in
12 h, 18 h, 24 h and 48 h were 53.61 km, 94.4 km, 136.26 km and 355.85 km, respectively.
And, the predicted errors of Typhoon KOMPASU (202118) in 12 h, 18 h, 24 h and 48 h were
85.41 km, 125.57 km, 157.95 km and 358.57 km, respectively.
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3.4. Comparison with Results of Other Methods

In Table 7, the predicted errors of this paper are compared with those of other methods.
It is determined that the multi-step prediction errors of this method are smaller.
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Table 7. Comparison with results of other methods.

Models Predicted Time MAE (km) RMSE (km)

Proposed method in this paper

12 h 102.14 127.77
18 h 168.17 209.19
24 h 243.73 300.67
48 h 574.62 694.99

LSTM

12 h 245.78 358.56
18 h 318.02 433.79
24 h 488.36 678.79
48 h 1128.14 1555.05

GRU

12 h 358.38 511.23
18 h 330.41 450.35
24 h 376.63 759.32
48 h 575.67 704.55

Model 2 in Section 3.3

12 h 103.79 130.80
18 h 174.10 225.32
24 h 248.33 314.62
48 h 587.71 705.22

4. Discussion

The results of this paper proved that the method of this paper could reduce the
accumulated error of recursive multi-step prediction. However, if predicting with many
steps, the error of multi-step prediction will still be large, such as predicting 48 h (8 steps).
In the future, we will calculate the angles and the distances between the marked point and
the center point on predicted images and real images separately in the training process and
set the threshold of the difference of the angles and distances. If the difference values are
over the range of the threshold, the value of loss will be increased and feedbacked to the
network in order to improve the predicted accuracy of the model, and then will reduce the
accumulated error of the recursive multi-step prediction. However, the ERA5 reanalysis
data that we used have a latency of about 5 days. So, to predict typhoon tracks in real time,
we can use real-time forecast date of ensemble products of ECMWF on the basis of our
previous model. It is an open-data dataset with 0.4 degrees resolution and 6 h time steps,
and contains some same physical variables with the reanalysis data. And, the historical
data are not published. Although the real-time forecast data of more than the recent 3 days
are disseminated with a latency of about 8 h, the real-time property of our method is better
than the numerical prediction methods. Because, to predict the location of the typhoon
center at the same moment, we do not need to predict typhoon tracks in the very long-term,
but the numerical prediction methods need to predict in 5 days, and their accuracy is lower
than the results of our method to predict in 12 h, 18 h and 24 h, as shown in Section 3.4.
And, the average predicted time of our method is less.

5. Conclusions

This paper proposes the method that determines the historical moment that is similar
to the predicted moment by calculating the difference of the moving angle of the typhoon
and the absolute value of the difference of the moving distance of the typhoon at the
predicted moment and the historical moment, the color histogram similarity between
predicted images and reanalysis images at the historical moment and so on, and fuses
predicted images and reanalysis images at the historical moment to obtain the fused images
with remarked points, in order to reduce the accumulated error caused by multi-step
prediction. Furthermore, the weighted calculation of memory cells and Spatial Attention
are added into ConvLSTM to improve the ability of extracting spatial features and the
memory ability of ConvLSTM. Meanwhile, reanalysis images are weighted cascaded and
input to ConvLSTM, according to the correlation between reanalysis data of physical
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variables and the moving angle and distance of the typhoon in order to improve the
proportion of reanalysis images with a high correlation in the input images to improve the
accuracy of ConvLSTM. This paper selects the physical variables group most related to the
typhoon moving angle and distance by CCA and GRA, forming reanalysis images with
marked points. Weighted cascading the reanalysis images of physical variables according to
correlation, time series images at ten moments are input to ConvLSTM to obtain predicted
images corresponding to each physical variable, in order to calculate predicted coordinates
of typhoon centers corresponding to each physical variable, and to achieve the final latitude
and longitude coordinates of the typhoon center by fitting a six-degree polynomial. After,
the historical moment that is similar to the predicted moment is determined according
to the Euclidean distance of pixel coordinates of marked points on reanalysis images at
historical moments and predicted images, the color histogram similarity between predicted
images and reanalysis images at historical moments, the difference of the moving angle of
the typhoon at the historical and predicted moments, the absolute value of the difference of
the moving distance of the typhoon at historical and predicted moments and the Euclidean
distance of the latitude difference and the longitude difference of typhoon centers at
historical and predicted moments. The adjustment of predicted images is realized by fusing
reanalysis images at the similarly historical moment and predicted images through Discrete
Wavelet Transform and Laplacian Pyramid and remarking the marked points. At the same
time, the latitude and longitude coordinates of the typhoon center corresponding to each
physical variable are calculated according to the pixel coordinates of remarked points, and
the final predicted latitude and longitude coordinates of the typhoon center are obtained by
fitting a six-degree polynomial. Finally, using the recursive multi-step prediction, the fused
images with remarked points are added to the image series of next step prediction, and
the multi-step long-term prediction of typhoon tracks is realized by using the latitude and
longitude coordinates of the typhoon center predicted at the previous step. The MAE of
predicted results in 12 h, 18 h, 24 h and 48 h prediction obtained by experiment improved
1.65 km, 5.93 km, 4.6 km and 13.09 km, respectively, compared with the predicted results
of Model 2 in Section 3.3, which proved that the method in this paper could improve the
problem of the accumulated error of multi-step prediction.

Author Contributions: Data curation, Y.Y.; Methodology, M.X.; Project administration, P.L.; Writing—
original draft, M.X.; Writing—review and editing, Z.W. and Z.Z.; Project administration, M.C.; Fund-
ing acquisition, M.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Shanghai Science and Technology Innovation Plan Project,
grant number 20dz1203800, and the Capacity Development for Local College Project, grant number
19050502100.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yuan, S.J.; Wang, C.; Mu, B.; Zhou, F.F.; Duan, W.S. Typhoon Intensity Forecasting Based on LSTM Using the Rolling Forecast

Method. Algorithms 2021, 14, 83. [CrossRef]
2. Heidarzadeh, M.; Iwamoto, T.; Takagawa, T.; Takagi, H. Field surveys and numerical modeling of the August 2016 Typhoon

Lionrock along the northeastern coast of Japan: The first typhoon making landfall in Tohoku region. Nat. Hazards 2021, 105, 1–19.
[CrossRef]

3. Eadie, P. Typhoon Yolanda and post-disaster resilience: Problems and challenges. Asia Pac. Viewp. 2019, 60, 94–107. [CrossRef]
4. Shimozono, T.; Tajima, Y.; Kumagai, K.; Arikawa, T.; Oda, Y.; Shigihara, Y.; Mori, N.; Suzuki, T. Coastal impacts of super typhoon

Hagibis on Greater Tokyo and Shizuoka areas, Japan. Coast. Eng. J. 2020, 62, 129–145. [CrossRef]
5. Hon, K. Tropical cyclone track prediction using a large-area WRF model at the Hong Kong Observatory. Trop. Cyclone Res. Rev.

2020, 9, 67–74. [CrossRef]
6. Lian, J.; Dong, P.P.; Zhang, Y.P.; Pan, J.G. A Novel Deep Learning Approach for Tropical Cyclone Track Prediction Based on

Auto-Encoder and Gated Recurrent Unit Networks. Appl. Sci. 2020, 10, 3965. [CrossRef]
7. Tong, B.; Wang, X.; Fu, J.Y.; Chan, P.; He, Y. Short-term prediction of the intensity and track of tropical cyclone via ConvLSTM

model. J. Wind Eng. Ind. Aerodyn. 2022, 226, 105026. [CrossRef]

https://doi.org/10.3390/a14030083
https://doi.org/10.1007/s11069-020-04112-7
https://doi.org/10.1111/apv.12215
https://doi.org/10.1080/21664250.2020.1744212
https://doi.org/10.1016/j.tcrr.2020.03.002
https://doi.org/10.3390/app10113965
https://doi.org/10.1016/j.jweia.2022.105026


Axioms 2023, 12, 874 21 of 21

8. Yasunaga, K.; Miyajima, T.; Yamaguchi, M. Relationships between Tropical Cyclone Motion and Surrounding Flow with Reference
to Longest Radius and Maximum Sustained Wind. Sola 2016, 12, 277–281. [CrossRef]

9. Ruttgers, M.; Lee, S.; Jeon, S.; You, D. Prediction of a typhoon track using a generative adversarial network and satellite images.
Sci. Rep. 2019, 9, 6057. [CrossRef]

10. Mei, X.G.; Pan, e.; Ma, Y.; Dai, X.B.; Huang, J.; Fan, F.; Du, Q.D.; Zheng, H.; Ma, J.Y. Spectral–Spatial Attention Network for
Hyperspectral Image Classification. Remote Sens. 2019, 11, 963. [CrossRef]

11. Chandra, R.; Goyal, S.; Gupta, R. Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction. IEEE Access
2021, 9, 83105–83123. [CrossRef]

12. Chang, C.Y.; Lu, C.W.; Wang, C.A.J. A Multi-Step-Ahead Markov Conditional Forward Model with Cube Perturbations for
Extreme Weather Forecasting. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, Online, 2–9 February 2021.

13. Deo, R.; Chandra, R. Multi-Step-Ahead Cyclone Intensity Prediction with Bayesian Neural Networks. In Proceedings of the 16th
Pacific Rim International Conference on Artificial Intelligence (PRICAI), Cuvu, Fiji, 26–30 August 2019.

14. Bing, Q.C.; Shen, F.X.; Chen, X.F.; Zhang, W.J.; Hu, Y.R.; Qu, D.Y. A Hybrid Short-Term Traffic Flow Multistep Prediction Method
Based on Variational Mode Decomposition and Long Short-Term Memory Model. Discret. Dyn. Nat. Soc. 2021, 2021, 4097149.
[CrossRef]

15. Du, Z.H.; Qin, M.J.; Zhang, F.; Liu, R.Y. Multistep-ahead forecasting of chlorophyll a using a wavelet nonlinear autoregressive
network. Knowl.-Based Syst. 2018, 160, 61–70. [CrossRef]

16. Zhao, F.; Gao, Y.T.; Li, X.N.; An, Z.Y.; Ge, S.Y.; Zhang, C.M. A similarity measurement for time series and its application to the
stock market. Expert Syst. Appl. 2021, 182, 115217. [CrossRef]

17. Mao, R.; Fu, X.S.; Niu, P.J.; Wang, H.Q.; Pan, J.; Li, S.S.; Liu, L. Multi-directional Laplacian Pyramid Image Fusion Algorithm. In
Proceedings of the 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Huhhot, China,
14–16 September 2018.

18. Sharma, A.; Gupta, H.; Sharma, Y. Image Fusion with Deep Leaning using Wavelet Transformation. J. Emerg. Technol. Innov. Res.
2021, 8, 2826–2834.

19. Shi, X.J.; Chen, Z.R.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM Network: A Machine Learning
Approach for Precipitation Nowcasting. In Proceedings of the 29th Annual Conference on Neural Information Processing Systems
(NIPS), Montreal, QB, Canada, 7–12 December 2015.

20. Moishin, M.; Deo, R.C.; Prasad, R.; Raj, N.; Abdulla, S. Designing Deep-Based Learning Flood Forecast Model With ConvLSTM
Hybrid Algorithm. IEEE Access 2021, 9, 50982–50993. [CrossRef]

21. Woo, S.H.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the 15th European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

22. Guo, C.L.; Szemenyei, M.; Fan, C.Q. SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation. In Proceedings of the
25th International Conference on Pattern Recognition (ICPR), Online, 10–15 January 2021.

23. Liu, F.Q.; Chen, L.H.; Lu, L.; Ahmad, A.; Jeon, G.; Yang, X.M. Medical image fusion method by using Laplacian pyramid and
convolutional sparse representation. Concurr. Comput.-Pract. Exp. 2020, 32, e5632. [CrossRef]

24. Wang, J.; Ke, C.; Wu, M.H.; Liu, M.; Zeng, C.Y. Infrared and visible image fusion based on Laplacian pyramid and generative
adversarial network. KSII Trans. Internet Inf. Syst. 2021, 15, 1761–1777.

25. Starosolski, R. Hybrid Adaptive Lossless Image Compression Based on Discrete Wavelet Transform. Entropy 2020, 22, 751.
[CrossRef]

26. Kambalimath, S.S.; Deka, P.C. Performance enhancement of SVM model using discrete wavelet transform for daily streamflow
forecasting. Environ. Earth Sci. 2021, 80, 101. [CrossRef]

27. Kanagaraj, H.; Muneeswaran, V. Image Compression Using HAAR Discrete Wavelet Transform. In Proceedings of the 5th
International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 5–6 March 2020.

28. Mahmoud, H.; Akkari, N. Shortest Path Calculation: A Comparative Study for Location-Based Recommender System. In
Proceedings of the World Symposium on Computer Applications and Research (WSCAR), Cairo, Egypt, 12–14 March 2016.

29. Kitamoto, A. “Digital Typhoon” Typhoon Analysis Based on Artificial Intelligence Approach; Technical Report of Information Processing
Society of Japan (IPSJ); CVIM123-8; Processing Society of Japan (IPSJ): Tokyo, Japan, 2000; pp. 59–66.

30. Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers,
D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2151/sola.2016-054
https://doi.org/10.1038/s41598-019-42339-y
https://doi.org/10.3390/rs11080963
https://doi.org/10.1109/ACCESS.2021.3085085
https://doi.org/10.1155/2021/4097149
https://doi.org/10.1016/j.knosys.2018.06.015
https://doi.org/10.1016/j.eswa.2021.115217
https://doi.org/10.1109/ACCESS.2021.3065939
https://doi.org/10.1002/cpe.5632
https://doi.org/10.3390/e22070751
https://doi.org/10.1007/s12665-021-09394-z
https://doi.org/10.1002/qj.3803

	Introduction 
	Materials and Methods 
	Related Work 
	ConvLSTM 
	Spatial Attention 
	Laplacian Pyramid 
	Discrete Wavelet Transform 

	ConvLSTM Establishment and Prediction 
	Correlation Analysis of Reanalysis Data 
	The Establishment and Optimization of ConvLSTM 
	Fusion with Similar Images 
	Multi-Step Prediction of Typhoon Tracks 

	Datasets Establishment 
	Data of Typhoon Center Coordinates 
	Reanalysis Data 
	Data Processing 


	Results 
	Experimental Environment 
	Model Evaluation Index 
	Experimental Results 
	Comparison with Results of Other Methods 

	Discussion 
	Conclusions 
	References

