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Abstract: In this paper, the problem of predicting future failure times based on a jointly type-II
censored sample from k exponential populations is considered. The Bayesian prediction intervals
and point predictors were then obtained. Generalized Bayes is a Bayesian study based on a learning
rate parameter. This study investigated the effects of the learning rate parameters on the prediction
results. The loss functions of squared error, Linex, and general entropy were used as point predictors.
Monte Carlo simulations were performed to show the effectiveness of the learning rate parameter in
improving the results of prediction intervals and point predictors.
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1. Introduction and Motivations

Generalized Bayes is a Bayesian study based on a learning rate parameter (η > 0) as
a power of the likelihood function L(θ; data). The traditional Bayes framework is obtained
for η = 1, and we demonstrate the effect of the learning rate parameter on the prediction
results. That is, if the prior distribution of the parameter θ is π(θ) then the generalized
Bayes posterior distribution for θ is

π∗(θ | data) ∝ Lη(θ; data) π(θ), θ ∈ Θ, η > 0. (1)

For more details on the generalized Bayes method and the choice of the value of the
rate parameter, we refer the reader to [1–11]. In a special way, the choice of the learning
rate η was studied in [3–6] by a so-called safe Bayes algorithm based on the minimiza-
tion of a sequential risk measure. Another learning rate selection method considers the
two different information-matching strategies proposed in [7,8]. In addition, a generalized
Bayes estimation based on a joint censored sample of type II from k exponential popula-
tions using different values of the learning rate parameter was studied in [11]. An exact
inference method based on maximum likelihood estimates (MLEs) was developed in [12],
and its performance was compared with that of approximate, Bayesian, and bootstrap
methods. The joint progressive censoring type II and the expected number of failures for
two populations under the joint progressive censoring type II were introduced and studied
by [13]. In contrast, the exact likelihood inference for two exponential populations under
joint progressive censoring of type II was studied in [14], and some precise results were
obtained based on the maximum likelihood estimates developed by [15]. Exact likelihood
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inference for two populations of two-parameter exponential distributions under type II
joint censoring was studied by [16].

One might be interested in predicting future failures using a joint type II censored
sample. To accomplish this, prediction points or intervals should be determined. Bayesian
prediction bounds for future observations based on certain distributions were discussed by
several authors. A study of Bayesian estimation and prediction based on a joint censored
sample of type II from two exponential populations was presented by [17]. Prediction (var-
ious classical and Bayesian point predictors) for future failures in the Weibull distribution
under hybrid censoring was studied by [18]. A Bayesian prediction based on generalized
order statistics with multiple censoring of type II was developed by [19].

The main objective of this study is to predict future failures based on a joint type-II
censoring scheme for k-exponential populations when censoring is performed on k-samples
in a combined manner. Suppose that products from k different lines are produced in the
same factory, and k independent samples of size nh, 1 ≤ h ≤ k are selected from these k
lines and simultaneously placed in a lifetime experiment. To reduce the cost and time of the
experiment, the experimenter may decide to stop the lifetime test when a certain number
(r) of failures occurs. The nature of the problem and the distributions used in our study are
presented below.

Suppose
{

Xnh
h , h = 1, . . . , k

}
are k-samples, where Xnh

h =
{

Xh1, Xh2, . . . , Xhnh

}
are the

lifetimes of nh samples of product line Ah and are assumed to be independent and iden-
tically distributed (iid) random variables from a population with a probability density
function (pdf) fh(x) and a cumulative distribution function (cdf) Fh(x).

Furthermore, let N = ∑k
i=1 ni be the total sample size, and let r be the total number of

observed failures. Let W1 ≤ . . . ≤ WN denote the order statistics of N random variables{
Xnh

h , h = 1, . . . , k
}

. Under the joint type-II censoring scheme for the k-samples, the ob-

servable data then consist of (δ, W), where W = (W1, . . . , Wr), Wi ∈
{

Xnhi
hi

, hi = 1, . . . , k
}

,
with r < N being a pre-fixed integer and δ = (δ1(h), . . . , δr(h)) associated to (h1, . . . , hr) is
defined by

δi(h) =

{
1, if h = hi

0, otherwise.
(2)

Letting Mr(h) = ∑r
i=1 δi(h) denote the number of Xh-failures in W and r = ∑k

h=1 Mr(h),
the joint density function of (δ, w) is given by

f (δ, w) = ∏k
h=1 cr(Fh(wr))

nh−Mr(h). ∏r
i=1 ∏k

h=1 ( fh(wi))
δi(h) (3)

where Fh = 1− Fh is the survival functions of hth population and cr =
nh!

(nh−Mr(h))!
.

For any continuous variables Y1 ≤ . . . ≤ Yn, the joint density function of Y1, . . . , Yr, Ys,
r < s ≤ n is given by.

f (y1, . . . , yr, ys) =
n!

(s− r− 1)!(n− s)!
[F(yr)− F(ys)]

s−r−1
(F(ys))

n−s f (ys)
r

∏
i=1

f (yi).

Here, (W1, . . . , Wr, Ws) ≡ (W, Ws) linked with the discrete variables (δ1, . . . , δr, δs) ≡ (δ, δs).
Then the joint density function of (δ, δs, W, Ws), r < s ≤ N is given by

f (δ, δs, w, ws) = ∑Qs−1 ∏k
h=1 c1h

{
Fh(wr)− Fh(ws)

}Mrs(h)

×(Fh(ws))
nhs( fh(ws))

δs(h) ∏r
i=1 ∏k

h=1 ( fh(wi))
δi(h)

(4)

where

wr < ws ≤ wN , Mrs(h) = Ms−1(h)−Mr(h), nhs = nh −Ms(h), c1h = nh!
Mrs(h)!nhs! , ∑Qs

= ∑1
δr+1=0 . . . ∑1

δs=0 with Qs = {δ(h) = (δr+1, . . . , δs), for 1 ≤ h ≤ k}.
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The conditional density function of Ws given (δ, W) = (δ, w), is given by

f (ws | δ, w) = ∑
Qs

k
∏

h=1
ch( fh(ws))

δs(h){Fh (wr − Fh(ws)
}Mrs(h) (Fh(ws))

nhs

(Fh(wr))
nhr

= ∑Qs ∏k
h=1 ch( fh(ws))

δs(h) ∑
Mrs(h)
lh=0 alh

(Fh(ws))
nhs+lh

(Fh(wr))
nh(s−1)+lh

(5)

where

ch =
nhr!

Mrs(h)!nhs!
, alh = (−1)lh

(
Mrs(h)

lh

)
.

In addition, when the k populations are exponential, the pdf is given by

fh(w) = θh exp(−θhw), and cdf Fh(w) = 1− exp(−θhw), (6)

where w > 0, θh > 0; 1 ≤ h ≤ k.
Then, the likelihood function in (3) becomes

f (Θ,δ, w) =
k

∏
h=1

cr{exp(−θhwr)}nhr
r

∏
i=1

k
∏

h=1
{θh exp(−θhwi)}δi(h)

= ∏k
h=1 crθ

Mr(h)
h exp{−θhuh}

(7)

where Θ = (θ1, . . . , θk) and uh = ∑r
i=1 wiδi(h) + wrnhr.

Substituting (6) into (5), we obtain the conditional density function of Ws, given
(δ, W) = (δ, w),

f
(
ws | δ, w) = ∑Qs ∏k

h=1 θ
δs(h)
h ∑Mrs(h)

lh=0 Ch exp
{
−θhDh

(
ws − wr

)}
(8)

where Ch = chalh , Dh = nh(s−1) + lh and nhs + δs(h) = nh(s−1).
Some special cases of the conditional density function are described as follows:

Case 1:

Suppose that k− 1 is the number of samples satisfy Mr(h) = nh, but only one sample
from the k samples say

{
X

nq
q

}
satisfies Mr(q) < nq or {wr, . . . , wN} ∈

{
X

nq
q

}
.

Under Case 1, the conditional density function of Ws given (δ, W) = (δ, w) becomes

f1(ws | δ, w) =
nqr!(

nqr − s + r
)
! ∑s−r−1

lq=0 alq θq exp
{
−θqDq(ws − wr)

}
(9)

where alq = (−1)lq
(

s− r− 1
lq

)
, Dq = nqr − s + r + lq + 1, wr < ws ≤ xqnq .

Case 2:

Suppose that k− R is the number of samples satisfy Mr(hi) = nhi
for hi = 1, . . . , k; and

R < k is the number of samples satisfy Mr
(
hj
)
< nhj

for hj = 1, . . . , k; hi 6= hj, equivalently,

Wr > max
{

X
nhi
hi

, hi = 1, . . . , k
}

but Wr ∈
{

X
nhj
hj

, hj = 1, . . . , k; hi 6= hj

}
.

Under Case 2, let us just consider the R samples, where q = 1, . . . , R, then the condi-
tional density function of Ws given (δ, W) = (δ, w) becomes

f2(ws|δ, w) = ∑Q′s ∏R
q=1 θ

δs(q)
q ∑Mrs(q)

lq=0 Cq exp
{
−θqDq(ws − wr)

}
where Q′s = {δ(q) = (δr+1, . . . , δs) for 1 ≤ q ≤ R}, Cq = cqalq , Dq = nq(s−1) + lq and
nqs + δs(q) = nq(s−1).

The remainder of this article is organized as follows: Section 2 presents the generalized
Bayesian and Bayesian prediction points and intervals using squared error, Linex, and
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general entropy loss functions in the point predictor. A numerical study of the results from
Section 2 is presented in Section 3. Finally, we conclude the paper in Section 4.

2. Generalized Bayes Prediction

In this section, we introduce the concept of generalized Bayesian prediction, which is
an investigation of Bayesian prediction under the influence of a learning rate parameter
η > 0. To apply the concept of generalized Bayesian prediction to a prediction study,
we give a brief description of generalized Bayesian prediction based on a learning rate
parameter η > 0. A scheme for predicting a sample based on joint censoring of type II
samples from k exponential distributions is presented. The main goal is to obtain the point
predictors and prediction intervals given at the end of this section.

2.1. Generalized Bayes

The parameters Θ are assumed to be unknown, we may consider the conjugate prior
distributions of Θ as independent gamma prior distributions, i.e., θh ∼ Gam(ah, bh). Hence,
the joint prior distribution of Θ is given by

π(Θ) = ∏k
h=1 πh(θh), (10)

where

πh(θh) =
bah

h
Γ(ah)

θ
ah−1
h exp{−bhθh}, (11)

and Γ(·) denotes the complete gamma function.
Combining (7) and (11) after raising (7) to the power η, the posterior joint density

function of Θ is then

π∗(Θ | δ, w) =
k

∏
h=1

(uhη+bh)
ηMr(h)+ah θ

ηMr(h)+ah−1
h

Γ(ηMr(h)+ah)
exp{−θh(uhη + bh)},

= ∏k
h=1

ξ
µh
h θ

µh−1
h

Γ(µh)
exp{−θhξh},

(12)

where ξh = uhη + bh, µh = ηMr(h) + ah.
Since πh is a conjugate prior, where θh ∼ Gam(ah, bh), then it follows that the posterior

density function of (θh|δ, w) is Gam(ηMr(h) + ah, uhη + bh).

2.2. One Sample Prediction

A sample prediction scheme for the case of the joint censoring of samples from two
exponential distributions was studied in [17], and then three cases for the future failures
were derived; where in the first case, the future predicted failure surly belongs to Xn1

1
failures if Mr(1) < n1, Mr(2) = n2, in the second case, the future predicted failure surly
belongs to Xn2

2 failures if Mr(2) < n2, Mr(1) = n1, and in the third case, it is unknown to
which sample the future predicted failure belongs. Here, we generalize the results reported
in [17] and examine two special cases in addition to the general case.

In the general case, the size of any sample is greater than the number of observed
failures; that is, Mr(h) < nh ≡ wr < xhnh

for h = 1, . . . , k. The first special case arises
when all future values (predictors) belong to only one sample and the observations of the
remaining k− 1 samples are less than wr. The second special case arises when all future
values (predictors) belong to some samples and all observations of the other samples are
less than wr. The forms of all functions related to the second special case are similar to
those related to the general case; therefore, we will introduce only the general case and the
first special case.

For the general case, to predict wr for r < s ≤ N based on the observed data (δ, w),
we use the conditional density function (9). Let us define the following integral:
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Iδs(h)
h =

ξ
µh
h

Γ(µh)

∫ ∞
0 θ

µh−1+δs(h)
h exp{−θh[ξh + Dh(ws − wr)]}dθh

=


µh
ξh

(
1 + Dh(ws−wr)

ξh

)−(µh+1)
, for δs(h) = 1(

1 + Dh(ws−wr)
ξh

)−µh
, for δs(h) = 0

.
(13)

Since ab

Γ(b)

∫ ∞
0 xb exp{−x(a + c)}dx = ab

Γ(b)
Γ(b+1)
(a+c)b+1 = b

a
(
1 + c

a
)−(b+1),

ab

Γ(b)

∫ ∞

0
xb−1 exp{−x(a + c)}dx =

ab

Γ(b)
Γ(b)

(a + c)b =
(

1 +
c
a

)−b
.

Using (8), (13), and (14), the Bayesian predictive density function of Ws given
(δ, W) = (δ, w) becomes

fB(ws | δ, w) =
∫

Θ f (ws |δ , w)π∗(Θ | δ , w)dΘ

= ∑Qs ∏k
h=1 ∑Mrs

lh=0
Chξ

µh
h

Γ(µh)

∫ ∞
0 θ

µh−1+δs(h)
h exp{−θh[ξh + Dh(ws − wr)]}dθh

= ∑
Qs

∏k
h=1 Ch

{
∑k

υ=1

(
I1
υ ∏k

q=1,q 6=υ I0
q

)}
,

(14)

where

∏k
h=1

∫ ∞

0
f (θh)dθh =

∫ ∞

0
. . .
∫ ∞

0
f (θ1) . . . f (θk)dθ1 . . . dθk .

Under Case 1, the Bayesian predictive density function of Ws given (δ, W) = (δ, w)
becomes

f1B(ws|δ, w) =
nqr!µq(

nqr − s + r
)
!ξq

∑s−r−1
lq=0 alq

(
1 +

Dq(ws − wr)

ξq

)−(µq+1)

, (15)

where ξq = uqη + bq, µq = ηMr(q) + aq, wr < ws ≤ xqnq .

2.3. Bayesian Point Predictors

For the point predictor, we considered three types of loss functions:

(i). The squared error loss function (SE), which is classified as a symmetric function, is
given by

LSE(ϕ∗, ϕ) ∝ (ϕ∗ − ϕ)2,

where ϕ∗ is an estimate of ϕ.
(ii). The Linex loss function, which is asymmetric, is given by

LL(ϕ∗, ϕ) ∝ eτ(ϕ∗−ϕ) − τ(ϕ∗ − ϕ)− 1, τ 6= 0.

(iii). The generalization of the entropy (GE) loss function is

LGE(ϕ∗, ϕ) ∝
(

ϕ∗

ϕ

)c
− c ln

(
ϕ∗

ϕ

)
− 1, c 6= 0.

It is worth noting that the Bayes estimates under the GE loss function coincide with
those under the SE loss function when c = −1. However, when c = 1,−2, the Bayes
estimates under GE become those under the weighted squared error loss function and the
precautionary loss function, respectively.
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Now, the Bayesian point predictors Ws, r < s ≤ N, under different loss functions
(SE, Linex, and GE) can be obtained using the predictive density function (15), which are
denoted, respectively, by WSP, WLP, WEP and given as follows:

WSP = E(Ws | δ, w)
=
∫ ∞

0 ws fB(ws|δ, w)dws

= ∑Qs−1 ∏k
h=1 ∑Mrs

lh=0 Ch

{
∑k

v=1
∫ ∞

0 ws

(
I1
υ ∏k

q=1,q 6=υ I0
q

)
dws

} (16)

WLP = − 1
τ ln

[
E
(
e−τWs

∣∣δ, w
)]

= − 1
τ ln

[∫ ∞
0 e−τws fB(ws|δ, w)dws

]
= − 1

τ ln
[
∑Qs−1 ∏k

h=1 ∑Mrs
lh=0 Ch

{
∑k

v=1
∫ ∞

0 e−τws
(

I1
υ ∏k

q=1,q 6=υ I0
q

)
dws

}] (17)

WEP = [E(W−c
s |δ, w)]

− 1
c

=
[∫ ∞

0 w−c
s fB(ws|δ, w)dws

]− 1
c

=
[
∑Qs−1 ∏k

h=1 ∑Mrs
lh=0 Ch

{
∑k

v=1
∫ ∞

0 w−c
s

(
I1
υ ∏k

q=1,q 6=υ I0
q

)
dws

}]− 1
c

(18)

Under Case 1, WSP, WLP, and WEP are, respectively, given by

WSP =
nqr!µq(

nqr − s + r
)
!ξq

∑s−r−1
lq=0 alq

∫ ∞

0
ws(1 +

Dq(ws − wr)

ξq
)
−(µq+1)

dws (19)

WLP = − 1
τ

ln

[
nqr!µq(

nqr − s + r
)
!ξq

∑s−r−1
lq=0 alq

∫ ∞

0
e−τws(1 +

Dq(ws − wr)

ξq
)
−(µq+1)

dws

]
(20)

WEP =

[
nqr!µq(

nqr − s + r
)
!ξq

∑s−r−1
lq=0 alq

∫ ∞

0
w−c

s (1 +
Dq(ws − wr)

ξq
)
−(µq+1)

dws

]− 1
c

. (21)

The above equations are solved numerically to obtain the predictors WSP, WLP, and WEP.

2.4. Prediction Interval

The predictive survival function of Ws is given by

FB(t) = P(Ws > t | δ, w) =
∫ ∞

t fB(ws |δ , w)dws

= ∑Qs−1 ∏k
h=1 ∑Mrs

lh=0 Ch

[
∑k

v=1
∫ ∞

t

(
I1
υ ∏k

q=1,q 6=υ I0
q

)
dws

] (22)

Numerical integration is required to obtain the predictive survival function in
Equation (23).

In Case 1, the predictive survival function of Ws is given by

F1B(t) = P(Ws > t |δ , w) =
∫ ∞

t f1B(ws |δ , w)dws

=
nqr !

(nqr−s+r)! ∑s−r−1
lq=0

alq
Dq

(
1 + Dq(t−wr)

ξq

)−µq
.

(23)

The Bayesian predictive bounds of a two-sided equi-tailed 100(1− γ)% interval for
Ws, r < s ≤ N, can be obtained by solving the following two equations numerically,

F(L |δ , w) = 1− γ

2
, F(U |δ , w) =

γ

2
. (24)
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3. Numerical Study

In this section, the results of the Monte Carlo simulation study are conducted to
evaluate the performance of the prediction study derived in the previous section, and
an example is presented to illustrate the prediction methods discussed here.

3.1. Simulation Study

We considered three samples from three populations with (n1, n2, n3, r) for choices
(10, 10, 10, 25) and (15, 15, 15, 40). In Case 1, we choose the exponential parameters
(θ1, θ2, θ3) as (2, 1, 0.1) based on the hyperparameters represented by ∆ = (a1, b1, a2, b2, a3, b3),
where ∆ = ∆1 = (2, 1, 2, 2, 1, 10).

In the general case, we choose the exponential parameters (θ1, θ2, θ3) as (2, 2.5, 3)
based on the hyperparameters ∆ = ∆2 = (2, 1, 5, 2, 3, 1).

For the generalized Bayesian study, three values are chosen for the learning rate
parameter η = 1, 2, 5, and 10,000 repetitions are used for the Monte Carlo simulations.

The mean observations values of the three generated samples X1, X2, and X3, and their
joint sample W, using 10,000 repetitions, are presented in Tables 1–4, where the underlined
values are greater than wr.

Table 1. The mean observations values for (n1, n2, n3, r) = (10, 10, 10, 25), ∆ = ∆1 (Case 1).

Sample Data

X1 0.0498, 0.1058, 0.1674, 0.2391, 0.3225, 0.4226, 0.5477, 0.7159, 0.9664, 1.4685.

X2 0.1005, 0.2130, 0.3363, 0.4780, 0.6444, 0.8434, 1.0905, 1.4248, 1.9253, 2.9195.

X3
1.01284, 2.1473, 3.3872, 4.8117, 6.4598,

8.4947, 10.9570, 14.3184, 19.3712, 29.4384.

Ordered data (w, hi), r = 25.

(0.0498, 1), (0.1005, 2), (0.1058, 1), (0.1674, 1), (0.2130, 2), (0.3225, 1), (0.3225,
1), (0.3363, 2), (0.4226, 1), (0.4780, 2), (0.5477, 1), (0.6444, 2), (0.7159, 1),

(0.8434, 2), (0.9664, 1), (1.01284, 3), (1.0905, 2), (1.4248, 2), (1.4685, 1), (1.9253,
2), (2.1473, 3), (2.9195, 2), (3.3872, 3), (4.8117, 3), (6.4598, 3).

Table 2. The mean observations values for (n1, n2, n3, r) = (15, 15, 15, 40), ∆ = ∆1 (Case 1).

Sample Data

X1
0.0333, 0.0693, 0.1078, 0.1487, 0.1944, 0.2449, 0.3004, 0.3646, 0.4363, 0.5206,

0.6208, 0.7479, 0.9146, 1.1641, 1.6557.

X2
0.0663, 0.1388, 0.2164, 0.2991, 0.3916, 0.4914, 0.6029, 0.7289, 0.8690, 1.0349,

1.2367, 1.4884, 1.8181, 2.316, 3.3304.

X3
0.6610, 1.3818, 2.1570, 2.9962, 3.9136, 4.9102, 6.0317, 7.2834, 8.7249, 10.3833,

12.3990, 14.9019, 18.2287, 23.2551, 33.3370.

Ordered data (w, hi), r = 40

(0.0333,1), (0.0663,2), (0.0693,1), (0.1078,1), (0.1388,2), (0.1487,1), (0.1944,1),
(0.2164,2), (0.2449,1), (0.2991,2), (0.3004,1), (0.3646,1), (0.3916,2), (0.4363,1),
(0.4914,2), (0.5206,1), (0.6029,2), (0.6208,1), (0.6610,3), (0.7289,2), (0.7479,1),
(0.8690,2), (0.9146,1), (1.0349,2), (1.1641,1), (1.2367,2), (1.3818,3), (1.4884,2),
(1.6557,1), (1.8181,2), (2.1570,3), (2.3160,2), (2.9962,3), (3.3304,2), (3.9136,3),

(4.9102,3), (6.0317,3), (7.2834,3), (8.7249,3), (10.3833,3).

We notice from Tables 1 and 2 that, the future values come only from sample X3.
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Table 3. The mean observations values for (n1, n2, n3, r) = (10, 10, 10, 25), ∆ = ∆2, (general case).

Sample Data

X1 0.0508, 0.1062, 0.1693, 0.2417, 0.3241, 0.4219, 0.5451, 0.7110, 0.9583, 1.4663.

X2 0.0401, 0.0844, 0.1338, 0.1907, 0.2575, 0.3384, 0.4395, 0.5727, 0.7732, 1.1655.

X3 0.0334, 0.0703, 0.1127, 0.1604, 0.2167, 0.2839, 0.3671, 0.4778, 0.6474, 0.9823.

Ordered data (w, hi), r = 25

(0.0334, 3), (0.0401, 2), (0.0508, 1), (0.0703, 3), (0.0844, 2), (0.1062, 1), (0.1127, 3),
(0.1338, 2), (0.1604, 3), (0.1693, 1), (0.1907,2), (0.2167, 3), (0.2417, 1), (0.2575, 2), (0.2839,

3), (0.3241, 1), (0.3384, 2), (0.3671, 3), (0.4219, 1), (0.4395, 2), (0.4778, 3), (0.5451, 1),
(0.5727, 2), (0.6474, 3), (0.7110, 3).

Table 4. The mean observations values for (n1, n2, n3, r) = (15, 15, 15, 40), ∆ = ∆2, (general case).

Sample Data

X1
0.0326, 0.0681, 0.1068, 0.1487, 0.1944, 0.2449, 0.3003, 0.3632, 0.4344, 0.5186, 0.6195,

0.7433, 0.9125, 1.1605, 1.6591.

X2
0.0269, 0.0556, 0.0864, 0.1193, 0.1557, 0.1965, 0.2414, 0.2913, 0.3484, 0.4137, 0.4943,

0.5941, 0.7264, 0.9289, 1.3301.

X3
0.0220, 0.0459, 0.0713, 0.0988, 0.1295, 0.1624, 0.1989, 0.2399, 0.2872, 0.3424, 0.4084,

0.4915, 0.6032, 0.7706, 1.1045.

Ordered data (w, hi), r = 40

(0.0220,3), (0.0269,2), (0.0326,1), (0.0459,3), (0.0556,2), (0.0681,1), (0.0713,3), (0.0864,2),
(0.0988,3), (0.1068,1), (0.1193,2), (0.1295,3), (0.1487,1), (0.1557,2), (0.1624,3), (0.1944,1),
(0.1965,2), (0.1989,3), (0.2399,3), (0.2414,2), (0.2449,1), (0.2872,3), (0.2913,2), (0.3003,1),
(0.3424,3), (0.3484,2), (0.3632,1), (0.4084,3), (0.4137,2), (0.4344,1), (0.4915,3), (0.4943,2),
(0.5186,1), (0.5941,2), (0.6032,3), (0.6195,1), (0.7264,2), (0.7433,1), (0.7706,3), (0.9125,1).

We notice from Tables 3 and 4 that the future values come from the three samples.
For (n1, n2, n3, r) = (10, 10, 10, 25), under Case 1, we use (20), (21), and (22) to calculate

the mean squared prediction errors (MSPEs) of the point predictors (WSP, WLP, and WEP) for
s = 26, . . . , 30, where τ = 0.1, 0.5; c = 0.1, 0.5, and the results are presented in Table 5.

Table 5. MSPE of point predictions for η = 1, 2, 5; ∆ = ∆1 in Case 1.

η=1

(n1,n2,n3,r) s SP LP EP

τ=0.1 τ=0.5 c=0.1 c=0.5

(10, 10, 10, 25) 26 0.0238 0.0215 0.0211 0.0193 0.0175

27 0.2623 0.2425 0.2383 0.2179 0.1916

28 0.8924 0.8914 0.8767 0.8620 0.8125

29 1.4967 1.4687 1.3263 1.2579 1.2191

30 2.1610 2.0341 1.9864 1.7451 1.5218

η = 2

26 0.0213 0.0203 0.0198 0.0191 0.0171

27 0.2620 0.2319 0.2303 0.2094 0.1815

28 0.8781 0.8723 0.8627 0.8205 0.7685

29 1.4687 1.4514 1.3041 1.2256 1.1873

30 2.0245 1.9341 1.8561 1.6381 1.2552

η = 5

26 0.0183 0.0174 0.0171 0.0154 0.0144

27 0.2423 0.2253 0.2230 0.2201 0.1796

28 0.8165 0.8064 0.8137 0.7905 0.7125

29 1.3987 1.3782 1.3585 1.2682 1.0671

30 2.0201 1.9152 1.8610 1.4373 1.1782
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The results of the MSPEs in the general case are calculated using (17), (18), and (19),
and shown in Table 6.

Table 6. MSPEs of point predictions for η = 1, 2, 5; ∆ = ∆2.

η=1

(n1,n2,n3,r) s SP LP EP

τ=0.1 τ=0.5 c=0.1 c=0.5

26 0.0112 0.0115 0.0113 0.0110 0.0097

27 0.1342 0.1233 0.1132 0.0872 0.0821

28 0.2752 0.2571 0.2168 0.2205 0.2064

29 1.3567 1.3125 1.3061 1.2143 1.2083

30 1.5984 1.6213 1.5783 1.4437 1.2981

η = 2

26 0.0101 0.0112 0.0086 0.0088 0.0078

27 0.1245 0.1156 0.1012 0.0789 0.0689

28 0.2234 0.2233 0.2087 0.2015 0.2001

29 1.4010 1.4111 1.3021 1.2182 1.1892

30 1.6125 1.5987 1.5654 1.4127 1.2678

η = 5

26 0.0097 0.0072 0.0027 0.0025 0.0012

27 0.1024 0.1003 0.0998 0.0775 0.0567

28 0.1892 0.1566 0.1026 0.0876 0.0278

29 1.2346 1.3271 1.2987 1.1765 1.0482

30 1.8762 1.5987 1.5654 1.2354 1.1567

For (n1, n2, n3, r) = (10, 10, 10, 25) and (n1, n2, n3, r) = (15, 15, 15, 40), the results of
the prediction bounds of Ws, s = 26, . . . , 30 and s = 41, . . . , 45, respectively, are calculated
using (24) and (25) in Case 1, then are presented in Table 7.

Table 7. Lower and upper 95% prediction bounds for Ws in Case 1, for different choices of n1, n2, n3, r
and ∆ = ∆1.

(n1,n2,n3,r) s η=1 η=2 η=5

L U L U L U

(10, 10, 10, 25) 26 7.1426 9.3742 7.1517 9.3268 7.1546 9.2985

27 9.8765 13.6496 9.9164 13.6412 9.9843 13.6191

28 12.6289 21.3289 12.6714 21.2692 12.8921 21.21482

29 16.7643 29.1496 16.8653 28.9896 16.9225 29.9641

30 25.7658 49.5654 25.8585 49.5154 25.9765 48.3654

(15, 15, 15, 40) 41 11.6539 13.8764 11.9152 13.8472 11.9584 13.8174

42 12.9876 17.6824 13.0256 17.1934 13.2876 17.1264

43 15.2879 23.1859 15.5429 23.0674 15.7698 22.5429

44 20.3289 33.9126 20.9721 33.3126 21.9968 32.8952

45 29.1289 51.1610 29.5289 51.0326 29.7853 50.4761



Axioms 2023, 12, 716 10 of 12

Table 8 presents the prediction bounds using (23), and (25) to show the results of the
general case.

Table 8. Lower and upper 95% prediction bounds for Ws, for different choices of n1, n2, n3, r and
∆ = ∆2.

(n1,n2,n3,r) s η=1 η=2 η=5

L U L U L U

(10, 10, 10, 25) 26 0.6528 0.8889 0.6814 0.8592 0.6920 0.8342

27 0.7589 1.1096 0.7768 1.2033 0.7879 1.2191

28 0.8934 1.9583 0.9214 1.9462 0.9520 1.9321

29 0.9789 3.5696 0.9901 3.3733 1.0127 3.29341

30 1.1289 5.5610 1.2541 5.3451 1.2964 5.2218

(15, 15, 15, 40) 41 0.7902 1.8846 0.7968 1.8732 0.8079 1.8841

42 0.8674 2.2354 0.8776 2.2125 0.8841 2.1254

43 0.9282 3.7583 0.9245 3.7483 0.9582 3.6783

44 0.9949 4.5610 1.0237 4.5516 1.0263 4.4712

45 1.2367 5.9810 1.2568 5.9736 1.31664 5.9523

3.2. Illustrative Example

To illustrate the usefulness of the results developed in the previous sections, we
consider three samples of size n1 = n2 = n3 = 10 from Nelson’s data (groups 1, 4, and
5) corresponding to the breakdown of an insulating fluid subjected to a high-stress load
(see [20] p. 462). These breakdown times, referred to here as samples Xi, i = 1, 2, 3, are
jointly type-II censored data in the form of (w, hi) obtained from these three samples with
r = 24 and are shown in Table 9.

Table 9. The failure time data for X1, X2, and X3, and their order (w, hi), where δhi
= 1.

Sample Data

X1 1.89, 4.03, 1.54, 0.31, 0.66, 1.7, 2.17, 1.82, 9.99, 2.24

X2 1.17, 3.87, 2.8, 0.7, 3.82, 0.02, 0.5, 3.72, 0.06, 3.57

X3 8.11, 3.17, 5.55, 0.80, 0.20, 1.13, 6.63, 1.08, 2.44, 0.78

Ordered data (w, hi)

(0.02, 2), (0.06, 2), (0.20, 3), (0.31, 1), (0.50, 2), (0.66, 1), (0.70, 2), (0.78, 3),
(0.80, 3), (1.08, 3)

(1.13, 3), (1.17, 2), (1.54, 1), (1.70, 1), (1.82, 1), (1.89, 1), (2.17, 1), (2.24, 1),
(2.44, 3), (2.80, 2)

(3.17, 3), (3.57, 2), (3.72, 2), (3.82, 2).

Using (17), (18), (19), (23), and (25), the MSPEs of the point predictors and prediction
intervals of ws, s = 25, . . . , 30 are calculated and presented in Table 10 using η = 1, 2, 5
and ∆ = ∆3 = (1, 2.6, 1, 2, 1, 3); and τ = 0.1, 0.5 and c = 0.1, 0.5.
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Table 10. The values of point predictors and 95% prediction interval of Ws, for η = 1, 2, 5; ∆ = ∆3.

η=1

s (ws,hi) WSP WLP WEP (L,U)

Exactvalue τ=0.1 τ=0.5 c=0.1 c=0.5

25 (3.87,2) 3.5678 3.6728 3.7876 3.7789 3.8102 (3.8476,4.7658)

26 (4.03,1) 4.6453 4.5364 4.4573 4.4653 4.1653 (3.8645,5.7653)

27 (5.55,3) 5.8972 5.4676 5.3864 5.4943 5.5127 (3.9785,7.8946)

28 (6.63,3) 7.1236 6.9456 6.8757 6.9764 6.7685 (4.5632,12.5467)

29 (8.11,3) 10.2738 9.9594 9.5734 9.4876 9.2236 (5.8762,18.3765)

30 (9.99,1) 13.6758 12.8654 12.1765 12.5638 12.1128 (6.4657,30.4687)

η = 2

25 (3.87,2) 3.6132 3.6527 3.7964 3.8967 3.8662 (3.8499,4.5473)

26 (4.03,1) 4.3567 4.3384 4.2582 4.2765 4.1234 (3.8764,5.7564)

27 (5.55,3) 5.7653 5.4765 5.3876 5.5123 5.5742 (3.9967,7.8125)

28 (6.63,3) 7.1168 6.9174 6.8542 6.8789 6.7125 (4.7842,12.5165)

29 (8.11,3) 10.1375 9.92875 9.6213 9.2134 8.9984 (5.8923,17.8964)

30 (9.99,1) 13.8234 12.6753 12.3476 12.12273 11.8657 (6.8973,30.1374)

η = 5

25 (3.87,2) 3.6954 3.7135 3.8217 3.8378 3.8675 (3.8564,4.4623)

26 (4.03,1) 4.2765 4.2187 4.2071 4.2135 4.1098 (3.8976,5.7245)

27 (5.55,3) 5.7321 5.4876 5.452 5.5216 5.5731 (3.9986,7.8087)

28 (6.63,3) 7.1065 6.9276 6.8628 6.7522 6.7081 (4.8569,12.5097)

29 (8.11,3) 10.0879 9.9134 9.5675 9.1561 8.9786 (5.9872,17.2876)

30 (9.99,1) 13.5437 12.5674 12.3652 12.1135 11.8543 (6.9965,29.4567)

4. Conclusions

In this study, we examined the effects of learning rate parameters on prediction results.
We used Monte Carlo simulations to show the effectiveness of the learning rate parameter in
improving the results of prediction intervals and point predictors. Formally, we considered
a joint type-II censoring scheme in which the lifetimes of the three populations have
exponential distributions. We determined the MSPEs of the point predictors and prediction
intervals using different values for the learning rate parameter η and different values for
the parameters of the losses in both the simulation study and the illustrative example. From
all tables in this prediction study, it can be seen that the results improve with increasing the
loss parameters c, τ, and learning rate parameter η. In the simulation study, a comparison
of the results in Tables 5 and 6 shows that the results in Table 5 are better, and the length
of the prediction intervals in Table 8 is smaller than those in Table 7 because the observed
values used in Table 7 are larger than those used in Table 8. The results of the illustrative
example improve with larger values of loss parameters and learning rate parameter. So we
conclude that the results of the prediction study became better as learning rate parameter
increased. However, in both studies, the lengths of the prediction intervals increased for
the larger future lifetimes. It may be interesting to examine this work using a different type
of censoring.
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