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Abstract: In this paper, we consider the modified Mellin transform of the product of the square of the
Riemann zeta function and the exponentially decreasing function, and we discuss its probabilistic
and approximation properties. It turns out that this Mellin transform approximates the identical zero
in the strip {s ∈ C : 1/2 < σ < 1}.
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1. Introduction

Throughout this paper, we denote by s = σ + it the main complex variable. The main
object of our investigations is the Riemann zeta function ζ(s), which, for σ > 1, is given by
Dirichlet series

ζ(s) =
∞

∑
m=1

1
ms .

The function ζ(s) is analytically continuable to the complex plane C, with the exception of
one point s = 1, which is a simple pole, and Ress=1ζ(s) = 1. The function ζ(s) plays an
important role in mathematics. The Riemann hypothesis that all non-trivial zeros of ζ(s)
(the zeros of ζ(s) lying in the strip 0 < σ < 1) are on the line σ = 1/2 has not been proven
or disproven to date, and it occupies an honorable place among the seven Millennium
Problems of mathematics (see [1]). The function ζ(s) is mentioned in cosmology, quantum
mechanics, finance mathematics, even in music, etc. [2–6]. In this sense, ζ(s) is close to
the great Greek philosopher and mathematician Pythagoras, who saw mathematics in all
fields of life. However, there are problems and conjectures related to the function ζ(s).
Without the mentioned Riemann hypothesis, we know the Lindellöf hypothesis that, for
every ε > 0,

ζ

(
1
2
+ it

)
�ε tε, t > t0.

Here and in what follows, the notation f (s) �θ g(s), f (s) ∈ C, g(s) > 0 for s ∈ X
indicates that there exists a constant c = c(θ) such that | f (s)| 6 cg(s) for s ∈ X . One more
difficult problem of the value distribution of ζ(s) is the moment problem, which consists of
finding the asymptotics, or precise estimates, of the quantities

Mk(σ, T) def
=

T∫
0

|ζ(σ + it)|2k dt, σ >
1
2

, k > 0, T → ∞.

Notice that individual values of ζ(s) can sometimes be successfully replaced by mean
values, i.e., by moments Mk(σ, T). For example, this idea works in the approximation
of analytic functions by shifts ζ(s + iτ), a property of ζ(s) called universality [7]. For
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an investigation of the moments Mk(1/2, T), Y. Motohashi proposed [8] the use of the
modified Mellin transforms

Zk(s) =
∞∫

1

∣∣∣∣ζ(1
2
+ ix

)∣∣∣∣2k
x−s dx.

They differ from the classical Mellin transforms only by integration over (0, 1). However,
they are more convenient because they allow for the avoidance of convergence problems at
x = 0. Using the inversion formula, we have [9]

∣∣∣∣ζ(1
2
+ ix

)∣∣∣∣2k
=

1
2πi

σ+i∞∫
σ−i∞

Zk(s)xs−1 dx

with a certain σ. Thus, the study of Mk(1/2, T) reduces to that of the mean values of a
simpler than ζ(1/2 + ix) function Zk(s).

We recall one example of using the function Z2(s). Denote

E2(T) =
T∫

0

∣∣∣∣ζ(1
2
+ it

)∣∣∣∣4 dt− TP4(log T),

where it is assumed that P4(x) is a polynomial of degree 4. Using Z2(s), the follow-
ing strong results on E2(T) were obtained. We recall that f (x) = Ω±(g(x)) means
that lim supx→∞ f (x)/g(x) is positive, and lim infx→∞ f (x)/g(x) is negative. First, in [8],
it was proved that E2(T) = Ω±(T1/2). A. Ivic̆ applied Z2(s) to obtain the following
bounds [10,11]. There exist positive constants c1 > 1 and c2 such that, for sufficiently large
T, any interval [T, c1T] contains points T1, T2, T3 and T4 such that

E2(T1) > c2T1/2
1 , E2(T2) < −c2T1/2

2 ,

and
T3∫

0

E2(t)dt > c2T3/2
3 ,

T4∫
0

E2(t)dt < −c2T3/2
4 .

More results of applications of the modified Mellin transform in the theory of the Riemann
zeta function can be found in [12–16].

In Reference [17], we were interested in the approximation of analytic functions by

shifts Z(s + iτ) def
= Z1(s + iτ), τ ∈ R. Denote by D the strip 1/2 < σ < 1 on the complex

plane, and let H(D) stand for the space of analytic functions on D with the topology of
uniform convergence on compact sets. Let µ(A) be the Lebesgue measure of a measurable
set A ⊂ R. Then, the main result of Reference [17] is the following statement:

Theorem 1 ([17]). There exists a closed non-empty set F ⊂ H(D) such that, for any compact set
K ⊂ D, f (s) ∈ F and ε > 0,

lim inf
T→∞

1
T

µ

{
τ ∈ [0, T] : sup

s∈K
|Z(s + iτ)− f (s)| < ε

}
> 0.

Moreover, the lower limit in the above inequality can be replaced by the limit, except for the at most
countable set of values of ε > 0.

Theorem 1 was inspired by the Voronin universality theorem [7] for the function ζ(s)
on the approximation of analytic functions from H(D) by shifts ζ(s + iτ), τ ∈ R.
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The aim of this paper is the approximation of analytic functions from a certain class by
shifts of an absolutely convergent integral related to the Mellin transform Z(s). Suppose that
θ > 1/2 is a fixed number. For x, y > 1, let vy(x) = exp{−(x/y)θ}, where exp{a} = ea. We
consider the approximation of analytic functions by shifts of the modified Mellin transform

Ẑy(s) =
∞∫

1

∣∣∣∣ζ(1
2
+ ix

)∣∣∣∣2vy(x)x−s dx.

Since ζ(1/2 + ix) � x1/6for large x > 0, and the function vy(x) decreases exponen-
tially with respect to x, the integral for Ẑy(s) is absolutely convergent in the half-plane
σ > σ0 with any finite σ0 and defines there an analytic function. Our aim is to replace
the function Z(s) in Theorem 1 by Ẑy(s) with a certain y. One motivation for this is the
extension of a class of approximating functions. Moreover, since Ẑy(s) is given by an
absolutely convergent integral, its use is simpler than that of Z(s).

In this paper, we prove the following theorem:

Theorem 2. Suppose that yT → ∞ and yT � T2 as T → ∞. Then, there exists a closed
non-empty set Fθ ⊂ H(D) such that, for every compact set K ⊂ D and f (s) ∈ Fθ , the limit

lim
T→∞

1
T

µ

{
τ ∈ [0, T] : sup

s∈K

∣∣∣ẐyT (s + iτ)− f (s)
∣∣∣ < ε

}

exists and is positive, except for the at most countable set of values of ε > 0.

Theorem 2 shows that, for all but at most countably many ε > 0, and f ∈ Fθ , there
exists T0 = T0(ε, f , K) > 0 such that, for T > T0,

µ

{
τ ∈ [0, T] : sup

s∈K

∣∣∣ẐyT (s + iτ)− f (s)
∣∣∣ < ε

}
> cT

with a certain positive c. Hence, the set of shifts ẐyT (s + iτ) is infinite.
Theorem 2, as Theorem 1, is theoretical; however, in virtue of the definition of ẐyT (s)

by an absolutely convergent integral, Theorem 2 has a certain advantage over Theorem 1
involving the function Z(s) given by analytic continuation.

We derive Theorem 2 by using a certain probabilistic model in the space of ana-
lytic functions.

2. Estimate for a Metric

We start by recalling some results on the function Z(s) obtained in [16].
Let

E(T) =
T∫

0

∣∣∣∣ζ(1
2
+ it

)∣∣∣∣2 dt− T log
T

2π
− (2γ0 − 1)T,

where γ0 is the Euler constant. Set

g(T) =
T∫

1

E(t)dt− πT, g1(T) =
T∫

1

g(t)dt.



Axioms 2023, 12, 789 4 of 12

Lemma 1 ([16]). The function Z(s) has analytic continuation to the half-plane σ > −3/4, except
for a point s = 1, which is a double pole, and it has simple poles at the points −(2m− 1), m ∈ N.
Moreover, by setting b0 = 2γ0 − log 2π, for σ > −3/4, we have

Z(s) = 1
(s− 1)2 +

b0

s− 1
+ π(s− 1) + s(s + 1)(s + 2)

∞∫
1

g1(t)t−s−3 dt− E(1).

Lemma 2 ([16]). For σ ∈ [1/2, 1] and any η > 0, the estimate

T∫
0

|Z(σ + it)|2 dt�η T2−2σ+η

is valid.

Lemma 3. Suppose that yT → ∞ and yT � T2 as T → ∞. Then, for every compact set K ⊂ D,

lim
T→∞

1
T

T∫
0

sup
s∈K
|Z(s + iτ)− ẐyT (s + iτ)|dτ = 0.

Proof. As usual, let Γ(s) stand for the Euler gamma function, and set

ayT (s) = θ−1Γ(θ−1s)ys
T ,

where θ is from the definition of vy(x). Then, in [17], Lemma 7, the representation for s ∈ D,

ẐyT (s) =
1

2πi

θ+i∞∫
θ−i∞

Z(s + z)ayT (z)dz (1)

is obtained.
Fix a compact set K ⊂ D. Since set K is closed, there exists a number δ > 0 such that

1/2 + 2δ 6 σ 6 1− δ for s = σ + it lying in K. For brevity, let θ1 = 1/2 + δ− σ. Moreover,
we take θ = 1/2 + δ. Then, in view of Lemma 1, the integrand in Equation (1) has a simple
pole z = 0 of Γ(θ−1z) and a double pole z = 1− s of Z(s + z) in the strip θ1 6 Rez 6 θ.
Therefore, Equation (1), together with the residue theorem, for s = σ + it ∈ K, gives

ẐyT (s)−Z(s) =
1

2πi

θ1+i∞∫
θ1−i∞

Z(s + z)ayT (z)dz + ryT (s) (2)

with
ryT (s) = Res

z=1−s
Z(s + z)ayT (z). (3)

Hence, we have

ẐyT (s + iτ)−Z(s + iτ) =
1

2πi

∞∫
−∞

Z
(

1
2
+ δ + it + iτ + iu

)
ayT

(
1
2
+ δ− σ + iu

)
du

+ ryT (s + iτ)

�
∞∫
−∞

∣∣∣∣Z(1
2
+ δ + iτ + iu

)∣∣∣∣ sup
s∈K

∣∣∣∣ayT

(
1
2
+ δ− s + iu

)∣∣∣∣du

+ sup
s∈K

∣∣ryT (s + iτ)
∣∣.
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Therefore, the mean value of the lemma is estimated as

1
T

T∫
0

sup
s∈K

∣∣∣Z(s + iτ) + Ẑ(s + iτ)
∣∣∣�

∞∫
−∞

 1
T

T∫
0

∣∣∣∣Z(1
2
+ δ + iτ + iu

)∣∣∣∣dτ

 sup
s∈K

∣∣∣∣ayT

(
1
2
+ δ− s + iτ

)∣∣∣∣du

+
1
T

T∫
0

sup
s∈K

∣∣ryT (s + iτ)
∣∣dτ

def
= J1 + J2. (4)

Using the classical estimate for the function Γ(s),

Γ(σ + it)� exp{−c|t|}, c > 0, (5)

we find

ayT

(
1
2
+ δ− s + iu

)
�θ y1/2+δ−σ

T

∣∣∣∣Γ(1
θ

(
1
2
+ δ− σ− it + iu

))∣∣∣∣
�θ y−ε1

T exp
{
− c

θ
|t− u|

}
�θ,K y−δ

T exp{−c1|u|}, c1 > 0. (6)

Moreover, using Lemma 2,

T∫
0

∣∣∣∣Z(1
2
+ δ + iτ + iu

)∣∣∣∣dτ �

 T+|u|∫
T−|u|

∣∣∣∣Z(1
2
+ δ + iτ

)∣∣∣∣2 dτ


1/2

�η

(
T(T + |u|)2−2(1/2+δ)−η

)1/2

�η T1−δ+η/2 + |u|1/2−δ+η/2 �η T
(

1 + |u|1/2
)

if we choose 0 < η = 2δ. Therefore, taking into account Equation (6), we obtain the estimate

J1 �θ,K,ε y−δ
T

∞∫
−∞

(
1 + |u|1/2

)
exp{−c1|u|}du�θ,K,ε y−δ

T . (7)

For the estimation of J2, we also apply the bound Equation (5). However, first, we
have to estimate ryT (s). Since the function Z(s), in view of Lemma 1, has a double pole at
the point s = 1, by using Equation (3), we have

ryT (s) = (ayT (z))
′
z=1−s + b0ayT (1− s). (8)

By the definition of ayT (z),

a′yT
(z) =

yz
T
θ

Γ′
( z

θ

)1
θ
+

yz
T
θ

log yTΓ
( z

θ

)
=

yz
T
θ

Γ
( z

θ

)( Γ′(z/θ)

θΓ(z/θ)
+ log yT

)
.

Hence, Equation (8) gives

ryT (s) =
ys

T
θ

Γ
(

1
θ

s
)(

1
θ

(
log Γ

(
1
θ

s
)))′

+ log yT + b0
ys

T
θ

Γ
(

1
θ

s
)

.
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Using Equation (5), from this, we obtain

ryT (s + iτ)�θ y1−σ
T exp

{
− c

θ
|t + θ|

(
log
∣∣∣∣ t + τ

θ

∣∣∣∣+ log yT + 1
)}

�θ,K,δ y1/2−2δ
T exp

{
− c

θ
|τ|(log 2|τ|+ 2) + log yT

}
�θ,K,δ y1/2−2δ

T exp{−c2|τ|}, c2 > 0.

Therefore, J2 has the estimate

J2 �θ,K,δ y1/2−2δ
T

1
T

T∫
0

e−c2τ dτ �θ,K,δ
y1/2−2δ

T
T

.

This and Equations (7) and (4) show that

1
T

T∫
0

sup
s∈K

∣∣∣Z(s + iτ)− Ẑ(s + iτ)
∣∣∣dτ �θ,K,δ y−δ

T +
y1/2−2δ

T
T

.

Since yT � T2, from this, we obtain the assertion of the lemma.

3. Limit Lemma

In this section, we show the weak convergence for

P̂T(A)
def
= µ

{
τ ∈ [0, T] : ẐyT (s + iτ) ∈ A

}
, A ∈ B(H(D)),

as T → ∞. First, we recall a limit theorem for

PT(A)
def
= µ{τ ∈ [0, T] : Z(s + iτ) ∈ A}, A ∈ B(H(D)),

from Reference [17], Theorem 2.

Lemma 4 ([17]). On (H(D), B(H(D)), there is a probability measure P such that PT weakly
converges to P as T → ∞.

For h1, h2 ∈ H(D), let

d(h1, h2) =
∞

∑
m=1

2−m sups∈Km
|h1(s)− h2(s)|

1 + sups∈Km
|h1(s)− h2(s)|

.

Here, {Km : m ∈ N} ⊂ D is a sequence of compact sets, Km ⊂ Km+1, and K ⊂ Km for a
compact set K ⊂ D with some m ∈ N. Then, d is a metric on H(D), which induces its
topology.

Lemma 5. Suppose that P is the same as in Lemma 4, and yT → ∞ and yT � T2 as T → ∞.
Then, P̂T also weakly converges to P as T → ∞.

Proof. Suppose that ξT is a random variable on a certain probability space (Ω, B(Ω), Q)
and that it is uniformly distributed in [0, T]. Consider two H(D)-valued random elements

YT = YT(s) = Z(s + iξT)

and
ŶT = ŶT(s) = ẐyT (s + iξT).
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Denote by D−→ the convergence in the distribution. Then, Lemma 4 implies the relation

YT
D−−−→

T→∞
P. (9)

Let F be an arbitrary closed set in the space H(D). Fix δ > 0, and define the set

Fδ = {h ∈ H(D) : d(h, F) 6 δ},

where d(h, f ) = infg∈F d(h, g). Then, set Fδ is also closed. Using the equivalent of weak
convergence in terms of closed sets, in virtue of Lemma 4, we have

lim sup
T→∞

PT(F) 6 P(F). (10)

By using Lemma 3 and the definition of the metric d,

lim
T→∞

1
T

T∫
0

d
(
Z(s + iτ), ẐyT (s + iτ)

)
dτ = 0. (11)

Moreover, the inclusion{
ŶT ∈ Fδ

}
⊂ {YT ∈ F} ∪

{
d(YT , ŶT) > δ

}
holds. Therefore,

Q
{

ŶT ∈ Fδ

}
6 Q{YT ∈ F}+ Q

{
d(YT , ŶT) > δ

}
. (12)

By using the definition of the random variable ξT , and Equation (11),

Q
{

d(YT , ŶT) > δ
}
= 1

T µ
{

τ ∈ [0, T] : d
(
Z(s + iτ), ẐyT (s + iτ)

)
> δ

}
6 1

δT

T∫
0

d
(
Z(s + iτ), ẐyT (s + iτ)

)
dτ = o(1)

(13)

as T → ∞. Similarly, in virtue of Equation (10),

lim sup
T→∞

Q{YT ∈ F} = lim sup
T→∞

PT(F) 6 P(F).

Thus, Inequality (12), together with Equation (13), yields

lim sup
T→∞

P̂T(Fδ) = lim sup
T→∞

{
ŶT ∈ Fδ

}
6 P(F).

Now, by letting δ→ +0, we have Fδ → F, and

lim sup
T→∞

P̂T(F) 6 P(F).

This and the equivalent of weak convergence in terms of closed sets show that P̂T weakly
converges to P as T → ∞.
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4. Proof of Theorem 2

We derive Theorem 2 from Lemma 5.

Proof of Theorem 2. Suppose that Fθ is a support of the probability measure P in Lemma 5.
Thus, we find that Fθ 6= ∅ since P(Fθ) = 1, and Fθ is a closed set. For f (s) ∈ Fθ , set

Gε =

{
h ∈ H(D) : sup

s∈K
|h(s)− f (s)| < ε

}
.

Then, Gε is an open neighborhood of the element f (s) of the support of the measure P.
Therefore, by using the support property,

P(Gε) > 0. (14)

Denoting by ∂Gε the boundary of set Gε, we find that ∂Gε lies in the set{
h ∈ H(D) : sup

s∈K
|h(s)− f (s)| = ε

}
.

This remark implies that ∂Gε1 ∩ Gε2 6= ∅ for different positive ε1 and ε2. Therefore, set Gε is
a continuity set of the measure P for all ε > 0, except for at most countably many values.
Thus, the equivalent of weak convergence with continuity sets, Lemma 5 and inequality
(14) show that

lim
T→∞

P̂(Gε) = P(Gε) > 0

for all ε > 0, except for the at most countable set of values. By the definition of P̂, for the
above values of ε > 0, the inequality

lim
T→∞

1
T

µ

{
τ ∈ [0, T] : sup

s∈K

∣∣∣ẐyT (s + iτ)− f (s)
∣∣∣ < ε

}
> 0

is valid.

There is an another proof of Theorem 2.

Proof of Theorem 2. Let mapping u : H(D)→ R be given by the formula

u(h) = sup
s∈K
|h(s)− f (s)|.

Then mapping u is continuous. Actually, let hn(s) −−−→n→∞
h(s) in the space H(D); i.e., for

every compact set K ⊂ D,
lim

n→∞
sup
s∈K
|hn(s)− h(s)| = 0. (15)

Using a triangle inequality, we have

|u(hn)− u(h)| =
∣∣∣∣∣sup

s∈K
|hn(s)− f (s)| − sup

s∈K
|h(s)− f (s)|

∣∣∣∣∣
6 sup

s∈K
|hn(s)− f (s)− h(s) + f (s)| = sup

s∈K
|hn(s)− h(s)| → 0

as n→ ∞ by Equation (15). This proves the continuity of u.
The continuity of u and the preservation of weak convergence under continuous

mappings (see, for example, Theorem 5.1 in Reference [18]) show that P̂Tu−1 converges
weakly to Pu−1 in space R. Here, the measures PTu−1 and Pu−1 are defined, for A ∈ B(R),
by P̂T(u−1 A) and P(u−1 A), respectively.
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It is well known that the weak convergence of the probability measures in R is equiva-
lent to that of distribution functions. Thus, we find that the distribution function

GT(ε) =
1
T

µ

{
τ ∈ [0, T] : sup

s∈K

∣∣∣ẐyT (s + iτ)− f (s)
∣∣∣ < ε

}

converges weakly to the distribution function

G(ε)
def
= P

{
h ∈ H(D) : sup

s∈K
|h(s)− f (s)| < ε

}
> 0

as T → ∞. The weak convergence of distribution functions is understood as convergence
at all continuity points of the limit function G(ε). However, each distribution function has
an at most countable set of discontinuity points. This shows that the equality

lim
T→∞

GT(ε) = G(ε)

holds for all ε > 0, except for the at most countable set of values.

5. Identification of Set Fθ

It is well known (see, for example, References [19,20]) that, in the case of the universal-
ity theorem for the Riemann zeta function, the class of approximated functions by shifts
ζ(s + iτ) coincides with the set of all non-vanishing analytic functions on D complemented
by the function h0(s) ≡ 0, s ∈ D. More precise estimates show, unfortunately, that, in the
case of Theorem 2, the approximated class reduces to the function h0(s) only.

Let K ⊂ D be an arbitrary compact set. Then, there is δ > 0 such that 1/2 + δ 6 σ 6
1− δ for s = σ + it ∈ K. We estimate the mean value

MT(K)
def
=

1
T

T∫
0

sup
s∈K
|Z(s + iτ)|dτ.

By using Lemma 1, the function Z(s) is analytic in strip D. Therefore, we can use the
integral Cauchy formula, which yields

Z(s + iτ) =
1

2πi

∫
L

Z(z + iτ)
z− s

dz,

where L is a certain closed simple contour enclosing set K, completely lying in strip D and
satisfying the inequality

inf
s∈K

inf
z∈L
|z− s| > C(K, L ) > 0.

Hence, we find

sup
s∈K
|Z(s + iτ)| 6 1

2πC

∫
L

|Z(z + iτ)| |dz| �K,L

∫
L

|Z(z + iτ)| |dz|.
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Therefore, in view of the Cauchy–Schwarz inequality and Lemma 2, we obtain

MT(K)�K,L

∫
L

 1
T

T∫
0

|Z(z + iτ)|dτ

|dz| �K,L

∫
L

 1
T

T∫
0

|Z(z + iτ)|2 dτ

1/2

|dz|

�K,L

∫
L

 1
T

T∫
0

|Z(u + iv + iτ)|2 dτ

1/2

|dz|

�K,L

∫
L

 1
T

T+|v|∫
−|v|

|Z(u + iτ)|2 dτ


1/2

|dz|

�K,L ,η

∫
L

(
1
T
(T + |v|)2−2u+η

)1/2
|dz| �K,L ,δ T1/2−u+η/2 �K,L ,η T−δ/4,

after a choice
inf

z∈L
Rez > 1/2 + δ/2 and η = δ/4.

The latter estimate, together with Chebyshev’s type inequality, implies that, for every ε > 0,

1
T

µ

{
τ ∈ [0, T] : sup

s∈K
|Z(s + iτ)| > ε

}
6

1
εT

T∫
0

sup
s∈K
|Z(s + iτ)|dτ �K,L ,δ,ε T−δ/4.

Thus,

lim
T→∞

1
T

µ

{
τ ∈ [0, T] : sup

s∈K
|Z(s + iτ)| > ε

}
= 0. (16)

Let ξT , YT and Q be the same as in the proof of Lemma 5 and

XT(s) = h0(s + iξT)

for all T > 0. Then, by using Equation (16),

lim
T→∞

Q{d(YT , XT) > ε} = 0.

By using this relation and repeating the proof of Lemma 5, we find that PT converges
weakly to P, where

P(A) =

{
1 if h0(s) ∈ A,
0 otherwise.

Thus, we find that Z(s) and ẐyT (s) satisfy the law of large numbers in the space H(D),
and Fθ = {h ∈ H(D) : h(s) ≡ 0}.

6. Conclusions

Let ζ(s) denote the Riemann zeta function, yT → ∞ and yT � T2 as T → ∞, vyT (x) =
exp{−(x/yT)

θ} with fixed θ > 1/2, VyT (x) = |ζ(1/2 + ix)|2vyT (x) and

ẐyT (s) =
∞∫

1

VyT (x)x−s dx

the modified Mellin transform of VyT (x). In view of the definition of vyT (x), the latter
integral is absolutely convergent in every half-plane. By using a probabilistic method, we
find that there exists a set Fθ of analytic functions that is approximated by shifts ẐyT (s + iτ).
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The set of such shifts has a positive density. Unfortunately, the used method implies that Fθ

consists only of the identical zero. However, this does not eliminate the possibility of the
approximation of other analytic functions. Actually, suppose that the set

AT
def
=

{
τ ∈ [0, T] : sup

s∈K

∣∣∣Ẑ(s + iτ)
∣∣∣ < ε

}

has a positive density and that sups∈K | f (s)| 6 ε with a certain compact set K. Define

BT =

{
τ ∈ [0, T] : sup

s∈K

∣∣∣Ẑ(s + iτ)− f (s)
∣∣∣ < 2ε

}
.

Since, for τ ∈ AT ,

sup
s∈K

∣∣∣Ẑ(s + iτ)− f (s)
∣∣∣ 6 sup

s∈K

∣∣∣Ẑ(s + iτ)
∣∣∣+ sup

s∈K
| f (s)| < 2ε,

we have the inclusion AT ⊂ BT . Therefore,

lim inf
T→∞

1
T

µ{τ ∈ [0, T] : τ ∈ BT} > lim inf
T→∞

1
T

µ{τ ∈ [0, T] : τ ∈ AT} > 0.
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