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Abstract: The overlap function is an important class of aggregation function that is closely related to
the continuous triangular norm. It has important applications in information fusion, image processing,
information classification, intelligent decision-making, etc. The usual multi-attribute decision-making
(MADM) is to select the decision object that performs well on all attributes (indicators), which is quite
demanding. The MADM based on fuzzy quantifiers is to select the decision object that performs
well on a certain proportion or quantification (such as most, many, more than half, etc.) of attributes.
Therefore, it is necessary to study how to express and calculate fuzzy quantifiers such as most, many,
etc. In this paper, the Sugeno integral based on the overlap function (called the O-Sugeno integral)
is used as a new information fusion tool, and some related properties are studied. Then, the truth
value of a linguistic quantified proposition can be estimated by using the O-Sugeno integral, and the
O-Sugeno integral semantics of fuzzy quantifiers is proposed. Finally, the MADM method based on
the O-Sugeno integral semantics of fuzzy quantifiers is proposed and the feasibility of our method is
verified by several illustrative examples such as the logistics park location problem.

Keywords: overlap function; sugeno integral; fuzzy quantifier; multi-attribute decision-making
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1. Introduction

The triangular norm (t-norm) first appeared in Menger’s paper “Statistical metrics”
in 1942, which proposed t-norm as a natural generalization of triangular inequalities in
classical metric spaces [1]. A t-norm is an aggregation operator that satisfies commutativity,
monotonicity, and associativity, and has the identity element 1. From the mathematical
structure, t-norms and t-conorms are pairs of dual operators. T-norms play an important
role as the general fuzzy “and” operator in the fuzzy logic community. In order to apply
more widely, researchers proposed many generalized forms of t-norms and t-conorms, such
as t-seminorms [2], pseudo-t-norms [3], t-operators [4], uninorms [5], semiuninorms [6], etc.
Recently, many scholars still studied the extension structure of t-norms. For example, Dan
proposed a universal way to study t-semi(co)norms and semiuninorms in terms of behavior
operations [7]. For partially defined binary operations in practical problems, Borzooei et al.
introduced a partial t-norm on a bounded lattice [8]. Zhang et al. further investigated the
partial residual implications of partial t-norms and partial residuated lattices [9].

The measures discussed in classical measure theory are additive, and they are abstrac-
tions of real-world concepts such as length, area, volume and weight. However, additivity
cannot be satisfied in many practical situations, e.g., the work efficiency of two people in
cooperation is often greater or less than the combined work efficiency of two people. In
1971, Shilkret introduced the maxitive measure in place of the usual additive measure, and
then proposed the integral with respect to a maxitive measure in [10]. The concepts of fuzzy
measures and fuzzy integrals (also called Sugeno integrals) were first introduced by Sugeno
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in his doctoral thesis in 1974 [11]. Fuzzy measure is a class of set functions using weaker
monotonicity instead of additivity. Fuzzy measures have been widely used in different
scenarios and can be described as similar concepts such as importance, reliability, and satis-
faction. Sugeno integrals replace the addition and multiplication of Lebesgue integrals with
the maximum and minimum operators, respectively. These operations have limitations.
Subsequently, many scholars further generalized Sugeno’s integral theory based on other
operators. For example, Garcia and Alvarez defined semi-normed fuzzy integrals and
semiconorm fuzzy integrals and pointed out that Sugeno integrals are a special case [2].
Dudois et al. introduced Sugeno-like qualitative integrals and qualitative co-integrals
defined in terms of fuzzy conjunctions and implications, respectively [12]. In 2010, Klement
et al. Proposed the framework covering generalizations of Sugeno integrals, in which the
role of multiplication is played by semicopulas [13]. Note that the multiplication of Shilkret
integrals is still the standard product. Jin et al. introduced the concept of weak universal
integrals based on semicopulas, which are generalizations of Sugeno integrals and Shilkret
integrals [14]. Mihailovi and Pap defined Sugeno integrals based on set functions that have
the properties of absolute monotony and sign stability [15]. In recent years, many scholars
have been interested in Sugeno integrals and their generalizations, such as [16–20].

Eslami et al. pointed out that t-norms are not suitable for solving natural interpreta-
tions of language words [21]. In addition, Fodor and Keresztfalvi proposed non-associative
conjunctions are very effective in generalized inference patterns [22]. Bustince et al., in 2010,
introduced the concept of overlap functions as a special class of bivariate continuous aggre-
gation functions, which are closely related to continuous t-norms [23]. Subsequently, schol-
ars deeply studied the theory of overlap functions and their application, such as [24–29].
Overlap functions are mainly used for image processing, classification problems, decision
analysis, and intelligent information fusion, in which the associative law is not strongly
required. In order to be applied in more fields, overlap functions were generalized in vari-
ous ways, including general overlap functions [30], Archimedean overlap functions [31],
quasi-overlap functions [32], pseudo-overlap functions [33], semi-overlap functions [34],
and interval-valued pseudo-overlap functions [35].

The MADM requires comprehensively considering multiple attributes through the
aggregation function, and gives the optimal choice or sorts the schemes. The usual MADM
is to select the decision object that performs well on all attributes (indicators), which is quite
demanding. Attribute weight values can reflect the importance of attributes. In the MADM
problem with known attribute weights, the decision-maker considers all the attributes
together by means of an aggregation function and gives the optimal choice or ranking of
decision objects. However, different attribute weights will affect the decision results and it
is difficult to obtain the optimal attribute weights. The MADM problem with unknown
attribute weights has been studied by many researchers from different perspectives. For
example, a new MADM method based on rough sets and fuzzy measures was proposed by
Wang et al. [36]. Because decision objects that perform well on all attributes are difficult to
be selected out, many scholars have begun to study the MADM based on fuzzy quantifiers.
The MADM problem based on fuzzy quantifiers selects the decision object that performs
well on a certain proportion or quantification (such as most, many, more than half, etc.) of
attributes. Therefore, it is necessary to study how to express and calculate fuzzy quantifiers
such as most, many, etc.

In 1983, Zadeh first used the term “fuzzy quantifier” and described a method for quan-
tifying fuzzy sets [37]. Zadeh treated fuzzy quantifiers as fuzzy numbers, and linguistic
quantified propositions correspond to fuzzy sets defined by linguistic predicates. Zadeh
obtained the truth value of a quantification proposition by calculating the cardinality of the
fuzzy set. In 1988, Yager, an American scholar, proposed the method of evaluating a linguis-
tic quantified proposition based on the ordered weighted average (OWA) operators [38].
Recently, Dvorak et al. proposed the notion of fuzzy quantifiers over fuzzy domains
and investigated relevant semantic properties [39]. Medina et al. further investigated
the properties of generalized quantifiers and defined the semantics of multi-adjoint logic
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programs [40]. In 2006, Ying, a Chinese scholar, proposed a method for modeling linguistic
statements involving fuzzy quantifiers in natural language, in which fuzzy measures can
be used to represent fuzzy quantifiers and Sugeno integrals can be used to calculate the
truth value of a quantified statement [41]. Zhang et al. studied fuzzy quantifiers and their
integral semantics based on the Sugeno integral with t-norm, and successfully applied
them to the problem [42].

For wider application, we generalized the t-norm-based Sugeno integral in [42] by
replacing t-norms with overlap function, which is non-associative and continuous. The
Sugeno integral based on overlap functions (O-Sugeno integral) is proposed as a new
information fusion tool, and its related properties are studied. Then, the O-Sugeno inte-
gral is used to deal with fuzzy quantifiers and the O-Sugeno integral semantics of fuzzy
quantifiers is proposed. In fuzzy quantifier integral semantics, fuzzy measures are usually
used to represent fuzzy quantifiers, and O-Sugeno integrals are used to calculate the truth
value of a quantified proposition. Finally, a novel MADM method is proposed based on the
O-Sugeno integral semantics of fuzzy quantifiers. The method is used to solve the fuzzy
quantifiers-based MADM problems.

2. Preliminaries

We briefly review the basic definitions and conclusions that are used in our discussion
of overlap functions, fuzzy quantifiers, and Sugeno integrals.

Definition 1. Binary mapping O: [0, 1] 2 → [0, 1] is called an overlap function if it satisfies the
following requirements: for any x, y ∈ [0, 1]:

(i) O is commutative, that is, O(x, y) = O(y, x);
(ii) O(x, y) = 0 if and only if x y = 0;
(iii) O(x, y) = 1 if and only if x y = 1;
(iv) O is non-decreasing; and
(v) O is an continuous function [23].

Definition 2. Overlap function O is inflationary if it satisfies the condition O(x, 1) ≥ x, and
is deflationary if it satisfies O(x, 1) ≤ x; and has unit element 1 if O(x, 1) = x holds for each
x ∈ [0, 1] [43].

Example 1.

(1) The binary function is defined by

O(x, y) = xy
x + y

2
where x, y are two arbitrary element on the unit interval. Then it is an overlap function that does

not have associativity and 1 is not a unit element, therefore, it is not a continuous t-norm.

(2) The binary function is defined by

O(x, y) = min(xp, yp)

for every x, y ∈ [0, 1] and p > 0. Then it is an overlap function and is deflationary if p > 1 and
inflationary if 0 < p < 1, and has neutral element 1 if p = 1.

In natural languages, many “vague” words are used to express quantity, such as
“several”, “a few”, “quite a few”, “most”, “many”, “very many”, “not many”, “not very
many”, “approximately eight”, “frequently”, etc. These linguistic components used to
represent inexact amounts are called fuzzy quantifiers [37].

Definition 3. A fuzzy quantifier includes two items:
For arbitrary non-empty set X, a Borel field ℘ X over X; and
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a selection function
Q: (X, ℘X) a Q(X, ℘X) ∈M(X, ℘ X)

of the truth class {M(X, ℘ X): (X, ℘ X) is a measurable space} [41].

For convenience, the selection function Q(X, ℘X) is usually abbreviated as QX when
the Borel field does not need to be specifically indicated. Given X as a discourse domain, if
E represents individuals in X that have a specific attribute A, then QX(E) is seen as the truth
value of the linguistic quantified statement “Q Xs are As”.

Example 2.
The quantifier “at least five” is defined as follows:

at least f iveX(E) =
{

1, i f |E|≥ 5,
0, otherwise.

where the domain X is any nonempty set, and E is any subset of X. Then the quantifier “at least
five” is a crisp quantifier because at least fiveX(E) ∈ {0, 1}.

As is well known, ∀ and ∃ are also crisp quantifiers. The following example gives
three typical fuzzy quantifiers.

Example 3.
The terms “many”, “most”, and “almost all” are often used to indicate inexact amounts in

natural language, and are defined based on the following fuzzy measures [41]:

manyX(E) =
|E|
|X| , mostX(E) =

(
|E|
|X|

)3/2
, almostX(E) =

(
|E|
|X|

)2
,

for every non-empty set X and any subset E of X, where |E| represents the cardinality of E.

Definition 4: Suppose (X, 2X, m) is a fuzzy measure space. If h: X → [0, 1] is a measurable
function, then the Sugeno integral of h over A ∈ ℘ is defined as follows [11]:∫

A
h ◦m = sup

F∈2X
min[ inf

x∈F
h(x), m(A ∩ F)]

Theorem 1. Given (X, ℘, m) as a fuzzy measure space, for any ℘ measurable function h: X→ [0, 1],
we have ∫

A
h ◦m = sup

λ∈[0,1]
min[λ, m(A ∩ hλ)]

where hλ = {x∈X: h(x) ≥ λ} for every λ ∈ [0, 1] [11].

In particular,
∫

A h◦ m will be abbreviated as
∫

h◦ m whenever A = X.

3. Sugeno Integrals Based on Overlap Functions

Definition 5. Given (X, ℘, m) as a fuzzy measure space and O: [0, 1]2 → [0, 1] as an overlap
function, if h: X→ [0, 1] is a ℘ measurable function, then the Sugeno integral based on the overlap
function (O-Sugeno integral) of h over A ∈ ℘ is defined by

∫ (OS)

A
h ◦m = sup

λ∈[0,1]
O[λ, m(A ∩ hλ)]

where hλ = {x∈X: h(x) ≥ λ} for every λ ∈ [0, 1].
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When the Borel field in measurable space is the power set of the underlying set, the
O-Sugeno integral can be simplified.

Theorem 2. Assume (X, ℘, m) is a fuzzy measure space and O: [0, 1]2 → [0, 1] is an overlap
function. If ℘ = 2X, then for any ℘ measurable function h: X → [0, 1] and any subset A of X,
we have ∫ (OS)

A
h ◦m = sup

F⊆X
O[ inf

x∈F
h(x), m(A ∩ F)]

where hλ = {x∈X: h(x) ≥ λ} for every λ∈ [0, 1].

Proof of Theorem 2.

(1) ∀F ⊆ X, Let λ′ = inf
x∈F

h(x).

If λ′ = 0, then hλ ′ = X, so F ⊆ hλ ′ ;
If λ′ > 0, then ∀x∈F, h(x) ≥ λ′, so F ⊆ hλ ′ .
Hence, we have

O[λ′, m(A ∩ hλ′)] ≥ O[ inf
x∈F

h(x), m(A ∩ F)]

Further, we obtain∫ (TS)
A h ◦m = sup

λ∈[0,1]
O[λ, m(A ∩ hλ)]

≥ sup
F⊆X

O[λ′, m(A ∩ hλ′)], (λ′ = inf
x∈F

h(x))

≥ sup
F⊆X

O[ inf
x∈F

h(x), m(A ∩ F)]

(2) ∀λ ∈ [0, 1], Let F′ = hλ, then ∀x ∈ F′, h(x) ≥ λ, so inf
x∈F′

h(x) ≥ λ.

Hence, we have

O[ inf
x∈F′

h(x), m(A ∩ hλ)] ≥ O[λ, m(A ∩ hλ)]

Further, we obtain∫ (OS)
A h ◦m = sup

λ∈[0,1]
O[λ, m(A ∩ hλ)]

≤ sup
λ∈[0,1]

O[ inf
x∈F′

h(x), m(A ∩ F′)], (F′ = hλ)

≤ sup
F⊆X

O[ inf
x∈F

h(x), m(A ∩ F)]

In summary, we can get

∫ (OS)

A
h ◦m = sup

F⊆X
O[ inf

x∈F
h(x), m(A ∩ F)]

�.

In the case where the domain is finite, the O-Sugeno integral over it can be further
simplified.

Theorem 3. Given domain X = {x1, . . ., xn} as a finite set, and ℘ = 2X, (X, ℘, m) as a fuzzy measure
space, and O: [0, 1]2→ [0, 1] as an overlap function, if a ℘ measurable function h: X→ [0, 1] such
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that h(xi) ≤ h(xi+1), for 1 ≤ i ≤ n − 1 (if not, rearrange h(xi), 1 ≤ i ≤ n). Then the O-Sugeno
integral of h over A is further simplified as follows:

∫ (OS)

A
h ◦m =

n
max
i=1

O[h(xi), m(A ∩ Xi)]

where A is any subset of X and Xi = {xj: i ≤ j ≤ n}, 1 ≤ i ≤ n.

Proof of Theorem 3. For any λ ∈ [0, 1], it holds that

hλ =



X1 = X, 0 ≤ λ ≤ h(x1)
X2, h(x1) < λ ≤ h(x2)
X3, h(x2) < λ ≤ h(x3)
· · ·
Xn, h(xn−1) < λ ≤ h(xn)
Φ, h(xn) < λ

So, we obtain∫ (OS)
A h ◦m = sup

λ∈[0,1]
O[λ, m(A ∩ hλ)]

=
n+1
max
i=1

{
sup

λ∈[h(xi−1),h(xi)]

O[λ, m(A ∩ hλ)]

}
(h(x0) = 0, h(xn+1) = 1)

=
n+1
max
i=1

{
sup

λ∈[h(xi),h(xi+1)]

O[λ, m(A ∩ Xi)]

}
(Xn+1 = Φ)

=
n+1
max
i=1
{O[h(xi), m(A ∩ Xi)]}

=
n

max
i=1
{O[h(xi+1), m(A ∩ Xi+1)]} ∨O[1, 0]

=
n

max
i=1
{O[h(xi+1), m(A ∩ Xi+1)]}

�.

Theorem 4. Given (X, ℘, m) as a fuzzy measure space and ℘ = 2X and O: [0, 1]2 → [0, 1] as an
overlap function, for arbitrary ℘ measurable functions h, h1, and h2 and arbitrary subset A of X, the
following conclusion is established:

(1) If h1 ≤ h2 (i.e., for any x ∈ X, h1(x) ≤ h2(x)), then it holds that

∫ (OS)

A
h1 ◦m ≤

∫ (OS)

A
h2 ◦m

(2) If m(A) = 0, then it holds that

∫ (OS)

A
h ◦m = 0

(3) If a constant c ∈ [0, 1], then it holds that

∫ (OS)

A
c ◦m = O[c, m(A)]

(4) If a constant c ∈ [0, 1], and for any x ∈ X, max(c, h)(x) = max{c, h(x)}, then it holds that

∫ (OS)

A
max(c, h) ◦m = max

(∫ (OS)

A
c ◦m,

∫ (OS)

A
h ◦m

)
(5) If A1 ⊆ A2, then it holds that
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∫ (OS)

A1

h ◦m ≤
∫ (OS)

A2

h ◦m

(6)

∫ (OS)

A
max(h1, h2) ◦m ≥ max

(∫ (OS)

A
h1 ◦m,

∫ (OS)

A
h2 ◦m

)

Proof of Theorem 4.

(1) For any λ ∈ [0, 1], it holds that for any x ∈ X, λ ≤ h1(x) ≤ h2(x).

Then,
h1λ = {x ∈ X: h1(x) ≥ λ} ⊆ {x ∈ X: h2(x) ≥ λ} = h2λ

So,
m(A ∩ h1λ) ≤ m(A ∩ h2λ).

Then, we have
O(λ, m(A ∩ h1λ)) ≤ O(λ, m(A ∩ h2λ))

Furthermore, we obtain

sup
λ∈[0,1]

O(λ, m(A ∩ h1λ)) ≤ sup
λ∈[0,1]

O(λ, m(A ∩ h2λ))

that is, ∫ (OS)

A
h1 ◦m ≤

∫ (OS)

A
h2 ◦m

(2) From m(A) = 0, we have m(A ∩ hλ) = 0.

Thus, it holds that∫ (OS)

A
h ◦m = sup

λ∈[0,1]
O[λ, m(A ∩ hλ)] = sup

λ∈[0,1]
O[λ, 0] = 0

(3) For any x ∈ X, we define h(x) = c.

If λ ≤ c, then hλ= X. So,

O[λ, m(A ∩ hλ)] = O[λ, m(A ∩ X)] = O[λ, m(A)].

If λ > c, then hλ = Φ. So,

O[λ, m(A ∩ Φ)] = O[λ, m(Φ)] = O[λ, 0] = 0

Hence, we can obtain∫ (OS)
A h ◦m = sup

λ∈[0,1]
O[λ, m(A ∩ hλ)]

= max

(
sup

λ∈[0,c]
O[λ, m(A ∩ hλ)], sup

λ∈[c,1]
O[λ, m(A ∩ hλ)]

)

= max

(
sup

λ∈[0,c]
O[λ, m(A)], sup

λ∈[c,1]
O[λ, m(Φ)]

)
= max(O[c, m(A)], 0)
= O[c, m(A)]

(4) If λ ≤ c, then for every x ∈ X,
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max(c, h)(x) = max(c, h(x)) ≥ c ≥ λ,

that is, max(c, h)λ = X.
Hence,

O[λ, m(A ∩max(c, h)λ)] = O[λ, m(A ∩ X)] = O[λ, m(A)].

If λ > c, then
{x ∈ X: max(c, h(x)) ≥ λ} = {x ∈ X: h(x) ≥ λ},

that is, max(c, h)λ = hλ.
Hence,

O[λ, m(A ∩max(c, h)λ)] = O[λ, m(A ∩ hλ)].

Furthermore, we obtain

sup
λ∈[0,1]

O[λ, m(A ∩max(c, h)λ)]

= max

(
sup

λ∈[0,c]
O[λ, m(A ∩max(c, h)λ)], sup

λ∈[c,1]
O[λ, m(A ∩max(c, h)λ)]

)

= max

(
O[c, m(A)], sup

λ∈[c,1]
O[λ, m(A ∩ hλ)]

)

And because

sup
λ∈[0,c]

O[λ, m(A ∩ hλ)] ≤ sup
λ∈[0,c]

O[λ, m(A)] ≤ O[c, m(A)]

we obtain ∫ (OS)
A max(c, h) ◦m = sup

λ∈[0,1]
O[λ, m(A ∩max(c, h)λ)]

= max

(
O[c, m(A)], sup

λ∈[0,1]
O[λ, m(A ∩ hλ)]

)
= max

(∫ (OS)
A c ◦m,

∫ (OS)
A h ◦m

)
(5) For any λ ∈ [0, 1] and A1 ⊆ A2, we have

(A1 ∩ hλ) ⊆ (A2 ∩ hλ), then m(A1 ∩ hλ) ≤ m(A2 ∩ hλ).

Thus, we can obtain

sup
λ∈[0,1]

O[λ, m(A1 ∩ hλ)] ≤ sup
λ∈[0,1]

O[λ, m(A2 ∩ hλ)]

that is, ∫ (OS)

A1

h◦m ≤
∫ (OS)

A2

h◦m

(6) For any x ∈ X, it holds that

max(h1, h2)(x) = max(h1(x), h2(x)).

So, for any λ ∈ [0, 1], we have

max(h1, h2)(x) ≥ h1(x) ≥ λ and max(h1, h2)(x) ≥ h2(x) ≥ λ.
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Then,
h1λ ⊆max(h1, h2)λ and h2λ ⊆max(h1, h2)λ.

Therefore, we get

m(A ∩ h1λ) ≤ m(A ∩max(h1, h2)λ) and m(A ∩ h2λ) ≤ m(A ∩max(h1, h2)λ).

Furthermore, we obtain∫ (OS)

A
max(h1, h2) ◦m ≥

∫ (OS)

A
h1 ◦m,

∫ (OS)

A
max(h1, h2) ◦m ≥

∫ (OS)

A
h2 ◦m

that is, ∫ (Os)

A
max(h1, h2) ◦m ≥ max

(∫ (OS)

A
h1 ◦m,

∫ (OS)

A
h2 ◦m

)
�.

Example 4. Consider the decision-making problem of a commercial housing purchase. After
preliminary screening, the buyer needs to choose one of two properties. Assume that the evaluation
of the property mainly considers the attributes geographical location, floor, and orientation, which
are recorded as s1, s2, and s3. Let the attribute set X = {s1, s2, s3}. The importance of each attribute
is determined by experts and house buyers as follows:

m(Φ) = 0, m({s1}) = 0.7, m({s2}) = 0.5, m({s3}) = 0.4, m({s1, s2}) = 0.9, m({s1, s3}) = 0.6, m({s2, s3}) = 0.8, m({s1, s2, s3}) = 1

The buyer rates the two properties and the three attributes as follows:
First property: h1({s1}) = 0.9, h1({s2}) = 0.8, h1({s3}) = 0.5; second property: h2({s1}) = 0.6,

h2({s2}) = 0.9, h2({s3}) = 0.7.

Taking the importance of the attribute in the property evaluation as a measure of the
attribute set, it easy to see that it is non-additive. The h1 and h2 scores of the two properties
are regarded as functions of the property set X. The overlap function is defined by

O(x, y) = x2y2, for any x, y ∈ [0, 1].

Then the buyer’s composite score for the first property can be calculated by the
O-Sugeno integral of h1 over X, as follows:∫ (OS) h1 ◦m =

3
max
i=1

O[h1(xi), m(Xi)]

= max{O(h1(x3), m(X)), O(h1(x2), m({x1, x2})), O(h1(x1), m({x1}))}
= max{0.52× 12, 0.82× 0.92, 0.92× 0.72}
= 0.5184

The buyer’s composite score for the second property can be calculated by the O-Sugeno
integral of h2 over X, as follows:∫ (OS) h2 ◦m =

3
max
i=1

O[h2(xi), m(Xi)]

= max{O(h2(x1), m(X)), O(h2(x3), m({x2, x3})), O(h2(x2), m({x2}))}
= max{0.62× 12, 0.72× 0.62, 0.92× 0.52}
= 0.36

This shows that the buyer has a higher comprehensive score for the first property, so
he should buy the first property.
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4. O-Sugeno Integral Semantics of Fuzzy Quantifiers

For the sake of completeness, we recall several concepts of a first-order logical language
Lq with fuzzy quantifiers.

Definition 6. A first order logical language Lq contains the following:

(i) An enumerable set of individual variables: x0, x1, x2;
(ii) A set of predicate symbols: F = ∪∞

n=0Fn, where Fn indicates the set of all n-place predicate
symbols for every n ≥ 0, assuming that ∪∞

n=0Fn 6= Φ;
(iii) Propositional connectors: ~ and ∧; and
(iv) Parentheses: ( ) [41].

The following definition gives the syntax of language Lq:

Definition 7. The minimum set of symbol strings is called set Wff of well-formed formula if the
following conditions are satisfied:

(i) For every n ≥ 0, if F is an n-place predicate symbol and y1, . . ., yn are individual variables,
then F(y1, . . ., yn) is a well-formed formula;

(ii) If Q is a quantifier, x is an individual variable, and ϕ is a well-formed formula, then (Qx) ϕ is
also a well-formed formula; and

(iii) If ϕ, ϕ1, and ϕ2 are all well-formed formulas, then ~ϕ, ϕ1, and ∧ϕ2 are also well-formed
formulas [41].

The following definitions give the semantics of language Lq:

Definition 8. The following items comprise an interpretation I of the logic language:

(i) A measurable space (X, ℘), which is called the domain of the interpretation;
(ii) For every n ≥ 0, there exists an element xi

I in X corresponding to the individual variable xi;
and

(iii) For every n ≥ 0 and any F ∈ Fn, there exists a ℘n-measurable function FI: Xn→ [0, 1] [41].

Definition 9. Assume that I is an interpretation. Then the truth value TI (ϕ) of formula ϕ under I
based on O-Sugeno integrals is defined recursively as follows:

(i) If ϕ = F(y1, . . ., yn), then

TI (ϕ) = F(y1
I, . . ., yn

I).

(ii) If ϕ = (Qx) y, then

TI(ϕ) =
∫ (OS)

TI{·/x}(ψ) ◦QX

where X is the domain of I, TI {. / x}: X→ [0, 1] is a mapping such that

TI {. / x} (ϕ)(u) = TI {u/x} (ϕ), for every u ∈ X,

and I {u/x} is the interpretation which is different from I only in the assignment of the individual
variable x, that is,

yI {u/x} = yI and xI {u/x} = u, for every x, y ∈ X and x 6= y.

(iii) If ϕ = ~ ψ, then

TI (ϕ) = 1 − TI (ψ),
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and if ϕ = ϕ1 ∧ ϕ2, then

TI(ϕ) = min{TI(ϕ1), TI(ϕ2)} =
∫ (OS)

TI{·/x}(ϕ) ◦QX

Proposition 1. For any quantifier Q and for any formula ϕ ∈Wff, if O is an overlap function with
unit element 1 and I is an interpretation with the domain of a single point set X = {u}, then

TI ((Qx)ϕ) = TI (ϕ).

Proof of Proposition 1.

TI((Qx)ϕ) =
∫ (OS) TI{·/x}(ϕ) ◦QX

= sup
F⊆X

O[ inf
u∈F

TI{u/x}(ϕ), QX(F)]

= O[ inf
u∈ϕ

TI{u/x}(ϕ), QX(ϕ)] ∨O[TI{u/x}(ϕ), QX({u})]

= O[ inf
u∈ϕ

TI{u/x}(ϕ), 0)] ∨O[TI{u/x}(ϕ), 1)]

= O[TI{u/x}(ϕ), 1)]
= TI{u/x}(ϕ)

= TI(ϕ)

�.

The above proposition states that quantification degenerates in a single point domain.

Proposition 2. For any quantifier Q and for any formula ϕ ∈Wff, if O is an overlap function with
unit element 1, then for any interpretation I with domain X

(1) TI((∃x)ϕ) = sup
u∈X

TI{u/x}(ϕ) and

(2) TI((∀x)ϕ) = inf
u∈X

TI{u/x}(ϕ).

Proof of Proposition 2.
(1)

TI((∃x)ϕ) =
∫ OS TI{u/x}(ϕ) ◦ ∃X

= sup
F⊆X

O[ inf
u∈F

TI{u/x}(ϕ), ∃X(F)]

= O[ inf
u∈ϕ

TI{u/x}(ϕ), ∃X(ϕ)] ∨ sup
ϕ 6=F⊆X

O[ inf
u∈F

TI{u/x}(ϕ), ∃X(F)]

= O[ inf
u∈ϕ

TI{u/x}(ϕ), 0)] ∨ sup
ϕ 6=F⊆X

O[ inf
u∈F

TI{u/x}(ϕ), 1)]

= sup
ϕ 6=F⊆X

O[ inf
u∈F

TI{u/x}(ϕ), 1]

= sup
ϕ 6=F⊆X

inf
u∈F

TI{u/x}(ϕ)

= sup
u∈X

TI{u/x}(ϕ)
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(2)
TI((∀x)ϕ) =

∫ OS TI{u/x}(ϕ) ◦ ∃X
= sup

F⊆X
O[ inf

u∈F
TI{u/x}(ϕ), ∀X(F)]

= O[ inf
u∈X

TI{u/x}(ϕ), ∀X(X)] ∨ sup
F⊂X

O[ inf
u∈F

TI{u/x}(ϕ), ∀X(F)]

= O[ inf
u∈X

TI{u/x}(ϕ), 1] ∨ sup
F⊂X

O[ inf
u∈F

TI{u/x}(ϕ), 0]

= O[ inf
u∈X

TI{u/x}(ϕ), 1]

= inf
u∈X

TI{u/x}(ϕ)

�.

The above proposition shows that for the two quantifiers ∀ and ∃, the method of
calculating the truth value of a quantified proposition based on O-Sugeno integrals cor-
responds to the standard method, which shows that the O-Sugeno integral semantics of
fuzzy quantifiers is reasonable.

Example 5. We consider a comprehensive evaluation of students’ health status (see Example 43
in [41]). Assuming X is a set consisting of 10 students, X = {s1, s2, . . ., s10}, and H is a linguistic
predicate, “to be healthy”. The health evaluation of these students is shown in Table 1.

Table 1. Health condition of 10 students.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

H (x) 0.95 0.1 0.73 1 0.84 0.7 0.67 0.9 1 0.81

Next, we choose the fuzzy quantifier Q = “most” to describe the overall health status
of this group of students.

Let QxH(x) be the proposition ”Most students are healthy” and I be the interpretation
given in Table 1, then TI ((Qx)H(x)) represents the truth value of QxH(x) under I calculated
by the O-Sugeno integral. According to Theorem 2 in Section 3 and Definition 4 in Section 4,
we have

TI((Qx)H(x)) =
∫ (OS)

TI{·/x}(H(x)) ◦QX =
10

max
i=1

O[h(xi), QX(Xi)]

where h(xi) is the result of rearranging the possible values of H(x) in non-decreasing order,
and Xi = {xj: i ≤ j ≤ 10} for 1 ≤ i ≤ 10. Table 2 presents the rearranged truth values h(xi) for
1 ≤ i ≤ 10.

Table 2. Rearranged truth values.

1 2 3 4 5 6 7 8 9 10

h (xi) 0.1 0.67 0.7 0.73 0.81 0.84 0.9 0.95 1 1

According to the definition of the quantifier “most” in Example 3, we calculate the
fuzzy measures of Xi as follows:

QX(Xi) = (|Xi|/|X|)3/2= [(11 − i)/10]3/2, for 1 ≤ i ≤ 10

Using the O-Sugeno integral in which the overlap function O(x, y) = x2y2 for every x, y
∈ [0, 1], the truth value of QxH(x) is calculated as follows:
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TI((Qx)H(x)) =
10

max
i=1

O[h(xi), QX(Xi)]

= 0.01∨ 0.327∨ 0.251∨ 0.183∨ 0.142∨ 0.088∨ 0.052∨ 0.024∨ 0.008∨ 0.001
= 0.327

If the overlap function by O(x, y) = min (
√

x,
√

y) for any x, y ∈ [0, 1], the truth value
of QxH(x) is calculated as follows:

TI((Qx)H(x)) =
10

max
i=1

O[h(xi), QX(Xi)]

= 0.316∨ 0.819∨ 0.837∨ 0.765∨ 0.682∨ 0.595∨ 0.503∨ 0.405∨ 0.299∨ 0.178
= 0.837

The above example shows that choosing different overlap functions to calculate the
true value of the proposition “Most students are healthy” under the interpretation will
lead to different results. In decision-making problems based on preference relationships,
different overlap functions can reflect different fuzzy preferences, which provide multiple
choices for decision-makers (they can manifest the preference relationship by choosing
different overlap functions).

Example 6. We consider a comprehensive evaluation of the weather conditions for a week (see
Example 42 in [41]). Let X be a set consisting of 7 days, X = {Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday}. And let P1 and P2 represent respectively the linguistic predicates “to
be cloudy” and ”to be cold”. The respective weather conditions of the week are indicated in Table 3.
Suppose Q is a fuzzy quantifier, “most”, then the formula ϕ = (Qx)ψ = (Qx) (P1(x)∧~ P2(x))
represents “many days (in this week) are cloudy but not cold”.

Table 3. Truth values of linguistic predicates P1 and P2.

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

P1
I 0.1 0 0.5 0.8 0.6 1 0.2

P2
I 1 0.9 0.4 0.7 0.3 0.4 0

With interpretation I and truth values P1 and P2 given in Table 3, then TI (ϕ) = TI ((Qx)
(P1(x) ∧~P2(x))) represents the truth value of ϕ = (Qx) (P1(x)∧~ P2(x)) under interpretation
I about the O-Sugeno integral. According to Theorem 2 in Section 3 and Definition 4 in
Section 4, we have

TI(ϕ) =
∫ (OS)

A
TI{·/x}[P

I
1 (x)∧ ∼ PI

2 (x)] ◦QX =
7

max
i1

O[h(xi), QX(Xi)]

where h(xi) is the result of the rearranged possible values of TI (P1(x)∧~ P2(x)) in non-
decreasing order, and Xi = {xj: i ≤ j ≤ 7} for 1 ≤ i ≤ 7. Table 4 presents the rearranged truth
values h(xi) for 1 ≤ i ≤ 7.

Table 4. Rearranged truth values.

1 2 3 4 5 6 7

h(xi) 0 0 0.2 0.3 0.5 0.6 0.6

According to the definition of the quantifier “most” in Example 3, fuzzy measures
about the fuzzy quantifier of Xi are calculated as follows:

QX(X1) = 1, QX(X2) = 6/7, QX(X3) = 5/7, QX(X4) = 4/7, QX(X5) = 3/7, QX(X6) = 2/7, QX(X7) = 1/7.
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The overlap function be defined as O(x, y) = min(
√

x,
√

y) for any x, y ∈ [0, 1], and by
using the O-Sugeno integral, the truth value of (Qx)(P1(x)∧~P2(x)) is calculated as follows:

TI(ϕ) =
7

max
i=1

O[h(xi), QX(Xi)]

= 0∨ 0∨ 0.447∨ 0.548∨ 0.655∨ 0.535∨ 0.378
= 0.655

5. Applying Integral Semantics of Fuzzy Quantifiers to MADM

The MADM based on fuzzy quantifiers is to select the decision object that performs
well on a certain proportion or quantification (such as most, many, more that half, etc.)
of attributes. In this section, we propose a MADM method based on O-Sugeno integral
semantics of fuzzy quantifiers to solve the MADM problem involving fuzzy quantifiers.
The specific process is described as follows.

The basic representations are as follows: S = {s1, s2, . . ., sm} is a set of m decision objects
(also known as feasible alternatives), G = {g1, g2, . . ., gn} is a set of n evaluation indicators
(also called attributes), and Q represents the fuzzy quantifiers such as most, many, more
than half, etc.

Step 1: Calculate the truth values of linguistic predicates under the interpretations and
rearrange them to obtain the standardized truth values.

The performance of each decision-making object on the attributes is regarded as an
interpretation I. For any x ∈ G, ϕ(x) means that the predicate meets the requirements of
attribute x. For each decision-making object s ∈ S, we compute the truth value of the
linguistic predicate ϕ(x) under interpretation I, and then rearrange all of them to get h(xi),
where for 1 ≤ i ≤ n − 1, h(xi) ≤ h(xi+1).

Step 2: Calculate fuzzy measures about the fuzzy quantifier.
According to the semantic analysis of the fuzzy quantifier, we can calculate a family of

fuzzy measures QX(Xi), where for 1 ≤ i ≤ n, Xi = {xj: i ≤ j ≤ n}.
Step 3: Calculate the truth value of the proposition for each decision object based on

O-Sugeno integral semantics.
We consider the proposition (Qx)ϕ(x) = “A decision object meets the requirements

of attributes with the fuzzy proportion Q”. Based on the O-Sugeno integral semantics
of fuzzy quantifiers, we calculate the truth values D(si) of proposition (Qx)ϕ(x) under its
interpretation for each decision-making object si ∈ S:

D(s) = TI((Qx)ϕ(x)) =
∫ (OS)

s ◦QX =
n

max
i=1

O[h(xi), QX(Xi)]

for any s ∈ G
Step 4: Obtain the optimal object by ranking the truth values of decision objects.

Example 7. Decision-making problem for selecting excellent students. The best of three high school
students will be recommended to enter a well-known university based on their mathematics, physics,
biology, chemistry, and literature grades. The relevant data in Table 5 show the grades for each
student in each course.

Table 5. Performance of three students.

Mathematics Physics Biology Chemistry Literature

s1 0.75 0.85 0.95 0.90 0.86
s2 0.85 0.92 0.91 0.95 0.86
s3 0.92 0.87 0.90 0.89 0.91

In order to obtain a comprehensive evaluation of each student, we consider the
proposition “(student) has performed well in almost all courses”. The domain is indi-
cated as X = {mathematics, physics, biology, chemistry, literature}, the fuzzy quantifier
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is Q = ”almost all”, and the predicate is ϕ (x) = “(student) performed well on x” for each
student, then the proposition “(student) performs well in almost all courses” is expressed
as the logic formula (Qx)ϕ(x).

Each student’s performance in the five courses is considered as an interpretation I.
For each student, we rearrange the truth values of the linguistic predicate ϕ(x) under its
interpretation I to get h(xi) for 1 ≤ i ≤ 5. Table 6 presents the rearranged truth values.

Table 6. Rearranged truth values.

1 2 3 4 5

s1 (h1(xi)) 0.75 0.85 0.86 0.9 0.95
s2 (h2(xi)) 0.85 0.86 0.91 0.92 0.95
s3 (h3(xi)) 0.87 0.89 0.90 0.91 0.92

According to the definition of “almost all” in Example 3, we can calculate fuzzy
measures of Xi = {xj: i ≤ j ≤ 5} for 1 ≤ i ≤ 5 about the fuzzy quantifier as follows:

QX(X1) = 1, QX(X2) = 0.64, QX(X3) = 0.36, QX(X4) = 0.16, QX(X5) = 0.04.

The overlap function is defined by O(x, y) = x y (x + y)/2 for any x, y ∈ [0, 1], then the
true value (Qx)ϕ(x) of each student under interpretation I based on the O-Sugeno integral
is calculated as follows:

D(s1) = TI(Qx)ϕ(x)) =
∫ (OS) s1 ◦QX =

5
max
i=1

O[h1(xi), QX(Xi)]

= 0.75× 1× (0.75 + 1)/2∨ 0.85× 0.64× (0.85 + 0.64)/2∨ 0.86× 0.36× (0.86 + 0.36)/2
∨0.9× 0.16× (0.9 + 0.16)/2∨ 0.95× 0.04× (0.95 + 0.04)/2
= 0.656∨ 0.405∨ 0.189∨ 0.076∨ 0.019
= 0.656.

D(s2) = TI(Qx)ϕ(x)) =
∫ (OS) s2 ◦QX =

5
max
i=1

O[h2(xi), QX(Xi)]

= 0.85× 1× (0.85 + 1)/2∨ 0.86× 0.64× (0.86 + 0.64)/2∨ 0.91× 0.36× (0.91 + 0.36)/2
∨0.92× 0.16× (0.92 + 0.16)/2∨ 0.95× 0.04× (0.95 + 0.04)/2
= 0.786∨ 0.413∨ 0.208∨ 0.079∨ 0.019
= 0.786.

D(s3) = TI(Qx)ϕ(x)) =
∫ (OS) s3 ◦QX =

5
max
i=1

O[h3(xi), QX(Xi)]

= 0.87× 1× (0.87 + 1)/2∨ 0.89× 0.64× (0.89 + 0.64)/2∨ 0.9× 0.36× (0.9 + 0.36)/2
∨0.91× 0.16× (0.91 + 0.16)/2∨ 0.92× 0.04× (0.92 + 0.04)/2
= 0.813∨ 0.436∨ 0.204∨ 0.078∨ 0.018
= 0.813.

The maximum value D(s3) can be obtained by ranking these true values, so student s3
is the best student.

Example 8. Decision-making problem about supplier selection. A factory needs to choose a supplier
for an important raw material, and the decision-maker intends to select from four alternative
suppliers, which are represented as s1, s2, s3, and s4. The decision-maker evaluates these suppliers in
four aspects, which are called decision attributes: product price, product quality, service level, and
reputation. The specific data are given in Table 7.
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Table 7. Attribute values of four suppliers.

Product Price Product Quality Service Level Reputation

s1 0.95 0.71 0.85 0.8
s2 0.8 0.76 0.92 0.83
s3 0.85 0.81 0.7 0.86
s4 0.76 0.9 0.75 0.84

In order to obtain a comprehensive evaluation of each supplier, we consider the
proposition “(supplier) meets the requirements for most attributes”. Domain X is indicated
as X = {product price, product quality, service level, reputation}, the fuzzy quantifier is
Q = ”most”, and the predicate is ϕ (x) = “(supplier) meets the requirement of x” for each
x ∈ X, then the proposition “(supplier) meets the requirements for most attributes” is
expressed as the logic formula (Qx)ϕ(x).

Each supplier’s performance on four attributes is considered as an interpretation I.
For each supplier, we rearrange the truth values of the linguistic predicate ϕ(x) under its
interpretation I to get h(xi) for 1 ≤ i ≤ 4. Table 8 presents the rearranged truth values.

Table 8. Rearranged truth values.

1 2 3 4

s1 (h1(xi)) 0.71 0.8 0.85 0.95
s2 (h2(xi)) 0.76 0.8 0.83 0.92
s3 (h3(xi)) 0.7 0.81 0.85 0.86
s4 (h4(xi)) 0.75 0.76 0.84 0.9

According to the definition of “most” in Example 3, we can calculate fuzzy measures
of Xi = {xj: i ≤ j ≤ 4} for 1 ≤ i ≤ 4 about the fuzzy quantifier as follows:

QX(X1) = 1, QX(X2) = (3/4)3/2 ≈ 0.650, QX(X3) = (1/2)3/2 ≈ 0.354, QX(X4) = (1/4)3/2 ≈ 0.125.

Let the overlap function O: [0, 1]2 → [0, 1] be defined as

O(x, y) =
1

1− xy + 1/xy

for any x, y∈ [0, 1], then the true value (Qx)ϕ(x) of each supplier under its interpretation I
based on the O-Sugeno integral is calculated as follows:

D(s1) = TI(Qx)ϕ(x)) =
∫ (OS) s1 ◦QX =

4
max
i=1

O[h1(xi), QX(Xi)]

= 1
1−0.71+1/0.71∨

1
1−0.8×0.65+1/(0.8×0.65)

∨ 1
1−0.85×0.354+1/(0.85×0.354)∨

1
1−0.95×0.125+1/(0.95×0.125)

= 0.589∨ 0.416∨ 0.248∨ 0.108
= 0.589.

D(s2) = TI(Qx)ϕ(x)) =
∫ (OS) s2 ◦QX =

4
max
i=1

O[h2(xi), QX(Xi)]

= 1
1−0.76+1/0.76 ∨

1
1−0.8×0.65+1/(0.8×0.65)

∨ 1
1−0.83×0.354+1/(0.83×0.354) ∨

1
1−0.92×0.125+1/(0.92×0.125)

= 0.643∨ 0.416∨ 0.243∨ 0.104
= 0.643.
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D(s3) = TI(Qx)ϕ(x)) =
∫ (OS) s3 ◦QX =

4
max
i=1

O[h3(xi), QX(Xi)]

= 1
1−0.7+1/0.7 ∨

1
1−0.81×0.65+1/(0.81×0.65)

∨ 1
1−0.85×0.354+1/(0.85×0.354) ∨

1
1−0.86×0.125+1/(0.86×0.125)

= 0.579∨ 0.421∨ 0.248∨ 0.098
= 0.579.

D(s4) = TI(Qx)ϕ(x)) =
∫ (OS) s4 ◦QX =

4
max
i=1

O[h4(xi), QX(Xi)]

= 1
1−0.75+1/0.75∨

1
1−0.76×0.65+1/(0.76×0.65)

∨ 1
1−0.84×0.354+1/(0.84×0.354)∨

1
1−0.9×0.125+1/(0.9×0.125)

= 0.632∨ 0.395∨ 0.246∨ 0.102
= 0.632.

Therefore, the evaluation shows that supplier s2 has the highest score, thus supplier s2
should be selected.

Example 9. Decision-making problem about logistics park location. A city wants to build a logistics
park, and the decision-maker plans to choose from eight alternatives, which are represented as si,
for 1 ≤ i ≤ 8. The decision-maker evaluates these alternatives in 12 aspects, which are called
decision attributes: urban support, traffic conditions, geological environment, land price, urban
traffic improvement, convenient delivery, surrounding facilities, neighboring enterprises, talent
attraction, logistics development space, prospect of environmental development, and predicted
economic development. The specific data are given in Table 9.

Table 9. Evaluation of 12 attributes.

s1 s2 s3 s4 s5 s6 s7 s8

Urban support 0.912 0.97 0.824 0.706 0.964 0.556 0.656 0.734
Traffic conditions 0.9 0.846 0.786 0.93 0.824 0.972 0.738 0.892

Geological environment 0.89 0.876 0.93 0.824 0.772 0.932 0.936 0.814
Land price 0.69 0.574 0.856 0.712 0.592 0.93 0.726 0.794

Urban traffic improvement 0.7 0.624 0.858 0.89 0.652 0.978 0.972 0.904
Convenient delivery 0.85 0.864 0.904 0.774 0.902 0.606 0.596 0.912

Surrounding facilities 0.648 0.774 0.912 0.842 0.804 0.67 0.806 0.796
Neighboring enterprises 0.806 0.828 0.912 0.774 0.812 0.604 0.772 0.804

Talent attraction 0.846 0.972 0.826 0.774 0.962 0.604 0.796 0.806
Logistics development space 0.796 0.712 0.912 0.804 0.806 0.608 0.778 0.952

Prospect of environmental
development 0.792 0.774 0.956 0.796 0.846 0.734 0.752 0.846

Predicted economic
development 0.808 0.808 0.816 0.842 0.792 0.774 0.804 0.912

In order to obtain a comprehensive evaluation of each alternative, we consider the
proposition “(alternative) meets the requirements of most attributes”. Domain X is indi-
cated as X = {urban support, traffic conditions, geological environment, land price, urban
traffic improvement, convenient delivery, surrounding facilities, neighboring enterprises,
talent attraction, logistics development space, prospect of environmental development,
predicted economic development}, the fuzzy quantifier is Q = ”most”, and the predicate
is ϕ (x) = “(alternative) meets the requirement of x” for each x ∈ X, then the proposition
“(alternative) meets the requirements of most attributes” is expressed as the logic formula
(Qx)ϕ(x).

The performance of each alternative on 12 attributes is considered as an interpretation
I. For each alternative, we rearrange the truth values of the linguistic predicate ϕ(x) under
its interpretation I to get h(xi) for 1 ≤ i ≤ 12. Table 10 presents the rearranged truth values.
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Table 10. Rearranged truth values.

s1 (h1(xi)) s2 (h2(xi)) s3 (h3(xi)) s4 (h4(xi)) s5 (h5(xi)) s6 (h6(xi)) s7 (h7(xi)) s8 (h8(xi))

1 0.648 0.574 0.786 0.706 0.592 0.556 0.596 0.734
2 0.69 0.624 0.816 0.712 0.652 0.604 0.656 0.794
3 0.7 0.712 0.824 0.774 0.772 0.604 0.726 0.796
4 0.792 0.774 0.826 0.774 0.792 0.606 0.738 0.804
5 0.796 0.774 0.856 0.774 0.804 0.608 0.752 0.806
6 0.806 0.808 0.858 0.796 0.806 0.67 0.772 0.814
7 0.808 0.828 0.904 0.804 0.812 0.734 0.778 0.846
8 0.846 0.846 0.912 0.824 0.824 0.774 0.796 0.892
9 0.85 0.864 0.912 0.842 0.846 0.93 0.804 0.904

10 0.89 0.876 0.912 0.842 0.902 0.932 0.806 0.912
11 0.9 0.97 0.93 0.89 0.962 0.972 0.936 0.912
12 0.912 0.972 0.956 0.93 0.964 0.978 0.972 0.952

According to the definition of “most” in Example 3, we can calculate fuzzy measures
of Xi = {xj: i ≤ j ≤ 12} for 1 ≤ i ≤ 12 about the fuzzy quantifier as follows:

QX(Xi) = (|Xi|/|X|)3/2 = [(13 − i)/12]3/2, for 1 ≤ i ≤ 12.

After the calculation, we can obtain:

QX(X1) = 1, QX(X2) ≈ 0.878, QX(X3) ≈ 0.761, QX(X4) ≈ 0.650, QX(X5) ≈ 0.544, QX(X6) ≈ 0.446,

QX(X7) ≈ 0.354, QX(X8) ≈ 0.269, QX(X9) ≈ 0.192, QX(X10) = 0.125, QX(X11) ≈ 0.068, QX(X12) ≈ 0.024.

The overlap function is defined as

O(x, y) = min(
√

x,
√

y)

for any x, y ∈ [0, 1], then the true value (Qx)ϕ(x) of each supplier under its interpretation I
based on the O-Sugeno integral is calculated as follows:

D(sj) = TI(Qx)ϕ(x)) =
∫ (OS)

sj ◦QX =
12

max
i=1

O[hj(xi), QX(Xi)]

for 1 ≤ j ≤ 8.
After the calculation, we obtain the comprehensive evaluation values of all alternatives,

as shown in Table 11.

Table 11. Comprehensive evaluation values of eight alternatives.

s1 s2 s3 s4 s5 s6 s7 s8

Evaluation
value 0.837 0.844 0.903 0.872 0.872 0.778 0.852 0.891

Therefore, the evaluation shows that alternative s3 has the highest score, thus alterna-
tive s3 should be selected.

Example 10. Decision-making problem about the purchase of a new energy car. A customer is
going to buy a new energy car. After preliminary screening, the customer has four alternatives.
These alternatives are represented as si, for 1 ≤ i ≤ 4. In order to purchase a satisfactory car, the
customer browsed the comments of each alternative on various network platforms and evaluated
them from seven aspects (attributes): appearance, interior, space, comfort, power, operation difficulty,
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and cost performance. Through text sentiment analysis, all evaluation information is converted into
specific data, as shown in Table 12.

Table 12. Evaluation of 7 attributes.

s1 s2 s3 s4

Appearance 0.8149 0.7320 0.8352 0.6786
Interior 0.6890 0.7302 0.7056 0.6810
Space 0.5969 0.3858 0.2555 0.3183

Comfort 0.7058 0.6030 0.7398 0.6429
Power 0.5708 0.5227 0.6259 0.4488

Operation difficulty 0.6632 0.6041 0.4893 0.4579
Cost performance 0.6765 0.4597 0.6123 0.4090

In order to obtain a comprehensive evaluation of each alternative, we consider the
proposition of “(alternative) meets the requirements for almost all attributes”. Domain X is
indicated as X = {appearance, interior, space, comfort, power, operation difficulty, cost per-
formance}, the fuzzy quantifier is Q = “almost all”, and the predicate is φ(x) = “(alternative)
meets the requirement of x” for each x∈X, then the proposition “(alternative) meets the
requirements of almost all attributes” is expressed as the logic formula (Qx)φ(x).

The performance of each alternative on seven attributes is considered as an inter-
pretation I. For each alternative, we rearrange the truth values of the linguistic predicate
φ(x) under its interpretation I to get h(xi) for 1 ≤ i ≤ 7. Table 13 presents the rearranged
truth values.

Table 13. Rearranged truth values.

s1 (h1(xi)) s2 (h2(xi)) s3 (h3(xi)) s4 (h4(xi))

1 0.5708 0.3858 0.2555 0.3183
2 0.5969 0.4597 0.4893 0.4090
3 0.6632 0.5227 0.6123 0.4488
4 0.6765 0.6030 0.6259 0.4579
5 0.6890 0.6041 0.7056 0.6429
6 0.7058 0.7302 0.7398 0.6786
7 0.8149 0.7320 0.8352 0.6810

According to the definition of “almost all” in Example 3, we can calculate fuzzy
measures of Xi = {xj: 1 ≤ i ≤ 7} for 1 ≤ i ≤ 7 about fuzzy quantifier as follows:

QX(Xi) = (|Xi|/|X|)2 = [(8 − i)/7]2, for 1 ≤ i ≤ 7.

After the calculation, we can obtain:

QX(X1) = 1, QX(X2) = 0.735, QX(X3) = 0.510, QX(X4) = 0.327, QX(X5) = 0.184, QX(X6) = 0.082, QX(X7) = 0.020

The overlap function is defined as

O(x, y) = min(
√

x,
√

y),

for any x, y∈ [0, 1], then the truth value (Qx)φ(x) of each alternative under its interpretation
I based on the O-Sugeno integral is calculated as follows:

D(sj) = TI((Qx)ϕ(x)) =
∫ OS

sj ◦QX =
7

max
i=1

O[hj(xi), QX(Xi)]

for 1 ≤ j ≤ 4.
After the calculation, we obtain the comprehensive evaluation values of all alternatives,

as shown in Table 14.
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Table 14. Comprehensive evaluation values of four alternatives.

s1 s2 s3 s4

Evaluation value 0.773 0.714 0.714 0.670

Therefore, the evaluation shows that alternatives s1 has the highest score, thus alterna-
tives s1 should be selected.

Example 11. Decision-making problem about red wine selection. There are currently four types of
red wines. In order to select the optimal one, the components (attributes) of each wine needs to be
measured and evaluated, including fixed acidity, volatile acidity, citric acid, residual sugar, chlorides,
free sulfur dioxide, total sulfur dioxide, sulfate and alcohol. The specific data are revealed in Table 15.
(data from open source datasets website).

Table 15. Evaluation of nine components.

s1 s2 s3 s4

Fixed acidity 0.9689 0.9222 0.8210 0.8327
Volatile acidity 0.4055 0.9843 0.7323 0.7323

Citric acid 0.6648 0.5369 0.8750 0.7983
Residual sugar 0.8147 0.6207 0.8922 0.9914

Chlorides 0.7727 0.4513 0.8312 0.7581
Free sulfur dioxide 0.8285 0.7531 0.3430 0.9456
Total sulfur dioxide 0.7143 0.8937 0.6246 0.9867

Sulfate 0.6903 0.8148 0.8726 0.9580
Alcohol 0.7607 0.7855 0.8020 0.8682

In order to obtain a comprehensive evaluation of each alternative, we consider the
proposition of “(alternative) meets the requirements for almost all attributes”. Domain X
is indicated as X = {fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free
sulfur dioxide, total sulfur dioxide, sulfate, alcohol}, the fuzzy quantifier is Q = “almost all”,
and the predicate is φ(x) = “(alternative) meets the requirement of x” for each x ∈ X, then
the proposition “(alternative) meets the requirements for almost all attributes” is expressed
as the logic formula (Qx)φ(x).

The performance of each alternative on nine attributes is considered as an interpre-
tation I. For each alternative, we rearrange the truth values of the linguistic predicate
φ(x) under its interpretation I to get h(xi) for 1 ≤ i ≤ 4. Table 16 presents the rearranged
truth values.

Table 16. Rearranged truth values.

s1 (h1(xi)) s2 (h2(xi)) s3 (h3(xi)) s4 (h4(xi))

Fixed acidity 0.4055 0.4513 0.3430 0.7323
Volatile acidity 0.6648 0.5369 0.6246 0.7581

Citric acid 0.6903 0.6207 0.7323 0.7983
Residual sugar 0.7143 0.7531 0.8020 0.8327

Chlorides 0.7607 0.7855 0.8210 0.8682
Free sulfur dioxide 0.7727 0.8148 0.8312 0.9456
Total sulfur dioxide 0.8147 0.8937 0.8726 0.9580

Sulfate 0.8285 0.9222 0.8750 0.9867
Alcohol 0.9689 0.9843 0.8922 0.9914

According to the definition of “almost all” in Example 3, we can calculate fuzzy
measures of Xi = {xj: 1 ≤ i ≤ 9} for 1 ≤ i ≤ 9 about the fuzzy quantifier as follows:

QX(Xi) = (|Xi|/|X|)2 = [(9− i)/9]2, for 1 ≤ i ≤ 9
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After the calculation, we can obtain:

QX(X1) = 1, QX(X2) = 64/81, QX(X3) = 49/81, QX(X4) = 4/9, QX(X5) = 25/81, QX(X6) = 16/81, QX(X7) = 1/9, QX(X8)
= 4/81, QX(X9) = 1/81.

The overlap function is defined as

O(x, y) = min(
√

x,
√

y),

for any x, y∈ [0, 1], then the truth value (Qx)φ(x) of each supplier under its interpretation I
based on the O-Sugeno integral is calculated as follows:

D(sj) = TI((Qx)ϕ(x)) =
∫ OS

sj ◦QX =
9

max
i=1

O[hj(xi), QX(Xi)]

for 1 ≤ j ≤ 4.
After the calculation, we obtain the comprehensive evaluation values of all alternatives,

as shown in Table 17.

Table 17. Comprehensive evaluation values of nine alternatives.

s1 s2 s3 s4

Evaluation value 0.815 0.778 0.790 0.871

Therefore, the evaluation shows that alternatives s4 has the highest score, and the
alternatives s4 should be selected.

6. Conclusions

In this study, we proposed O-Sugeno integrals and studied their basic properties. Since
overlap functions can be non-associative, the range of applications of O-Sugeno integrals is
greatly expanded. Fuzzy quantifiers can be quantified by fuzzy measures, and linguistic
quantifier propositions containing fuzzy quantifiers can be calculated their truth values
using O-Sugeno integrals. Then, we researched the O-Sugeno integral semantics of fuzzy
quantifiers. Finally, we proposed a MADM method based on O-Sugeno integral semantics
of fuzzy quantifiers to solve the MADM problem involving fuzzy quantifier-based.

In future work, we will introduce Choquet integrals based on overlap functions and
apply them to MADM problems involving fuzzy quantifiers.
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