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Abstract: Kurepa’s hypothesis for the left factorial has been an unsolved problem for more than
50 years. In this paper, we have proposed new equivalents for Kurepa’s hypothesis for the left
factorial. The connection between the left factorial and the continued fractions is given. The new
equivalent based on the properties of the integer part of real numbers is proven. Moreover, a new
equivalent based on the properties of two well-known sequences is given. A new representation of
the left factorial is listed. Since derangement numbers are closely related to Kurepa’s hypothesis, we
made some notes about the derangement numbers and defined a new sequence of natural numbers
based on the derangement numbers. In this paper, we indicate a possible direction for further research
through solving quadratic equations.

Keywords: Kurepa’s hypothesis; left factorial; Bell numbers; derangement numbers; continued
fractions

MSC: 11A05; 11B50

1. Introduction and Preliminaries

Pythagoras, a renowned Greek philosopher and mathematician who lived between
570 BC and 495 BC, believed that numbers could be used to express everything. He
based his philosophy on the concept that mathematical relationships could describe the
universe. According to Weil in [1], the birth of the modern number theory took place
between 1621 and 1636. This was when Bachet (1581–1638), a French mathematician,
published Diophantus’ book Aritmetica in Latin, along with his comments. Diophantus
(around 200–284 AD) was a Greek mathematician known as the “father of algebra” for
his revolutionary contributions to solving Diophantine equations. Diophantine equations
are equations with integer solutions, and Diophantus developed methods for solving
them. The connection between Pythagoras and Diophantus lies in the fact that Diophantus
continued and developed the ideas and techniques used in Pythagoras’ studies of number
theory. He advanced the study of Diophantine equations, which was part of Pythagoras’
number theory. Diophantus’s works greatly influenced the further development of number
theory, including many concepts established by Pythagoras. Although their work was
separated by centuries, it can be said that in his works, Diophantus inherited and expanded
upon many of Pythagoras’ mathematical ideas and concepts, particularly regarding number
theory. In this article, we will examine an unresolved problem in modern number theory.
Namely, we will consider Kurepa’s hypothesis. Moreover, we point out the possibility of
including Diophantine equations in solving Kurepa’s hypothesis and this could be a new
direction in solving this open problem.

Kurepa’s hypothesis for the left factorial, or in short, Kurepa’s hypothesis, was formu-
lated in 1971 by -Duro Kurepa (1907–1993) and is still an open problem. The purpose of this
paper is to contribute to the ongoing efforts to understand and solve Kurepa’s hypothesis
by providing new perspectives and connections to other mathematical concepts.

Axioms 2023, 12, 785. https://doi.org/10.3390/axioms12080785 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12080785
https://doi.org/10.3390/axioms12080785
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0001-8039-0456
https://orcid.org/0000-0001-6811-4993
https://doi.org/10.3390/axioms12080785
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12080785?type=check_update&version=3


Axioms 2023, 12, 785 2 of 11

The paper is organized as follows. In the sequel of the introductory section, we present
a historical overview and a brief review of the current status of Kurepa’s hypothesis. Then,
we briefly introduce notation and basic concepts used in the following sections. Section 2
establishes the connection between the left factorial and the continued fractions. We prove
a new equivalent based on the properties of the integer part of real numbers. We also
list two new equivalents based on the properties of two well-known sequences. We will
list a new representation of the left factorial. In addition, we made some remarks under
the assumption that Kurepa’s hypothesis is not correct (in Section 2.2). Some properties
of derangement numbers are proven in Section 2.3. Finally, in Section 3, we present
conclusions and indicate possible directions for further research.

1.1. Historical Overview and Current State of Research

In [2], Kurepa proposed the hypothesis for the left factorial: For every natural number
n > 1, it holds

gcd(!n, n!) = 2

where gcd(a, b) is the greatest common divisor of integers a and b and the left factorial !n is
defined by

!0 = 0, !n =
n−1

∑
k=0

k! (n ∈ N)

In the same paper, Kurepa gave an equivalent reformulation of the hypothesis [2] (Thm.
2.4, pg. 149):

!p 6≡ 0 (mod p) for p odd prime. (1)

Over the past fifty years, there have been many attempts to find a solution to Kurepa’s
hypothesis, and the problem remains open. This problem is listed in Guy’s [3] (Problem
B44), Koninck–Mercier’s [4] (Problem 37), and in Sandor–Cristici’s [5] books and has been
studied by numerous researchers. Some of them provided equivalents to Kurepa’s hypoth-
esis [6–12], some performed computer tests, looking for a counterexample or calculating
the left factorial residues [13–18]. Most recently, Andrejić, Bostan, and Tatarević, in their
paper [19], showed that Kurepa’s hypothesis is valid for p < 240. At the same time, Ra-
jkumar [20] independently used the same method as Andrejić, Bostan, and Tatarević [19],
but he studied in detail only the theoretical aspects, without program implementation.
Numerous papers are dedicated to the generalization of the left factorial function [21–24],
the extension to complex numbers [25–27], and the connection with well-known polynomi-
als and functions [28–31]. In [32], the authors reviewed some of the problems in number
theory posed by Kurepa, including Kurepa’s hypothesis, and presented some of the known
results concerning them. In 1971, Kurepa, in his paper [33], proved some new left fac-
torial propositions. Some considerations and inequalities for the left factorial are given
by Malešević in [34–37]. Several identities involving the left factorial are given in [38,39].
In [40–42], the authors considered the connection between the left factorial and trees. More
recent investigations of Kurepa’s hypothesis are given in papers [43–45]. There are several
announcements about the final solution of Kurepa’s hypothesis [46], even published papers
with incorrect proof [47]. More details on the historical background of Kurepa’s hypothesis
and its impact on solving other open problems can be found in [46].

Let us emphasize once again that the aim of this paper is to present new equivalents to
Kurepa’s hypothesis and to point out new possibilities for researching problems related to
Kurepa’s hypothesis. There are various equivalents of the hypothesis and their importance
is that they may help to solve the problem of whether Kurepa’s hypothesis is correct or not.

1.2. Preliminaries

Let N be the set of natural numbers (positive integers). Let [t] denote the integer part
of a real number t, and e ≈ 2.71828 is Euler’s number.
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Let us recall some statements proven by Mijajlović [16] and Šami [11], which we will
use in the sequel. It holds that

!n ≡ (−1)n−1Sn−1 (mod n) for all n > 2 (2)

where Sn are the derangement numbers cf. ([48] (p. 65), [49] (p. 182), [21]) defined by

Sn := n!
n

∑
ν=0

(−1)ν

ν!
(n ≥ 0) (3)

The derangement numbers Sn satisfy the following recurrence relation

Sn = nSn−1 + (−1)n, with S0 = 1. (4)

Bell numbers are defined by

Bn :=
n−1

∑
k=0

(
n− 1

k

)
Bk with B0 := 1. (5)

Based on the properties of Bell numbers, Barsky and Benzaghou in [47] and Sun and Zagier
in [10] showed the following equivalent of Kurepa’s hypothesis for any prime number p:

!p ≡ Bp−1 − 1 (mod p) (6)

2. Results

We start this section by listing the equivalents of Kurepa’s hypothesis.

2.1. Equivalents of Kurepa’s Hypothesis

We will now state the equivalent of Kurepa’s hypothesis based on the properties of
continued fractions. The continued fraction (see [50])

r0 +
t1

r1 +
t2

...+
tn−1

rn−1+
tn
rn

is denoted by

r0 +
t1|
| r1

+
t2|
| r2

+ ... +
tn|
| rn

=
xn

yn

where the sequences {xn}∞
n=0 and {yn}∞

n=0 are given by

x0 = r0, x1 = r0r1 + t1, xn = rnxn−1 + tnxn−2, (7)

y0 = 1, y1 = r1, yn = rnyn−1 + tnyn−2. (8)

Theorem 1. Let n ∈ N, n > 2. Then

!n ≡ (−1)n−1(n− 1)! ·
(

1− 1|
| 1

+
1|
| 1

+
2|
| 2

+ ... +
n− 2|
| n− 2

)
(mod n) .

Proof. From equation (see [50])

n

∑
j=0

cj = c0 +
c1|
| 1
−

c2
c1
|

| 1 + c2
c1

− ...−
cn

cn−1
|

| 1 + cn
cn−1

, cj 6= 0, j ≥ 1
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for c0 = 0 and cj =
(−1)j+1

j! , j = 1, 2, ..., n− 1, we obtain

n−1

∑
j=1

(−1)j+1

j!
= 0 +

1|
| 1

+
1
2 |

| 1− 1
2
+ ... +

1
n−1 |

| 1− 1
n−1

= 0 +
1|
| 1

+
1|
| 1

+
2|
| 2

+ ... +
n− 2|
| n− 2

=
xn−1

yn−1
.

Using relations (7) and (8), we have

x0 = 0, x1 = 1, xn = (n− 1)(xn−1 + xn−2),

y0 = 1, y1 = 1, yn = (n− 1)(yn−1 + yn−2).

The sequence {xn}∞
n=0 is the already mentioned sequence A002467 in [51] and

xn = n!− Sn

is valid for it, while the sequence {yn}∞
n=0 is the well-known sequence A000142 in [51] and

is also calculated by the formula:
yn = n!.

Hence, we have proven our theorem by (2).

Before we present one of our main results, we state an elementary statement that is
easy to prove:

n− 1 ≥
[
(n− 1)!

e

]
− n

[
(n− 1)!

n e

]
≥ 0 (n ∈ N). (9)

The main result of the paper is the following theorem:

Theorem 2. For p to be an odd prime number, it holds

p− 1 >

[
(p− 1)!

e

]
− p

[
(p− 1)!

p e

]
⇐⇒ Kurepa’s hypothesis .

Proof. (⇒) Let us assume the opposite: Kurepa’s hypothesis is incorrect, i.e., there is some
odd prime number p such that (see (2)) Sp−1 ≡ 0 (mod p) and the inequality is correct. On
the other hand, a ∈ N such that Sp−1 = pa and

[
(p− 1)!

e
]− p[

(p− 1)!
p e

] < p− 1.

Hence, the inequality of (9) produces

1 ≤ ap− p[
(p− 1)!

p e
] < p,

and consequently
1
p
≤ a− [

(p− 1)!
p e

] < 1,

which is a contradiction since the number a− [ (p−1)!
p e ] is an integer.

(⇐) Suppose that the inequality

p− 1 >

[
(p− 1)!

e

]
− p

[
(p− 1)!

p e

]
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is incorrect for some odd prime number p, i.e.,

[
(p− 1)!

e
]− p[

(p− 1)!
p e

] = p− 1

for some odd prime number p. Then, [ (p−1)!
e ] + 1 = p[ (p−1)!

p e ] + p for that odd prime
number p. It follows

Sp−1 = p[
(p− 1)!

p e
] + p.

Thus, Sp−1 ≡ 0 (mod p), and consequently, !p ≡ 0 (mod p), which is a contradiction to
Kurepa’s hypothesis.

Lemma 1. Let n be an even natural number. Then

n− 1 >

[
(n− 1)!

e

]
− n

[
(n− 1)!

n e

]
.

Proof. Let
Sn−1 = an + r , a, r ∈ N0 , 0 ≤ r ≤ n− 1 .

For an even number n > 1, Sn−1 is an even number. Then, 0 ≤ r < n − 1. Using the
well-known statement (see [23] (Pr. 2.3., p. 7))

Sn =

[
n!
e

]
+

1 + (−1)n

2
(n ∈ N) , (10)

we have [
(n− 1)!

e

]
= Sn−1 = an + r (0 ≤ r < n− 1) . (11)

Using (3), (10), and (11), we obtain[
(n− 1)!

n e

]
=

[
1
n

(
Sn−1 + (n− 1)!

∞

∑
k=n

(−1)k

k!

)]
=

[
a +

b + r
n

]
= a +

[
b + r

n

]
.

Since r < n− 1, 1
e = ∑∞

k=0
(−1)k

k! and for an even natural number n is valid

0 ≤ b = (n− 1)!
∞

∑
k=n

(−1)k

k!
< 1 ,

which follows [
b + r

n

]
= 0.

Thus, [
(n− 1)!

n e

]
= a. (12)

Based on equations (11) and (12), we obtain[
(n− 1)!

e

]
− n

[
(n− 1)!

n e

]
= r < n− 1 ,

which completes the proof.
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In addition to Kurepa’s hypothesis equivalents given on the basis of the properties of
integer sequences, (3) and (5) in [9] (sequence A002467 in [51]) and [41] (pg. 10) (sequences
A052169, A051398, A051403, and A002720 in [51]) are listed equivalently, using the five
well-known integer sequences. In addition to these seven sequences, we will now list two
more well-known integer sequences.

The integer sequence {an}∞
n=0 (sequence A000296 in [51]) is defined as follows:

an := (−1)n +
n−1

∑
k=0

(−1)n+k+1Bk with a0 := 1 .

The integer sequence {bn}∞
n=1 (sequence A138378 in [51]) denotes the number of embedded

coalitions in an n-person game [52].

Lemma 2. Let p > 3 be a prime number. Then:

!p ≡ ap−1 (mod p) ,

!p ≡ 1− bp−1 (mod p) .

Proof. On the basis of (6) and Bp ≡ 2 (mod p) (see [6]) and (p−1
k ) ≡ (−1)k, we have proof

of the first equivalence. The proof of the second equivalence follows from the basis (6)
and [52] (Th. 1).

Finally, we present a new representation of the left factorial in the following lemma:

Lemma 3. Let n ∈ N. Then

!(2n + 1) = 1 +
1
2

n

∑
k=1

(2k + 1)!
k

.

Proof. We present our proof through an induction on n. The statement for n = 1 is clearly
true. Let m ∈ N be given and suppose that the statement is true for n = m:

!(2m + 3) = !(2m + 1) + (2m + 1)! + (2m + 2)!

= 1 +
1
2

m

∑
k=1

(2k + 1)!
k

+ (2m + 1)!(2m + 3) (by induction hypothesis)

= 1 +
1
2

m

∑
k=1

(2k + 1)!
k

+
(2m + 3)!
2(m + 1)

= 1 +
1
2

m+1

∑
k=1

(2k + 1)!
k

.

Thus, the statement holds for n = m+ 1, and the proof of the induction step is complete.

Let us define the integer sequence {cn}∞
n=1 as follows:

c1 = 1, cn = cn−1 +
(2n− 1)!

2n− 2
. (13)

For example, the first few terms of this sequence are 1, 4, 34, 874, . . . .

Corollary 1. For the integer sequence {cn}∞
n=1 defined by (13), the following identity holds:

!(2n + 1) = cn+1 (n ∈ N) .

Proof. It follows from Lemma 3.
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2.2. Some Remarks on the Assumption That Kurepa’s Hypothesis Is Not Correct

Theorem 3. Let prime number p > 3 be the smallest number, for which it holds

!p ≡ 0 (mod p) . (14)

Then, exist the natural numbers a ∈ N and odd numbers b, c ∈ N, for which the Diophantine
equation is valid:

b2 + (2a + c)2 = (2a(p− 1)− c)2 + (2a + b)2 . (15)

Proof. The proof is simple and rests upon the property of the derangement numbers (3).
Let p, p > 3, be the smallest prime number for which (14) is valid. Then,

!(p− 1) 6≡ 0 (mod p− 1),

and using (2), we obtain

(∃a ∈ N)(a(p− 1) < Sp−2 < (a + 1)(p− 1)).

Relation (4) produces

a(p− 1)2 + 1 < Sp−1 < (a + 1)(p− 1)2 + 1 . (16)

From relations (14), (2), and (16), it follows that b, c ∈ N exists and

a(p− 1)2 + b = Sp−1 = pc . (17)

It follows
ap2 − (2a + c)p + a + b = 0 . (18)

Using (17) and (4), we have

(p− 1)Sp−2 = p(c− 1) + p− 1,

which implies
p− 1|p(c− 1),

i.e.,
p− 1|c− 1 . (19)

Hence,
(∃γ ∈ N) , c = (p− 1)γ + 1.

Thus, c is an odd number.
Analogously, using (17), we have

a(p− 1)2 = c(p− 1) + (c− 1)− (b− 1).

It follows, by (19), p− 1|b− 1 and

b = (p− 1)β + 1 for some β ∈ N.

It is not difficult to show that it is:

p− 1 < b < (p− 1)2 .

Diophantine equation (15) and equation (18) are equivalent, which completes the proof.
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Corollary 2. If the solutions of the quadratic Equation (18) denote as p1 ∈ N and p2 ∈ N, then
coefficient a in (18) is an odd natural number and exists the odd natural numbers b1 and c1,
such that:

p2 − (c1 + 2)p + b1 + 1 = 0 .

Proof. By Vieta’s formulas, we have a|b and a|c, i.e., b = ab1 and c = ac1, (b1, c1 ∈ N),
respectively.

Remark 1. Let the notation of the Corollary 2 hold. If p1 6∈ N and p2 6∈ N, then Kurepa’s
hypothesis is true.

2.3. Notes on Derangement Numbers

Theorem 4. For n ∈ N and arbitrary s ∈ N0, it holds

Sn−1 +
2s+ 1+(−1)n

2

∑
k=0

(−1)k+1− 1+(−1)n
2

k

∏
j=0

1
n + j

<

<
(n− 1)!

e

< Sn−1 +
2s−1+ 1+(−1)n

2

∑
k=0

(−1)k+1− 1+(−1)n
2

k

∏
j=0

1
n + j

,

where, for s = 0, the sum ∑−1
k=0 = 0.

Proof. The well-known statement (10) produces

Sn−1 −
1
n
<

(n− 1)!
e

< Sn−1 .

Analogously,

Sn+1 −
1

n + 2
<

(n + 1)!
e

< Sn+1.

Using relation (3), we obtain

Sn−1 −
1
n
+

1
n(n + 1)

− 1
n(n + 1)(n + 2)

<
(n− 1)!

e
< Sn−1 −

1
n
+

1
n(n + 1)

.

Through an induction for s ∈ N0 inequalities < (n+2s−1)!
e <, we have proof of our theorem

for odd n. Similarly, by the procedure, we prove the assertion for n even number.

Corollary 3. For n ∈ N, it holds

Sn =
n!
e
+ (−1)n+1

∞

∑
k=0

(−1)k+1
k

∏
j=0

1
n + 1 + j

=
n!
e
+ (−1)n+1n!

∞

∑
k=0

(−1)k+1

(n + k + 1)!

=
Γ(n + 1,−1)

e
,

where Γ(z, a) is the incomplete gamma function defined by (see [53] (Equation (79), pg. 11))

Γ(z, a) =
∫ a

0
e−ttz−1 dt (<(z) > 0 ; |arg(a)| < π) .
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The last equation is well-known.

Remark 2. In [19], the authors showed that Kurepa’s hypothesis is valid for p < 240. According to
(2), there is a sequence of natural numbers {αn}240

n=4 such that

αn(n + 1) < Sn < (αn + 1)(n + 1) .

Then, we define the sequence {αn}∞
n=4 as follows:

αn :=
[

Sn

n + 1

]
.

We have

αn ∈ {1, 7, 37, 231, 1648, 13349, 121360, 1223714, 13554987, 163628066, . . . } .

The sequence of natural numbers {αn}∞
n=4 has not been defined so far according to [51]. It is not

difficult to show that it is

αn :=
[

n!
(n + 1)e

]
(n < 240) .

Remark 3. For n > 1 odd natural number, the multiple application of Formula (4) provides the
following result:

Sn−1 ≡ (−1)kk! · Sn−(k+1)+!k (mod n) (k = 1, 2, . . . , n− 1) .

3. Conclusions

The hypothesis for the left factorial given by Professor Kurepa is a long-standing
open problem. Numerous attempts to solve this problem have not brought us closer to
answering the question of whether the hypothesis is correct or not. Thus, any exploration of
the concepts associated with this hypothesis may lead to its resolution. We have proposed
several new facts concerning the hypothesis for the left factorial, which may suggest new
research directions for this open problem. So far, neither continued fractions nor quadratic
equations have been used to solve this problem. Formulated hypothesis equivalences
and proposed congruence’s for the left factorial, as well as a newly defined sequence can
contribute to the final solution of the problem, either by proving the hypothesis or by
finding a counterexample. Further research will be related to the search for a more efficient
way to calculate the left factorial and solve quadratic equations based on the properties of
derangement numbers listed in this paper.
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27. Slavić, D.V. On the left factorial function of the complex argument. Math. Balk. 1973, 3, 472–477.
28. Carlitz, L. A note on the left factorial function. Math. Balk. 1975, 5, 37–42.
29. Matala-aho, T.; Zudilin, W. Euler’s factorial series and global relations. J. Number Theory 2018, 186, 202–210. [CrossRef]
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39. Stanković, J.; Žižovixcx, M. Noch einige Relationen zwischen den Fakultäten und den linken Fakultäten. Math. Balk. 1974, 4,
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