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1. Introduction

To study practical, concrete, or real-life problems coming from economics, decision
theory, production inventory, data classification, game theory, or portfolio selection, opti-
mization models and control theory are widely used. Since practical problems are often
governed by estimation or measurement, some errors may occur. Most of the time, the pres-
ence of various errors may contradict the computational results associated with the original
problem. To overcome this issue, the use of a robust approach to represent data, the pres-
ence of fuzzy numbers, or the use of interval analysis, has become an important research
direction in the last decades.

Optimizing the ratio of two objective or cost functions or functionals, means to study
a fractional optimization problem. Thus, Dinkelbach [1] and Jagannathan [2] succeeded
to transform it into an equivalent non-fractional optimization problem, by considering a
parametric approach. In time, many researchers have considered this technique to study
and solve various fractional variational problems. We mention the works of Mititelu [3],
Antczak and Pitea [4], Mititelu and Treantd [5], Antczak [6]. For other ideas on this
subject, interested readers are directed to Patel [7], Nahak [8], Manesh et al. [9], Kim
and Kim [10-12] and references therein. Noor [13] considered and introduced some new
concepts of the biconvex functions involving an arbitrary bifunction and function. More
precisely, Noor has shown that the optimality conditions for the general biconvex functions
can be characterized by a class of bivariational-like inequalities.

Optimization and variational problems with uncertain data arise when we have
inadequate information, old sources, a large volume of data, sample disparity, or some
other factors leading to data uncertainty. To investigate these cases, the robust technique is
intensively used in studying the optimization problem with data uncertainty. This approach
reduces the uncertainty associated with the original problem. Several researchers stated
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and investigated different optimization or variational problems involving data uncertainty,
and they tried to establish novel and efficient results (see Jeyakumar et al. [14], Beck and
Tal [15], Baranwal et al. [16], Treantd [17,18], Preeti et al. [19], Jayswal et al. [20]).

Over time, optimal control problems subject to nonlinear equality and/or inequality-
type constraints (governed by ordinary differential equations) have been formulated and
studied by many researchers. But, since so many phenomena are subject to laws involving
partial differential equations or partial differential inequations (PDEs/PDlIs), it is gener-
ated the need for a consistent analysis of scalar/vector variational control problems with
PDE/PDI or isoperimetric-type constraints and multiple/path-independent curvilinear
integral cost functionals. Of course, the multiple/curvilinear integrals in the calculus of
variations have been considered and studied so far, but, these multiple/curvilinear integrals
were not sufficiently analyzed in the context of robust optimal control models. Because of
the increasing complexity of the environment, the initial data often suffer from inaccuracy.
Therefore, an adequate uncertainty framework is necessary to formulate the model and
new methods have to be adapted or developed to provide optimal or efficient solutions
in a certain sense. The current paper is situated around the studies of robust/uncertain
optimization problems.

Next, we formulate a fractional variational control problem with mixed constraints
and data uncertainty in the cost functional (given by path-independent curvilinear-type
integral). Further, we state the robust necessary optimality conditions and prove their suffi-
ciency by using the convexity, quasi-convexity, strictly quasi-convexity, and /or monotonic
quasi-convexity assumptions of the involved functionals. Moreover, we introduce and
describe the robust Kuhn-Tucker points associated with the considered optimization problem.
The most important and principal credits of the present paper are the following: (i) we
introduce, by using the parametric technique, the notions of robust optimal solution and
robust Kuhn-Tucker point for the case of curvilinear integral-type functionals, (ii) we state
novel proofs for the main results, and (iii) we build a new framework determined by spaces
of functions and by curvilinear integral-type functionals.

We continue the paper as follows. Section 2 states the basic concepts, notations, and as-
sumptions used to formulate the principal results. In Section 3, by considering suitable
convexity, quasi-convexity, strictly quasi-convexity, and/or monotonic quasi-convexity
hypotheses, we establish robust sufficient optimality conditions for the considered problem.
In addition, we describe the notion of robust Kuhn-Tucker point. Finally, in Section 4 we
present the conclusions and formulate some future research directions for this paper.

2. Auxiliary Tools

In the following, we consider the basic concepts, notations, and assumptions used
to formulate the principal results. Thus, we start with the classical finite-dimensional
Euclidean spaces R™, R" and R!, with t = (t7), 7 = 1,m (thatis, t = (t,---,t™)),
u=(u'),1=1nandov = (vj ), j= 1,1as arbitrary points of R, R" and R!, respectively.
Let H = Hy,t; C R™ be a hyper-parallelepiped, having the diagonally opposite corners
to = (t}) and t; = (t]), 7 = 1,m, and let C C H be a curve (piecewise differentiable),
joining the points tg = (t{) and t; = (#]) in R™. Define

u= {u : H — R"| u = piecewise smooth function},

V= {v : " — R!| v = piecewise continuous function}

as the space of piecewise smooth functions (state variables), and the space of piecewise
continuous functions (control variables), respectively, and assume the product space U x V
is endowed with the norm induced by the following inner product

((1,0), (b,2)) = /C [u(t) - b(t) +o(t) - 2(t)] @t
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= /C [Z u' ()b () + i vf(t)zf(t>]dt”, V(u,0),(bz) eUX V.
j=1

=1
u
Using the above mathematical notations and elements, by denoting u, (t) = 5 (t), we
formulate the following first-order PDE&P DI-constrained fractional optimization problem,
with data uncertainty in the objective functional, as follows

Ar(t,u(t), uy(8),0(t), f)dt™
) (“(r'r)lrig(l'» O (t, u(t £),0(t), Q)dt™
[ @t u(®) uy(8),0(0),9)

subject to

1Ln,n=1m, teH,
u(ty) = up = given, u(ty) = uy = given,

where f and g are some uncertainty parameters in the convex compact sets F C R and
G C R, respectively,and A = (Ay) : H x U> x VX F = R", @ = (@) : H x U?> x V x
G R"\ {0}, Ag : HxU*xXV =R B=1,q B : HxUxV =R 1=1n1n=1m,
are assumed to be continuously differentiable functionals.

Definition 1. The above functionals

/C An(t, M(t), uﬂ(t), v(t),f)dtn

and

[t u(t),uy(0), o), g)at™
are named path-independent if DyAr = DAy and Dy®r = D@y, for T # 1.

Assumption 1. By considering the above functionals

/CAn(t,u(t),un(t),v(t),f)dt”

and

/C @n(t, M(t), Uy (t), v(t),g)dt”

are path-independent, the following working hypothesis is assumed:

ohy

. vt _ .0 7T
dL := Dﬂ{au”(u u)}dt

is a total exact differential, with L(tg) = L(t1), h € {A,©}.
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The robust counterpart for (P), reducing the possible uncertainties in (P), is given as

max A (£ u(t), uy (£), o(t), f)dt™

(RP) min ¢ fer
(u()0(-) Cgg(r;l@n(t,u(t),uﬁ(t),v(t),g)dt”
subject to

Aﬁ(t,u(t),uﬁ(t),v(t)) <0, B=1,q, teH,
B%(t,u(t),uﬂ(t),v(t)) =0, t=1nn=1m teH,

u(ty) = up = given, u(t;) = u; = given,

where A = (Ar),® = (Or), A = (Ap) and B = (B)) are defined as in (P).
The set of all feasible solutions to (RP), which is the same as the set of all feasible
solutions to (P), is defined as

D = {(u,0) € U x V| Ag(t,u(t), uy(t),0(t)) < 0, By (t,u(t), uy(t),0(t)) =0,

u(to) = ug = given, u(t;) = u; = given, t € H}.

For (u,v) € D, we assume that A > 0 and ® > 0. Further, by considering the positive
real number

. N Cmfea[g(An(t,u(t),uv(t),v(t),f)dt” CmeaFXA,I(t, uo(t),ug(t),vo(t),f)dt"

/8 O ’

(u()0(-)) i n : 0 0 0 7r
Crgrgg@)ﬂ(t,u(t),u”(t),v(t),g)dt Crgrgg@)n(t,u (t),uy (t),0°(t), g)dt

on the line of Jagannathan [2], Dinkelbach [1], and following Mititelu and Treanta [5], we
build a non-fractional optimization problem associated with (P), as

(NP) (u(r.r)l,ivrg.)){/CAn(t,u(t),u”(t),v(t),f)dt”—R%g/c@n(t,u(t),uq(t),v(t),g)dt”}

subject to

Ap(t,u(t),uy(t),o(t)) <0, B=1,9,teH,
Bﬁl(t,u(t),uﬂ(t),v(t)) =0, t=1nn=1m teH,

u(ty) = up = given, u(ty) = uq = given.

The robust counterpart for (N P) is given by

(RN'P)  min { max Ay (¢, u(t), uy (), 0(t), f)dt"

(u(-)0()) LJC feF
_ T
R}, Cgrgg@n(t,u(t),u”(t),v(t),g)dt }
subject to
Ap(t,u(t),uy(t),v(t)) <0, B=1,9,t€H,

uy (1),
B%(t,u(t),u,](t),v(t)) =0, t=1nny=1m teH,
Uug =

u(ty) = up = given, u(ty) = uy; = given.

Next, for a simple presentation, we will use the following abbreviations throughout the
paper: u = u(t), v = o(t), u = u(t), v = o(t), 4 = a(t), o = 9(t),

— S

g = (t/”(t)luv (t),v(t)), C = (t/ﬁ(t)/ﬁv (t),?(t)), C = (t/ﬁ(t)/ﬁv (t)/ﬁ(t))’
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Definition 2. A point (i1,7) € D is said to be a robust optimal solution to (P), if

max A (g, f)dt™ /maxA (g, f)dt™

C feF

Cmm@n(g ,g)dt™ /mm@n(g g)dt”
3€G

forall (u,v) € D.
Definition 3. A point (1,7) € D is said to be a robust optimal solution to (N'P), if

/erpggmn(é,f)df”— Ry, clérgn@n(@ ,g)dt”

< erpaxAn(g ,f)dt™ — ;g./(:rgré%@n(g,g)dt”,

forall (u,v) € D.
Remark 1. We can observe that D is the set of feasible solutions to (N'P) (and, also, for (RN'P)).

Remark 2. The robust optimal solutions to (P) (or (N'P)) are also robust optimal solutions to
(RP) (or (RNP)).

Next, in order to prove the principal results of this paper, we present the definition
of convex, quasi-convex, strictly quasi-convex, and monotonic quasi-convex curvilinear
integral functionals (see, for instance, Treanta [21]).

Definition 4. A curvilinear integral functional /C A (Z, f)dt™ is said to be convex at (1,7) €
U x V if the following inequality

Las@har - [ agpar > [ {w-n2@h+©-052CH}d
# -G @n)ar

holds, for all (u,v) € U x V.

Definition 5. A curvilinear integral functional / Ar(Z, f)dt™ is said to be quasi-convex at
c

(u,7) € U x V if the following inequality

/A (Z, Fdt™ < /A F)dt™

implies

forall (u,v) e U x V.
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Definition 6. A curvilinear integral functional /C A (g, f)dt™ is said to be strictly quasi-convex
at (1,0) € U x V if the following inequality

/Angfdt” /Aandt”

implies

forall (u,v) # (u,0) e Ux V.

Definition 7. A curvilinear integral functional / Ar(Z, f)dt™ is said to be monotonic quasi-
C

convex at (1u,7) € U x V if the following inequality
/A (C,F)dt™ = /Aandt”

implies
[{0-0%m@h +@-0 5 @ i

9 i
+ [ { g =) S G} =0
forall (u,v) e UX V.

Remark 3. The relationships between the various convexities proposed in this article are discussed
and illustrated with suitable examples in previous research works (see, for instance, Mititelu and
Treantd [5] and Jayswal et al. [22]).

3. Robust Sufficient Optimality Conditions

Next, by considering suitable convexity, quasi-convexity, strictly quasi-convexity,
and/or monotonic quasi-convexity hypotheses, we establish robust sufficient optimality
conditions for the considered problem. In addition, in accordance with Treantd and Arana-
Jiménez [23], we describe the notion of robust Kuhn-Tucker point.

The next Proposition provides an auxiliary result to establish the robust sufficient
optimality conditions for (P) (see Saeed [24]).

Proposition 1. If (i1,7) € D is a robust optimal solution to (P), then there exists the positive real
number Ry, such that (%,7) € D is a robust optimal solution to (N'P). Moreover, if (1,7) € D is

/ max A (g, f)dt"
a robust optimal solution to (N'P) and Ry, = ¢ Jer , then (1,0) € D is a robust

in©®, (7, ¢)dt™
o min 7(Z,8)

optimal solution to (P).

The next result formulates the robust necessary conditions of optimality for (P) (see
Saeed [24]).

Theorem 1. Consider (i1, ) € D is a robust optimal solution for the robust fractional optimization
problem (P) and maxsep An(C, f) = Ar(Z, f), mingeg @x(L,8) = ©x(L,g). Then, there
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exist € R and the piecewise differentiable functions fi = (fig(t)) € R}, A = (A3 (1) € R™,
satisfying

9[An,u( f) ®7'L' u } + ,UTAu )\TBM(g) (1)
{0 Ay (0.F) = Ry @10, (C.0)] + B A, O+ ATB, (D))

9[Am<€,f)—ng®m<€ 3)] + A" A0(@) + ATBy () (2)

aTA() =0, ig>0, p=1,, (3)

0>0, (4)

fort € H, =1, m, except at points of discontinuity.

Remark 4. The relations (1)—(4) in Theorem 1 are called robust necessary optimality conditions for
the robust fractional optimization problem (P).

Definition 8. The feasible solution (i1, ) € D is said to be a normal robust optimal solution to
(P) if @ > 0 (see Theorem 1).

Next, in accordance to Treantd and Arana-Jiménez [23], we introduce and describe the
robust Kuhn-Tucker point associated with (P).

Definition 9. Let maxser An(Z, f) = An(L, f), mingec ©n(Z,8) = ©x(L,g). The robust
feasible solution (i1, 3) is said to be a robust Kuhn-Tucker point of (P) if there exist the piecewise
differentiable functions i = (jig(t)) € RT, A = (A} (1)) € R™™, satisfying

fort € H, m =1, m, except at points of discontinuity.
Taking into account the above-mentioned definition, we formulate the following theorem.

Theorem 2. If (i1,0) € D is a normal robust optimal solution for the robust fractional optimization

problem (P), with maxsep Ar (g, f) = Ar(Z, f), mingeg Or((,8) = Or(, ), then (i1,9) €
D is a robust Kuhn-Tucker point of (P).

Proof. Let us consider maxscr An((, f) = An({, f), mingeg ©x(L,8) = Ox({,§). Since
(i1,0) € D is a robust optimal solution of (P), by Theorem 1, there exist § € R and the
piecewise differentiable functions i = (fig(t)) € R}, A = (A} (t)) € R™, satisfying
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6>0,

fort € H, m = 1,m, except at points of discontinuity. As (i1, 7) € D is assumed to be a
normal robust optimal solution, we can take § = 1 > 0 and this completes the proof. [

Next, under only convexity assumptions of the considered functionals, a result is
provided for the sufficiency of the robust necessary optimality conditions established in
Theorem 1.

Theorem 3. Let (i, 7) € D be a feasible solution to (P) such that the robust necessary optimality

conditions given in (1)~(4) are satisfied, maxser An({, f) = A (T, f), mingcc Or(f,g) =
©,(C,3), and consider

L3[ax@. 7 - R @@ @)ar, [ aTA@ar, [ ATB@ar"
are convex at (i, 0) € D. Then the pair (il, ) is a robust optimal solution to (P).

Proof. By contrary, let us suppose that (i, 7) is not a robust optimal solution to (7). Then,
there exists (i1, 9) € D with the property (according to Proposition 1)

Jomax 1o Ry [ minon(C g

A 7 T T
< J max (G, fat™ — Ry, crgrgn@)n(é ,8)dt”.

By considering maxcr A(Z, f) = Dr(T, f), mingcg 0.(C,8) = 0x(,3), we get

/An Fde™ — fg/(aﬂ Q)dt™

< [ 8=EDa=R;, [ O )t (5)

By hypothesis, we have considered (i1, 7) fulfills the conditions (1)-(4). By multiplying
Equations (1) and (2) by (i — i1) and (¢ — 7), respectively, and integrating them, we get

0= 00188 ) = Ry @)+ FT Au(E) + ATBu({) (6)

~a [9[An,u,7 (& f) = Ry (O, (5, )] + i Au, (§) + ATBy, (g)} VT
+ [0 = 0101808, F) ~ Ry OraC @) + AT 4(Q) + ATBo(0)}at™
= [ [0 = 0){018mu (6, 1) = R7 @ra(C,8)] + AT A +ATBu()}
(1t = {818, (6, F) = Ry @y (£,2)] + 1T Auy (§) + ATB, (0)}] ™

+ /C(ﬁ ~ 0){0[Aro(, f) = Ry Ono(0, )] + 1T Ao(D) + ATBy({)}dt™ =0,

by using the method of integration by parts, the boundary conditions, and the diver-
gence formula.

On the other hand, smce/c [ = f)— ng(an(g g)}dt" is convex at (i1, 7), we have

[ {0186 D) — R;, @x(8,2)] ~ 018x(. /) — R; ©x(C, )] ™
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[0 = @080 (T 1) = Ry @GN + [ (1 = )08, (7, F) ~ Ry O, (6,211

Now, by using the convexity property at (7, 7) of the functional / Al A(Q)dt™, we get

[ a@ - T a@ }arm = [ (- m)pT Au()ar"

¢

+ / (tty — i1y i’ A, (D)dt™ + / (0 — )il Ay(Q)dr™.

The previous inequality along with the robust feasibility of (i1,9) to (P) and the
optimality condition (3), give

/C<ﬁ )i’ Au(f) dt”+/ g — )it A, (D)dE"

n /C (6 — 9)aT Ay (O)dt™ < 0. (8)

Further, by considering, in the same manner, the convexity property at (i, ) of the

integral functional /C ATB(Z)dt™, and the robust feasibility of (12, 9) to (P), we obtain
/C (f — ) AT By ()dt™ + /C (ity — 1) AT B, ()dt™

v /C (6 — 9)AT B, ({)dt™ < 0. 9)
Finally, by adding the relations (7), (8) and (9), side by side, we have

/C [(ﬁ — ) {0[Amu(l, f) — ®7r (0,9 + AT Au(Q) +ATBL(D)}

(it = 1) {8180, (0, F) = Ry Oy (£,8)] + 17 Auy (§) + ATBu, (0)}| ™

+ [0 =) {018m0(8 1) = R} @roll, 8)] + AT Ac(D) + ATBo(O)}at™ < 0,
being a contradiction with the relation (6), and this completes the proof. [

The next theorems assert new robust sufficient optimality conditions under (strictly,
monotonic) quasi-convexity assumptions.

Theorem 4. Let (i, 7) € D be a feasible solution to (P) such that the robust necessary optimality

conditions given in (1)~(4) are satisfied, maxser Ax(C, f) = A (T, f), mingcc Or((,8) =
©,(C,3), and consider

Fu,5,8) = [[0[An(@, )~ R @6t Vo) i= [ aTA@)ar"
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are quasi-convex and strictly quasi-convex at (i
X(u,0) == [, ATB(Z)dt™ is monotonic quasi-convex at
a robust optimal solution to (P).

) € D, respectively, and

(1,0) € D. Then the pair (il,7) is

Proof. Let us assume that (7, 7) is not a robust optimal solution to (P), and consider the
following non-empty set

S={(wv)eD|F(u,vfg) <F@,sf3), X(uv)=X®@7), V(o) <V(1,0)}.
By hypothesis, for (u,v) € S, we get

F(u,0:f,8) <F(#,5;f,3),

{01870 1) = R; (@rull )] (4= 1) +8[B0(E, ) — R ©a(C, )] (0— 0) Jat™

+/ Amq & f) = Rp Omu, (L, g)}( —aﬂ)}dt” <0. (10)
For (u,v) € S, the equality X(u,v) = X(i1,7) holds and it follows

LB @ =)+ 2B (D)0~ o) ™

+/ [T By (8) (1 — ) bat™ = 0. (11)
Also, for (u,v) € S, the inequality V(u,v) < V (i1, 7) gives

/C { TAWD) (u—1) + " As(Q) (v — 5)}dtn

+ [ A" A0, @y — ) Jar™ <. (12)

By hypothesis, we have considered (i7, ) fulfills the conditions (1)—(4). By multiplying
Equations (1) and (2) by (u — i1) and (v — 7), respectively, and integrating them, we get

/C(u — D) {0[8mu(Z, f) = Ry Omu(0, )]+ 1" Au() + ATBu(D)

= [, [0 = {08 )~ Ry Oru(G, )] + T Au() + AT Bu(D))

+(1ty = y){00Br1, (8, F) = R} @y (€, )] + 1T Aw, () + ATB, ()}t

+ [ (0= 0 8l8n0ll D)~ Ry @6 Q) + AT AQ) + ATBO M =0, (13)

by using the method of integration by parts, the boundary conditions, and the divergence
formula. On the other hand, by adding the relations (10), (11) and (12), side by side,
we have

[ [0 = 0{8185u@, ) = Ry @ E,8)] + AT AL(E) + ATBAD))
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(st = ) {0y (8, F) = Ry @y (0,8)] + A7 Auy (D) + ATBu, ()} |at™

+ [ 0= 0){01n0ll, ) — Ry Oroll, )] + 17 A0(E) + AT Bo(O)}at™ < 0,
being a contradiction with the relation (13), and this completes the proof. [J

Next, some immediate consequences of the previous theorem can be formulated
as follows.

Theorem 5. Let (1,0) € D be a feasible solution to (P) such that the robust necessary optimality
conditions given in (1)~(4) are satisfied, maxser Ax(C, f) = Ax({, f), mingec Ox(T,8) =
©,(C,3), and consider

Flu,0if,8) 1= [, 8[An(@ )~ Ry 0@ 9)]dt", V(n,o) i= [ aTA@)dr"

are strictly quasi-convex and quasi-convex at (i1, 3) € D, respectively, and X (u,v) := [, ATB()dt™
is monotonic quasi-convex at (ii,3) € D. Then the pair (ii,7) is a robust optzmal solutzon to (P).

Proof. The proof follows in the same manner as in Theorem 4, by replacing the sign “<”
in (10) with “<”, and the sign “<” in (12) with “<”. O

Theorem 6. Let (i1,3) € D be a feasible solution to (P) such that the robust necessary optimality
conditions given in (1)—(4) are satisfied, maxscr An((, f) = Ax(C, f), mingec Or((,g) =
©,(C,3), and consider

F,0:,8) = [ 8]0 F)8nlE, )~ BaE NORE D)™, Vi) i= [ gTA@ar

are quasi-convex and strictly quasi-convex at (i
X(u,v) := [, ATB({)dt™ is monotonic quasi-convex at
a robust optimal solution to (P).

o) € D, respectively, and

(i1,0) € D. Then the pair (i, 7) is

Proof. The proof follows in the same manner as in Theorem 4, by replacing the RJZ ¢ =

/maxA,T Z,f)dt”

—

x( f

¢n -

A
® a7 O
C{grgg (2, 8)

~

Theorem 7. Let (i1,3) € D be a feasible solution to (P) such that the robust necessary optimality
conditions given in (1)~(4) are satisfied, maxscr Ar(Z, f) = Ax({, f), mingec Or(f,8) =
©x(Z,3), and consider

F(1,0:7,8) i= [ 8]02(Z NAnC, F) = 82(C F)O=(E, )b, V(u,0) = [ pTA@)at"

are strictly quasi-convex and quasi-convex at (i1, 0) € D, respectively, and X (u,v) := [, ATB({)dt"™
is monotonic quasi-convex at (i1, 7) € D. Then the pair (ii,3) is a robust optzmal solution to (P).

Proof. The proof follows in the same manner as in Theorem 4, by replacing the RJ? ¢ =
max A (Z, f)dt™
 max (@, f)

in®x(Z, ¢)dt"
/C min (3, 8)
with “<”. O

= g Eg’ Jj% , the sign “<” in (10) with “<”, and the sign “<” in (12)

~
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Theorem 8. Let (11,0) € D be a feasible solution to (P) such that the robust necessary optimality
conditions given in (1)—(4) are satisfied, maxscr An((, f) = An(C, f), mingec Or({,g) =
©,(C,3), and consider

Fu,9:,8) 1= [ 0[82(0,F) ~ Ry ©x(0, )] ar™,

V(u,0) = /C (A7 A@Q) +ATB(Q)]ar

are quasi-convex and strictly quasi-convex at (i, ) € D, respectively. Then the pair (ii,7) is a
robust optimal solution to (P).

Proof. The proof follows in the same manner as in Theorem 4, by considering the sign “<”
in (11) and (12), then adding them. [

Theorem 9. Let (i1,7) € D be a feasible solution to (P) such that the robust necessary optimality
conditions given in (1)~(4) are satisfied, maxscr Ar(Z, f) = Ax({, f), mingec Or(f,8) =
©x(Z,3), and consider

F(u,v; f,8) = /

c

0[Ax(Z, )~ R ©n(Z,8)]|dr™,

V(u,0) = /C [ATA() +ATB(g))at™

are strictly quasi-convex and quasi-convex at (ii,9) € D, respectively. Then the pair (i1, 7) is a
robust optimal solution to (P).

Proof. The proof follows in the same manner as in Theorem 4, by considering the sign “<”
in (10), and the sign “<”in (11) and (12), then adding them. [

Theorem 10. Let (11, 0) € D be a feasible solution to (P) such that the robust necessary optimality
conditions given in (1)~(4) are satisfied, maxscr Ar (T, f) = Ax({, f), mingec Ox(f,8) =
©,(C,3), and consider

i)~ |

[6[64@1A0(E. ) - 2@ N)On(5.0)] ",
V(u,v) ::/C [P_‘TA(C)-l-)_LTB(g)}dt”

are quasi-convex and strictly quasi-convex at (i, ) € D, respectively. Then the pair (ii,7) is a
robust optimal solution to (P).

Proof. The proof follows in the same manner as in Theorem 4, by replacing the R]? e =
Ar(C, f)dt™
/C max (¢ f)

in@,(¢,g)dt™ -
/C min 2(,8)
adding them. O

n(grj;_) , and by considering the sign “<” in (11) and (12), then

A
O(C, f)

Theorem 11. Let (11, 0) € D be a feasible solution to (P) such that the robust necessary optimality
conditions given in (1)~(4) are satisfied, maxscr Ar(Z, f) = Ax({, f), mingec Or(f,8) =
©,(C,3), and consider

F(u,0:7,8) = [ 8]02(C N)Ax(C, ) — Bx(Z, )Ox(C, )] 0,



Axioms 2023, 12, 705 13 of 14

V(u,0) = /C (AT A() +ATB(g))at™

are strictly quasi-convex and quasi-convex at (ii,3) € D, respectively. Then the pair (i, ) is a
robust optimal solution to (P).

Proof. The proof follows in the same manner as in Theorem 4, by replacing the RJ? ¢ =

/c_I?S?Aﬂ@'f A ()
/min@n(z,g)dt” Or(C f)
C geG

sign “<”in (11) and (12), then adding them. [

, the sign “<” in (10) with “<”, and by considering the

Remark 5. (i) In order to justify the main elements formulated in the paper, some illustrative
applications and numerical simulations can be consulted by the reader in the recent research work of
Jayswal et al. [22].

(ii) Regarding the research limitations associated with this paper, we could mention the study
of the case where the second-order partial derivatives are presented, and, also, the situation when the
involved functionals are not necessarily (quasi-) convex.

(iii) In order to highlight the above-mentioned theorems, a suitable illustrative application
(from mechanics) is presented and investigated in Treantd [25].

4. Conclusions

In this paper, under the convexity, quasi-convexity, strictly quasi-convexity, and/or
monotonic quasi-convexity hypotheses of the involved functionals, we have established
robust sufficient optimality conditions for the considered problem. Also, a characterization
of the associated Kuhn-Tucker points has been stated. To the best of the authors” knowl-
edge, the results presented in this paper are new in the specialized literature. As future
research directions of this paper, the authors mention the presence of data uncertainty in
the constraints and the associated duality theory.
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