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Abstract: A new two-parameter weighted-exponential (WE) distribution, as a beneficial competi-
tor model to other lifetime distributions, namely: generalized exponential, gamma, and Weibull
distributions, is studied in the presence of adaptive progressive Type-II hybrid data. Thus, based
on different frequentist and Bayesian estimation methods, we study the inferential problem of the
WE parameters as well as related reliability indices, including survival and failure functions. In
frequentist setups, besides the standard likelihood-based estimation, the product of spacing (PS)
approach is also taken into account for estimating all unknown parameters of life. Making use of
the delta method and the observed Fisher information of the frequentist estimators, approximated
asymptotic confidence intervals for all unknown parameters are acquired. In Bayes methodology,
from the squared-error loss with independent gamma density priors, the point and interval estimates
of the unknown parameters are offered using both joint likelihood and the product of spacings
functions. Because a closed solution to the Bayes estimators is not accessible, the Metropolis–Hastings
sampler is presented to approximate the Bayes estimates and also to create their associated highest
interval posterior density estimates. To figure out the effectiveness of the developed approaches,
extensive Monte Carlo experiments are implemented. To highlight the applicability of the offered
methodologies in practice, one real-life data set consisting of 30 failure times of repairable mechanical
equipment is analyzed. This application demonstrated that the offered WE model provides a better
fit compared to the other eight lifetime models.

Keywords: weighted-exponential model; adaptive progressively Type-II hybrid censoring; likelihood;
product of spacings; Bayes Metropolis–Hastings; reliability

MSC: 62F10; 62F15; 62N01; 62N02; 62N05

1. Introduction

Censoring is a popular technique in reliability and life testing investigations. The ex-
perimenter must have prior expertise with various test conditions, including time, cost,
or money limits, when unit removal is scheduled in advance prior to failure. In reliability
investigations, the most commonly employed censoring techniques are time censoring
(Type-I) and failure censoring (Type-II). One of these techniques’ primary flaws is that
things cannot be removed from the experiment at any point other than the end, so pro-
gressive Type-II (T2P) censoring is suggested; for further details, see Balakrishnan and
Cramer [1]. Although the Type-I progressively hybrid censoring, proposed by Kundu
and Joarder [2], ensures that the experiment stops at a predetermined time, the effective
sample size collected may be too small; thus, the estimation approach cannot be effec-
tive. For this reason, Ng et al. [3] suggested adaptive progressive Type-II hybrid (T2APH)
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censoring. This life test plan has become widely common in survival studies and is con-
ducted as follows: Suppose n (size of total independent identical items), m(< n) (size of
failed subjects), R = (R1, R2, . . . , Rm) (T2P censoring), T ∈ (0, ∞) (threshold time), are
preassigned. This mechanism allows Ri, i = 1, 2, . . . , m to change accordingly during the
examination and confers the experiment time to run over T. If Ym:m:n < T, just like the
conventional T2P strategy, end the test at Ym:m:n. Otherwise, if Yd:m:n < T < Yd+1:m:n,
where d(= 1, 2, . . . , m− 1) denotes the total number of failures up to T, the practitioner
must stop the removal items beyond T, i.e., Ri = 0 for i = d + 1, . . . , m− 1 and end the
test at Ym:m:n. However, the number of staying live units (say R∗m) when Ym:m:n < T and
Yd:m:n < T are R∗m = n−m−∑m−1

i=1 Ri and R∗m = n−m−∑d
i=1 Ri, respectively.

Let y = {(Y1:m:n, R1), . . . , (Yd:m:n, Rd), (Yd+1m:n, 0), . . . , (Ym−1:m:n, 0), (Ym:m:n, Rm)} be
a T2APH sample is obtained from a population having a cumulative distribution function
(CDF) F(·) and probability density function (PDF) f (·), then the joint likelihood function
(LF) of T2APH, where Ω refers to the vector of parameters under interest, is

L
(

Ω|y
)
= Ad ∏m

i=1 f (yi:m:n; Ω)∏d
i=1 [F̄(yi:m:n; Ω)]

Ri [F̄(ym:m:n; Ω)]
R∗m , (1)

where Ad is a constant and F̄(·) = 1− F(·). It should be noted that this proposed strategy
ensures that the life test ends when the required effective sample size is reached; see, for
example, Elshahhat and Nassar [4,5].

Besides (1), the PS methodology is also inserted as a good competitive approach to the
conventional likelihood. The PS method was independently investigated by Cheng and
Amin [6] and Ranneby [7]. Similar to the logic of obtaining the MLEs, maximum product
spacing estimators (PSEs) can be obtained by maximizing the PS function. For skewed
distributions, Anatolyev and Kosenok [8] demonstrated that the PSEs are more efficient
than the traditional MLEs. Following El-Sherpieny et al. [9], the T2APH using maximum
PS method, S(·), can be defined as

S
(

Ω|y
)
= Bd

m+1

∏
i=1

[F(yi:m:n; Ω)− F(yi−1:m:n; Ω)]
d

∏
i=1

[F̄(yi:m:n; Ω)]
Ri [F̄(ym:m:n; Ω)]

R∗m , (2)

where Bd is a constant, F(y0:m:n; Ω) ≡ 0 and F(ym+1:m:n; Ω) ≡ 1.
The two-parameter weighted-exponential (WE) distribution was suggested by Gupta

and Kundu [10] by adding a new skewness parameter to the traditional exponential
distribution. They also stated that the WE density shape is quite obvious compared to the
other extended exponential lifetime models, including: gamma, Weibull, and generalized
exponential distributions. Moreover, in many practical situations, the WE distribution has
superior properties and may be utilized to fit lifetime data compared to other models in
the statistical literature. Thus, the WE distribution might be a good alternate choice to
analyze skewed-data. Further, Dey et al. [11] proposed several properties and derived
various estimators of the WE parameters under complete sampling. However, suppose
Y is a random life variable of an item that follows WE(ρ), where ρ = (γ, σ)T. Hence,
the respective PDF and CDF of Y are

f (y; ρ) = σ−1(σ + 1)γe−γy(1− e−σγy), y > 0, (3)

and
F(y; ρ) = 1− σ−1e−γy(1 + σ− e−σγy), (4)

where γ > 0 and σ > 0 denote the scale and shape parameters, respectively. Consequently,
the reliability function (RF) (say R(·)) and hazard rate function (HRF) (say h(·)) of the WE
model, at time t > 0, are given by
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R(t; ρ) = σ−1e−γt(1 + σ− e−σγt), t > 0, (5)

and

h(t; ρ) = γ(σ + 1)
1− e−σγt

1 + σ− e−σγt , (6)

respectively. Setting γ = 1 in (4), two sub-models can be obtained as special cases, namely:

• Gamma distribution with shape parameter 2 when σ→ 0.
• Generalized-exponential distribution with shape parameter 2 when σ = 1.

Using some specified values in the range of the parameters σ and γ, different shapes
of the density and failure rate functions of the WE distribution are shown in Figure 1. It
shows that the density shapes of the WE distribution are always log-concave and unimodal
with the mode at ln(σ + 1)/σ; in addition, the HRF has a monotone increasing function for
all nonnegative values of σ and γ (see Gupta and Kundu [10]). Several works in the recent
decade have explored the inference problem of the WE parameters; for example, Farahani
and Khorram [12] examined the Bayesian inference for WE distribution parameters under
Type-II censoring, and Tian and Gui [13] discussed the WE parameters in the presence of
T2P-competing risks data.
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Figure 1. Plots of the density and hazard rate functions of the WE distribution.

To the best of our knowledge of T2APH data, we are not aware of any work related to
inferring the WE parameters σ and γ and/or the reliability R(t) and h(t) functions. As a
result, to bridge this gap, the objectives of the current study are fourfold:

• Develop both point and interval estimates of σ, γ, R(t) and h(t) using T2APH samples
by exclusively focusing on both frequentist and Bayesian inferential methods.

• Acquire the maximum likelihood and product of spacings estimates of σ, γ, R(t)
and h(t). Create the approximate confidence interval (ACI) bounds of the unknown
quantities using the observed Fisher information obtained from both the LF and
PS approaches.

• Explore the PS method as an alternative to the traditional LF method and investigate
both in two Bayesian estimation setups for unknown parameters, reliability function,
and hazard function. Use independent gamma density priors against the squared-
error loss to develop the Bayes estimates. Approximate the Bayes estimates and their
credible intervals via Markov-chain Monte-Carlo (MCMC) techniques.

• Compare the effectiveness of the offered approaches based on several accuracy cri-
teria, namely: simulated bias, mean squared error, and length of confidence inter-
val values via Monte Carlo simulations. Illustrate a mechanical data set to discuss
the suggested methodologies and to highlight the WE distribution’s superiority
and flexibility over other eight lifetime models in the literature, namely: Weibull,
gamma, Nadarajah–Haghighi, weighted Nadarajah–Haghighi, alpha power exponen-
tial, Weibull-exponential, generalized gamma, and generalized beta distributions.
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The remainder of the paper is structured as follows: Section 2 provides the frequentist
estimates. In Section 3, Bayesian (point/interval) estimations are developed. Section 4
presents the simulated outcomes. Real data results are highlighted in Section 5. Finally,
Section 6 presents the conclusions and recommendations of the study.

2. Frequentist Estimations

Here, we shall consider both LF and PS techniques to derive point as well as interval
estimators of σ, γ, R(t), and h(t). For simplicity in notation, the symbol yi:m:n is used
as yi. Assume that Y1 < · · · < Yd < T < Yd+1 < · · · < Ym with (R1, . . . , Rd, 0, . . . , 0,
n−∑d

i=1 Ri −m) is a T2APH sample of size m from WE(σ, γ).

2.1. Likelihood Estimators

Taking (4) and (3) into (1), we can express the proportionality likelihood (1) function as

L
(

σ, γ|y
)

∝
(σ + 1)m

σn γme−γψ1(y)(ξ(ym; σ, γ))R∗m
d

∏
i=1

(ξ(yi; σ, γ))Ri
m

∏
i=1

(1− exp(−σγyi)), (7)

where ψ1

(
y
)

= ∑m
i=1 yi + ∑d

i=1 yiRi + ymR∗m, ξ(ym; σ, γ) = 1 + σ − exp(−σγym) and
ξ(yi; σ, γ) = 1 + σ− exp(−σγyi).

The log-likelihood (say `(·) = log L(·)) function of (7) becomes

`
(

σ, γ|y
)
= m log(γ(σ + 1))− n log(σ)− γψ1

(
y
)
+ R∗m log(ξ(ym; σ, γ))

+ ∑d
i=1 Ri log(ξ(yi; σ, γ)) + ∑m

i=1 log(1− exp(−σγyi)). (8)

Differentiating (8) partially with regard to σ and γ as

∂`

∂σ
=

m
σ + 1

− n
σ
+ R∗m

ξ ′σ(ym; σ, γ)

ξ(ym; σ, γ)
+ ∑d

i=1 Ri
ξ ′σ(yi; σ, γ)

ξ(yi; σ, γ)
+ γ ∑m

i=1
yi exp(−σγyi)

(1− exp(−σγyi))
, (9)

and

∂`

∂γ
=

m
γ
− ψ1

(
y
)
+ R∗m

ξ ′γ(ym; σ, γ)

ξ(ym; σ, γ)
+ ∑d

i=1 Ri
ξ ′γ(yi; σ, γ)

ξ(yi; σ, γ)
+ σ ∑m

i=1
yi exp(−σγyi)

(1− exp(−σγyi))
, (10)

respectively, where ξ ′σ(ym; σ, γ) = 1 + γym exp(−σγym), ξ ′γ(ym; σ, γ) = σym exp(−σγym),
ξ ′σ(yi; σ, γ) = 1 + γyi exp(−σγyi) and ξ ′γ(yi; σ, γ) = σyi exp(−σγyi) for i = 1, . . . , d.

Analytical closed-solutions from (9) and (10) for the MLEs σ̂ and γ̂ of σ and γ, respec-
tively, are not available. Thus, the Newton–Raphson (NR) technique via ‘maxLik’ package
(by Henningsen and Toomet [14]) may be implemented to evaluate the acquired σ̂ and γ̂
estimators. Once those are calculated, using (5) and (6), the MLEs R̂(t) and ĥ(t) of R(t) and
h(t) at time t > 0 can be offered directly as

R̂(t) = σ̂−1e−γ̂t
(

1 + σ̂− e−σ̂γ̂t
)

, t > 0, and ĥ(t) = γ̂(σ̂ + 1)
1− e−σ̂γ̂t

1 + σ̂− e−σ̂γ̂t , t > 0.

2.2. Product of Spacings Estimators

Taking (4) and (3) into (2), the product of spacings (2) function becomes

S
(

σ, γ|y
)

∝
e−γψ2(y)

σn+1

m+1

∏
i=1

[ζ(yi−1; σ, γ)− ζ(yi; σ, γ)]
d

∏
i=1

(ξ(yi; σ, γ))Ri (ξ(ym; σ, γ))R∗m , (11)

where ψ2

(
y
)
= ∑d

i=1 yiRi + ymR∗m and ζ(yi; σ, γ) = e−γyi (1 + σ− e−σγyi ).
From (11), the PSEs σ̂ and γ̂ of σ and γ, respectively, can be directly acquired by

maximizing the log-PS (say s(·) ∝ log S(·)) function as
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s
(

σ, γ|y
)

∝ −γψ2

(
y
)
− (n + 1) log(σ) + R∗m log(ξ(ym; σ, γ))

+ ∑d
i=1 Ri log(ξ(yi; σ, γ)) + ∑m

i=1 log[ζ(yi−1; σ, γ)− ζ(yi; σ, γ)]. (12)

Making partially differentiated of (12) in respect of σ and γ, we have two nonlinear
expressions that must be calculated simultaneously to acquire both σ̂ and γ̂ as

∂s
∂σ

= − (n + 1)
σ

+ R∗m
ξ ′σ(ym; σ, γ)

ξ(ym; σ, γ)
+

d

∑
i=1

Ri
ξ ′σ(yi; σ, γ)

ξ(yi; σ, γ)
+

m+1

∑
i=1

[
ζ ′σ(yi−1; σ, γ)− ζ ′σ(yi; σ, γ)

ζ(yi−1; σ, γ)− ζ(yi; σ, γ)

]
, (13)

and

∂s
∂γ

= −ψ2

(
y
)
+ R∗m

ξ ′γ(ym; σ, γ)

ξ(ym; σ, γ)
+

d

∑
i=1

Ri
ξ ′γ(yi; σ, γ)

ξ(yi; σ, γ)
+

m+1

∑
i=1

[
ζ ′γ(yi−1; σ, γ)− ζ ′γ(yi; σ, γ)

ζ(yi−1; σ, γ)− ζ(yi; σ, γ)

]
, (14)

respectively, where ζ ′σ(yi; σ, γ) = e−γyi ξ ′σ(yi; σ, γ)

and ζ ′γ(yi; σ, γ) = e−γyi
[
ξ ′γ(yi; σ, γ)− yiξ(yi; σ, γ)

]
.

As in the MLEs σ̂ and γ̂, there is no closed solution for the PSEs σ̂ and γ̂. Again,
we recommend utilizing the NR method to obtain the PSEs σ̂ and γ̂ from (13) and (14),
respectively. Following Cheng and Amin [6], we can point out that the offered PSEs σ̂ and
γ̂ have the same characteristics as in the case of σ̂ and γ̂. Thus, the PSEs R̂(t) and ĥ(t) of
R(t) and h(t) can be easily acquired, respectively, as

R̂(t) = σ̂−1e−γ̂t
(

1 + σ̂− e−σ̂γ̂t
)

, t > 0,

and

ĥ(t) = γ̂(σ̂ + 1)
1− e−σ̂γ̂t

1 + σ̂− e−σ̂γ̂t , t > 0.

2.3. Asymptotic Intervals

Here, we construct the 100(1− ν)% ACI of σ, γ, R(t) or h(t), say ω = (σ, γ, R(t), h(t));
the Fisher’s information matrix Iij(Ω) = E

[
−
(

∂2`
(

Ω|y
))

/∂Ω2
]
, i, j = 1, 2. Since the

Fisher Iij, i, j = 1, 2 members cannot be expressed in closed formulas, both variances
and covariances (V-C) matrix of the MLEs σ̂ and γ̂ can be offered by inverting I(Ω) with
ignoring E and changing (σ, γ) with their (σ̂, γ̂)—see Lawless [15]. However, from (8),
the approximate V-C matrix I−1(σ̂, γ̂) of the acquired MLEs σ̂ and γ̂ is given by

I−1(σ̂, γ̂) =

[
−`11 −`12
−`21 −`22

]−1

(σ̂,γ̂)
=

[
υ̂σ̂σ̂ υ̂σ̂γ̂

υ̂γ̂σ̂ υ̂γ̂γ̂

]
. (15)

Similarly, from (12), the approximate V-C matrix I−1(σ̂, γ̂) of the acquired PSEs σ̂ and
γ̂ is given by

I−1(σ̂, γ̂) =

[
−s11 −s12
−s21 −s22

]−1

(σ̂,γ̂)
=

[
υ̂σ̂σ̂ υ̂σ̂γ̂

υ̂γ̂σ̂ υ̂γ̂γ̂

]
. (16)

In Appendices A and B, the items `ij and sij for i, j = 1, 2 are presented, respectively.
Then, the respective 100(1− ν)% two-sided ACIs of σ and γ are given by

σ̂∓ zν/2
√

υ̂σ̂σ̂ and γ̂∓ zν/2

√
υ̂γ̂γ̂,

where zν/2 is the quantile values of a standard normal distribution.
Now, following Greene [16], we shall use the delta technique in turn to estimate the

approximated variances of R(t) and h(t), respectively, as
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υ̂R =
[
ΛR I−1(σ, γ)ΛT

R

]∣∣
(σ̂,γ̂), and υ̂h =

[
Λh(t) I−1(σ, γ)ΛT

h

]∣∣
(σ̂,γ̂),

where ΛR and Λh are the gradient of R(t) and h(t) obtained at σ̂ and γ̂, as

ΛR =

[
∂R(t)

∂σ
,

∂R(t)
∂γ

]
and Λh =

[
∂h(t)

∂σ
,

∂h(t)
∂γ

]
,

respectively.
Thus, the 100(1− ν)% two-sided ACIs of R(t) and h(t), using their MLEs R̂(t) and

ĥ(t), are given by
R̂(t)∓ zν/2

√
υ̂R and ĥ(t)∓ zν/2

√
υ̂h,

respectively. In an identical manner, from (16), the 100(1− ν)% ACIs of σ, γ, R(t), and h(t)
using their PSEs σ̂, γ̂, R̂(t) and ĥ(t), respectively, can be easily created.

3. Bayes Estimations

This section considers the Bayes estimates of σ, γ, R(t), and h(t) in addition to the
associated HPD intervals.

3.1. Prior and Loss Functions

It is well known that the gamma prior based on its hyperparameter values has a
wide variety of shapes; thus, applying independent gamma priors is thus a relatively
simple method that may yield discoveries with more explicit posterior density represen-
tations. Thus, the WE parameters σ and γ are considered to follow Gamma(α1, β1) and
Gamma(α2, β2), respectively. The joint prior PDF of σ and γ, where the hyperparameters
αi, βi > 0, i = 1, 2, are selected to represent past information, becomes

π(σ, γ) ∝ σα1−1γα2−1e−(β1σ+β2γ), σ, γ > 0. (17)

In Bayesian methodology, determining symmetric (or asymmetric) loss is an important
issue. Thus, the SEL function (which is the most often utilized symmetric loss), say L(·), is

L(µ, µ̃) = (µ̃− µ)2, (18)

where µ̃ refers to the target Bayes estimate of µ. Any alternative loss function, however, may
be simply implemented. Practically, the Bayes estimator µ̃ is the posterior expectation of µ.

3.2. Posterior LF-Based

Substituting (7) and (17) into the continuous Bayes’ methodology, the joint posterior
PDF of σ and γ becomes

πL

(
σ, γ|y

)
= K−1

1 (σ + 1)mσα1−n−1γm+α2−1 exp
(
−
[

β1σ + γ
(

β2 + ψ1

(
y
))])

× (ξ(ym; σ, γ))R∗m
d

∏
i=1

(ξ(yi; σ, γ))Ri
m

∏
i=1

(1− exp(−σγyi)), (19)

where K1 =
∫ ∞

0

∫ ∞
0 π(σ, γ)L

(
σ, γ|y

)
dσdγ is the normalized constant.

As a fact, the Bayes estimator σ̃ or γ̃ of σ or γ, respectively, cannot be expressed
mathematically. Thus, the marginal PDFs of σ and γ must be offered first as

πL

(
σ|γ, y

)
∝ (σ + 1)mσα1−n−1 exp

(
−
[

β1σ− ϕ1

(
σ, γ, y

)])
, (20)

and
πL

(
γ|σ, y

)
∝ γm+α2−1 exp

(
−
[
γ
(

β2 + ψ1

(
y
))
− ϕ1

(
σ, γ, y

)])
, (21)
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respectively, where

ϕ1

(
σ, γ, y

)
= R∗m log(ξ(ym; σ, γ)) +

d

∑
i=1

Ri log(ξ(yi; σ, γ)) +
m

∑
i=1

log
(
1− e−σγyi

)
.

From (20) and (21), it can be observed that the explicit form of the marginal PDF of σ
or γ is not feasible. Thus, we propose to apply MCMC methods, such as the Metropolis-
Hastings (MH) algorithm with normal proposal distributions to compute the Bayesian
estimates and associated HPD intervals.

3.3. Posterior PS-Based

In an analogous sense that the LF-based technique is used for Bayesian inference,
from (11) and (17), the joint posterior PDF (say πS(·)) based on the PS-based technique of σ
and γ is

πS

(
σ, γ|y

)
= K−1

2 σα1−n−2γm+α2−1 exp
(
−
[

β1σ + γ
(

β2 + ψ2

(
y
))])

×
m+1

∏
i=1

[ζ(yi−1; σ, γ)− ζ(yi; σ, γ)]
d

∏
i=1

(ξ(yi; σ, γ))Ri (ξ(ym; σ, γ))R∗m , (22)

where K2 =
∫ ∞

0

∫ ∞
0 π(σ, γ)S

(
σ, γ|y

)
is the normalizing constant.

From (22), the respective conditional-posterior PDFs of σ and γ are

πS

(
σ|γ, y

)
∝ σα1−n−2 exp

(
−
[

β1σ− ϕ2

(
σ, γ, y

)])
, (23)

and
πS

(
γ|σ, y

)
∝ γm+α2−1 exp

(
−
[
γ
(

β2 + ψ2

(
y
))
− ϕ2

(
σ, γ, y

)])
, (24)

where

ϕ2

(
σ, γ, y

)
= R∗m log(ξ(ym; σ, γ)) +

d

∑
i=1

Ri log(ξ(yi; σ, γ))

+
m+1

∑
i=1

log(ζ(yi−1; σ, γ)− ζ(yi; σ, γ)).

3.4. The MH Technique

The MH method is a particularly valuable MCMC approach since it is used to pro-
duce random variates from the objective posterior density. Additionally, from a practical
perspective, this technique provides an easy-to-apply chain version of the Bayes’ estimate.
For further information on this algorithm, please see Gelman et al. [17] and Lynch [18].
To produce MCMC samples from (19) of σ, and γ, or any function of them in order to obtain
their Bayesian estimates and/or their HPD interval estimates, conduct the MH sampling
process listed in Algorithm 1.

Algorithm 1 The MH Sampling

Step 1: Set initial guesses (σ(0), γ(0)) = (σ̂, γ̂).

Step 2: Set ι = 1.
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Algorithm 1 Cont.

Step 3: Generate σ∗ and γ∗ from normal distributions N(σ̂, υσ̂σ̂) and N(γ̂, υγ̂γ̂), respectively, as

(i) Calculate ϑ1 =
πL( σ∗ |γ(ι−1),y)

πL( σ(ι−1)|γ(ι−1),y)
and ϑ2 =

πL( γ∗ |σ(ι),y)
πL( γ(ι−1)|σ(ι),y)

.

(ii) Obtain Qσ = min{1, ϑ1} and Qγ = min{1, ϑ2}.
(iii) Obtain two variates u1 and u2 from the uniform U(0, 1) distribution.
(iv) If u1 6 Qσ, set σ(ι) = σ∗, and set σ(ι) = σ(ι−1) for otherwise.
(v) If u2 ≤ Qγ, set γ(ι) = γ∗, and set γ(ι) = γ(ι−1) for otherwise.

Step 4: Compute R(t) (5) and h(t) (6), for time t > 0, by replacing σ and γ with their σ(ι) and γ(ι), respectively.

Step 5: Set ι = ι + 1.

Step 6: Redo Steps 2–5 N times (by eliminating the first N• iterations as burn-in) to obtain

ω(ι) =
(

σ(ι), γ(ι), R(ι)(t), h(ι)(t)
)

, ι = N• + 1,N• + 2, . . . ,N .

Step 7: Acquire the Bayes estimate of σ, γ, R(t) or h(t) (say ω) as

ω̃ =
N
∑

ι=N•+1

ω(ι)

N −N•
·

Step 8: Acquire the HPD interval of ω via sorting simulated MCMC variates of ω(ι) for ι = N• + 1,N• + 2, . . . ,N as

ω(N•+1), ω(N•+2), . . . , ω(N ).

Create the 100(1− ν)% HPD interval of ω as[
ω(ι◦), ω(ι◦+(1−ν)(N−N•))

]
,

where ι◦ is provided by

ω(ι◦+{(1−ν)(N−N•)}) −ω(ι◦) = min
1≤ι≤ν(N−N•)

(
ω(ι+{(1−ν)(N−N•)}) −ω(ι)

)
, ι◦ = N• + 1,N• + 2, . . . ,N ,

where [a] refers to the greatest integer that is equal (or less than) to a, see Chen and Shao [19].

Analytically, similar to the case of Bayes’ inference via the LF-based approach,
the functions (23) and (24) of σ, and γ, respectively, cannot be reduced to any conventional
distribution. As a result, the identical stages of the MH method described in Algorithm 1
may be readily performed to create the Bayesian estimates and related HPD intervals of σ,
γ, R(t), and h(t) using the PS technique.

4. Numerical Comparisons

To gauge the behavior of the offered estimators of the WE lifetime distribution dis-
cussed in earlier sections, extensive Monte-Carlo simulations based on adaptive progressive
Type-II hybrid samples are created.

4.1. Simulation Design

This subsection presents the suggested scenarios of the proposed censoring and the
outputs of simulations. From different choices of T(= 2, 3) (threshold time), n(= 50, 80)
(complete sample size) and R (T2P pattern), large 1000 T2APHC samples are obtained
from WE(0.5, 2). At t = 0.1, the offered estimates of R(t) and h(t) are evaluated when
their plausible values are 0.97456 and 0.47968, respectively. For each setting of T and n,
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the level of m is specified as a failure percent (FP) from each n, i.e., as m
n × 100% (=40, 80%).

Moreover, different removal patterns of R are included in our account, namely:

• Scheme 1: ‘Left Censoring’, i.e., R = (n−m, 0m−1);
• Scheme 2: ‘Middle Censoring’, i.e., R = (0(

m
2 −1), n−m, 0

m
2 );

• Scheme 3: ‘Right Censoring’, i.e., R = (0m−1, n−m),

where, for instance, 0m−1 implies that 0 repeats m− 1 times.
To create a T2APHC sample of size m from the WE distribution, conduct the

following procedure:

Step 1: Simulate a traditional T2P sample (Yi, Ri), i = 1, 2, . . . , m, as

(a) Simulate $1, $2, . . . , $m from uniform U(0, 1) distribution.

(b) Put ηi = $

(
i+∑m

j=m−i+1 Rj

)−1

i , for i = 1, 2, . . . , m.
(c) Set ui = 1− ηmηm−1 · · · ηm−i+1 for i = 1, 2, . . . , m.
(d) Set Yi = F−1(ui; σ, γ), i = 1, 2, . . . , m, the T2PC mechanism from WE(σ, γ) is created.

Step 2: Find d and eliminate Yi for i = d + 2, . . . , m.
Step 3: Truncated distribution f (y)[1− F(yd+1)]

−1 is used to obtain the first order statistics
Yd+2, . . . , Ym of size n− d−∑d

j=1 Rj − 1.

From each AT2PHC sample, from the frequentist viewpoint, the MLEs and PSEs
(in addition to their 95% ACIs) of γ, σ, R(t), and h(t) are evaluated by adopting the iterative
NR method via ‘maxLik’ package. For each parameter, via the MH sampling depicted in
Algorithm 1, 12,000 Markovian iterations were made, and then the first 2000 iterations were
left to remove the effect of the starting values. Thus, from the remaining 10,000 variates,
the Bayes estimates (along with their 95% HPD intervals) using the likelihood and product
of spacing approaches of γ, σ, R(t), and h(t), when (α1, α2) = (2, 8) and βi = 4, i = 1, 2,
are developed.

The acquired point estimates of γ are compared using their mean biases (MBs) and
mean squared-errors (MSEs) as

MB(γ∗) =
1

1000

1000

∑
i=1

(
γ∗(i) − γ

)
,

and

MSE(γ∗) =
1

1000

1000

∑
i=1

(
γ∗(i) − γ

)2
,

respectively, where γ∗(i) is the acquired estimate of γ at the jth generated sample. In addi-
tion, the average confidence length (ACL) criterion is utilized to assess the acquired interval
estimates and is computed as

ACL(1−ν)%(γ) =
1

1000

1000

∑
i=1

(
Uγ∗(i) −Lγ∗(i)

)
,

where L(·) and U (·) represent the lower and higher interval limits of the ACI (or HPD)
interval. In a similar pattern, the simulated MB, MSE and ACL of σ, R(t), and h(t) can be
easily evaluated.

Via R 4.2.2 programming, utilizing two useful packages, namely: (i) ‘maxLik’
(by Henningsen and Toomet [14]) and (ii) ‘coda’ (by Plummer et al. [20]), the proposed
estimators are calculated. By using a heat-map tool (which is a type of data visualiza-
tion tool that illustrates the magnitude of a phenomenon in two dimensions using col-
ors to represent values), the simulation results of γ, σ, R(t), and h(t) are displayed in
Figures 2–5, respectively.
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Figure 2. Heat-map for the simulation results of γ.
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Figure 3. Heat-map for the simulation results of σ.
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Figure 4. Heat-map for the simulation results of R(t).
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Figure 5. Heat-map for the simulation results of h(t).

In each heat-map, the ‘x-lab’ represents the proposed estimation procedures, while
the ‘y-lab’ represents the censoring input which denoted by ‘T − n[FP]-Scheme’. The colors
in each heat-map ranged from yellow to red. For example, in the MBs for γ in Figure 2,
when the color looks yellow, it means the MB is low, but red indicates the MB is high.
As Supplementary Materials, the numerical outcomes of γ, σ, R(t), and h(t) are reported.
For simplification; some notations are used: (i) Bayes estimates from the likelihood function
such as “BE-ML”, (ii) Bayes estimates from the product of spacing function such as “BE-PS”,
(iii) HPD interval estimates from likelihood function such as “HPD-ML”, and (iv) Bayes
estimates from the product of spacing function, such as “HPD-PS”.



Axioms 2023, 12, 690 14 of 21

4.2. Simulation Discussions

In terms of the lowest MB, MSE, and ACL values, from Figures 2–5, this subsection
reports useful observations for the behavior of the suggested point and interval estimations
of γ, σ, R(t), and h(t):

• All proposed estimates of γ, σ, R(t) and h(t) perform satisfactorily.
• As n increases, the offered estimates of γ, σ, R(t), and h(t) behave well. An identical

result is noted when n−m is narrowed down.
• As T increases, we have observed that

– The MBs, MSEs and ACLs for all suggested estimates of γ, σ, and h(t) decrease.
– The MBs and MSEs for all suggested estimates of R(t) increase while the ACLs of

the same parameter decrease.
• Comparing the suggested point/interval inferential techniques, it is clear that

– The MBs, MSEs, and ACLs for all suggested estimates of γ, σ, and h(t) decrease.
– In evaluating γ and R(t), the PS method (and BE-PS method) provides more

accurate results than the ML method.
– In evaluating σ and h(t), the ML method (and BE-ML method) provides more

accurate results than the PS method.
• Comparing the suggested censoring designs, it is clear that

– The acquired point estimates of γ and R(t) behaved well using right censoring,
while those of σ and h(t) behaved well using left censoring.

– The acquired interval estimates of γ, R(t), and h(t) behaved well based on right
censoring, while those of σ behaved well based on left censoring.

• In summary, in the presence of data created from the proposed adaptive progressively
Type-II hybrid mechanism, using the Bayes MH technique through the product of the
spacings approach to evaluate the scale and reliability parameters is recommended,
while the Bayes MH technique through the likelihood function is also recommended
to estimate the shape and hazard parameters.

5. Mechanical Data Analysis

To exhibit the adaptation of proposed approaches to a real-world phenomenon, one
real-life engineering data set consisting of thirty failures of repairable mechanical equipment
(RME) items is examined. This application demonstrated that the offered model furnishes a
better fit than other eight-lifetime models in the literature and that the suggested inferential
approaches are effective and simple to use. The RME data was originally reported by
Murthy [21] and re-analyzed by Alotaibi et al. [22].

Before calculating the offered estimators, the WE’s fit is compared against eight
competitive models, viz., namely:

• Weibull (W(γ, σ)) by Weibull [23];
• Gamma (G(γ, σ)) by Johnson et al. [24];
• Nadarajah–Haghighi (NH(γ, σ)) by Nadarajah and Haghighi [25];
• Weighted Nadarajah–Haghighi (WNH(γ, σ)) by Khan et al. [26];
• Alpha-power exponential (APE(γ, σ, θ)) by Mahdavi and Kundu [27];
• Weibull-exponential (W-Ex(γ, σ, θ)) by Oguntunde et al. [28];
• Generalized gamma (GG(γ, σ, θ)) by Stacy [29];
• Generalized beta (GB(γ, σ, θ, τ)) by McDonald and Xu [30].

For each considered model, the MLEs γ̂, σ̂, and θ̂ of γ, σ, and θ, respectively, along
with their standard-errors (SEs), based on the full RME data, are evaluated and listed
in Table 1. Comparing the WE and its competitive lifetime models is conducted based
on several criteria, namely: (i) Akaike (A); (ii) Bayesian (B); (iii) consistent Akaike (CA);
(iv) Hannan-Quinn (HQ); (v) Cramér-von Mises (CM); (vi) Anderson-Darling (AD); (vii)
estimated negative log-likelihood (ENL); and (viii) Kolmogorov-Smirnov (KS) distance
(along its p value), see Table 1. It exhibits that the WE model has the lowest values for
all given statistics except the highest p value; thus,we can decide that it is the best choice
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among all the others. It should also be noted that the two most competitive lifetime models
in relation to the proposed WE model are the G and GG models. Several plots, called
fitted PDFs, fitted RFs, and probability-probability (P-P) plots for the WE and the other
competing distributions, are provided in Figures 6 and 7. As a result, the plots shown in
Figures 6 and 7 supported the same results as presented in Table 1.

Table 1. Fitting results of WE and its competitive models from RME data.

Model Est.
γ σ θ τ

A CA B ENL KS (p Value)SE HQ CM AD

WE Est. 0.3566 1.6558 - - 83.246 86.048 83.690 39.623 0.0639 (0.9997)SE 1.1675 1.8350 - - 84.142 0.1386 0.0183

W Est. 1.4633 1.7100 - - 83.821 86.623 84.265 39.910 0.0749 (0.9960)SE 0.2029 0.2254 - - 84.717 0.2115 0.0280

G Est. 1.9750 0.7813 - - 83.259 86.062 83.704 39.630 0.0675 (0.9992)SE 0.4737 0.2132 - - 84.156 0.1443 0.0190

NH Est. 4.4288 0.0981 - - 86.308 89.110 86.752 41.154 0.1132 (0.8365)SE 6.6965 0.1699 - - 87.204 0.3531 0.0482

WNH Est. 1.4906 0.4965 - - 85.476 88.278 85.920 40.738 0.0958 (0.9457)SE 0.7222 0.3618 - - 86.372 0.2973 0.0404

APE Est. 2.1234 1.0032 - - 83.938 86.740 84.382 39.969 0.0788 (0.9923)SE 0.5874 0.2014 - - 84.834 0.1904 0.0254

WEx Est. 1.4060 32.977 0.0461 - 86.052 90.256 86.975 40.026 0.0822 (0.9873)SE 0.1949 61.054 0.0530 - 87.397 0.2406 0.0320

GG Est. 0.6736 2.0508 0.9569 - 85.273 89.477 86.196 39.637 0.0642 (0.9995)SE 0.9012 0.7512 0.4780 - 86.618 0.1412 0.0186

GB Est. 5.8820 6.0032 0.3770 8.5371 87.425 93.030 89.025 39.713 0.0711 (0.9981)SE 63.888 6.7949 3.3153 5.3673 89.218 0.2013 0.0264
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Figure 6. Fitted PDFs (left) and RFs (right) of WE and its competitive distributions from RME data.
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Figure 7. The P-P plots of WE and its competitive distributions from RME data.

Taking m = 10 and various choices of R and T, from Table 2, three artificial T2APH
samples are created, as shown in Table 3. At t = 5, all estimators of R(t) and h(t) are
calculated. Due to the fact that we do not have any prior knowledge on γ, σ, the the Bayes
estimates through both LF and PS functions, using improper gamma priors, are developed.
Following Algorithm 1, the first 10,000 of 50,000 MCMC iterations for each unknown
parameter, are ignored. For running the MCMC algorithm, the acquired MLE (or PSE)
values of γ, σ are considered initial guesses. Then, for each Si for i = 1, 2, 3, the Bayesian
and frequentist estimates (with their SEs) as well as 95% ACI/HPD (from LF and PS
approaches) estimates (with their widths) of γ, σ, R(t), and h(t) are calculated, as shown
in Table 4. It points out that the Bayes (or HPD interval) estimates of γ, σ, R(t), or h(t)
performed superiorly compared to the conventional approaches.

Table 2. Failure times of repairable mechanical equipment items.

0.11 0.30 0.40 0.45 0.59 0.63 0.70 0.71 0.74 0.77
0.94 1.06 1.17 1.23 1.23 1.24 1.43 1.46 1.49 1.74
1.82 1.86 1.97 2.23 2.37 2.46 2.63 3.46 4.36 4.73

Table 3. Three artificial T2APH samples from RME data.

Si R T(m) R∗m Data

S1 (54, 06) 0.25(1) 15 0.11, 0.30, 0.40, 0.59, 0.63, 0.70, 0.71, 0.77, 0.94, 1.06
S2 (03, 54, 03) 0.62(5) 10 0.11, 0.30, 0.40, 0.45, 0.59, 0.63, 0.70, 0.77, 0.94, 1.23
S3 (06, 54) 0.85(9) 5 0.11, 0.30, 0.40, 0.45, 0.59, 0.63, 0.70, 0.71, 0.74, 0.94

To demonstrate the existence and uniqueness of ML (or PS) estimates, developed from
the RME data, Figure 8 displays the profile plots from log-LF and log-PS of γ and σ. It
demonstrates that the acquired maximum likelihood and product of spacing estimates of γ
and σ exist and are unique.
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Table 4. Acquired estimates of γ, σ, R(t) and h(t) from RME data.

Sample Par.
MLE BE-ML ACI-ML HPD-ML
PSE BE-PS ACI-PS HPD-PS

Est. SE Est. SE Lower Upper Width Lower Upper Width

S1

γ
1.2840 1.3534 1.2839 0.0647 0.0000 3.9367 3.9367 1.2799 1.2878 0.0079
1.1859 1.0600 1.1859 0.0020 0.0000 3.2636 3.2636 1.1855 1.1863 0.0008

σ
0.0137 2.1096 0.0133 0.0997 0.0000 4.1484 4.1484 0.0095 0.0174 0.0079
0.0256 1.7973 0.0256 0.0020 0.0000 3.5483 3.5483 0.0252 0.0260 0.0008

R(0.5) 0.8626 0.0440 0.8627 0.0041 0.7764 0.9488 0.1724 0.8619 0.8635 0.0016
0.8779 0.0422 0.8779 0.0004 0.7953 0.9606 0.1652 0.8779 0.8780 0.0002

h(0.5) 0.5076 0.1639 0.5074 0.0153 0.1863 0.8288 0.6426 0.5044 0.5103 0.0060
0.4506 0.1560 0.4506 0.0014 0.1449 0.7564 0.6115 0.4503 0.4509 0.0006

S2

γ
0.6827 0.2495 0.6826 0.0199 0.1937 1.1717 0.9779 0.6786 0.6864 0.0078
0.6822 0.6062 0.6822 0.0020 0.0000 1.8704 1.8704 0.6818 0.6826 0.0008

σ
6.7542 8.8738 6.7541 0.0201 0.0000 24.147 24.147 6.7501 6.7580 0.0079
2.5485 8.1290 2.5485 0.0020 0.0000 18.481 18.481 2.5481 2.5489 0.0008

R(0.5) 0.8056 0.0686 0.8056 0.0073 0.6712 0.9399 0.2687 0.8042 0.8070 0.0029
0.8730 0.0503 0.8730 0.0006 0.7744 0.9716 0.1973 0.8729 0.8731 0.0002

h(0.5) 0.6226 0.1943 0.6225 0.0222 0.2418 1.0035 0.7617 0.6182 0.6269 0.0087
0.4493 0.1537 0.4493 0.0020 0.1481 0.7504 0.6023 0.4489 0.4497 0.0008

S3

γ
1.2658 0.4403 1.2658 0.0020 0.4028 2.1288 1.7260 1.2654 1.2662 0.0008
1.1785 1.0408 1.1785 0.0020 0.0000 3.2185 3.2185 1.1781 1.1789 0.0008

σ
0.0009 0.5677 0.0008 0.0021 0.0000 1.1135 1.1135 0.0004 0.0012 0.0008
0.0018 0.9168 0.0017 0.0020 0.0000 1.7987 1.7987 0.0014 0.0021 0.0008

R(0.5) 0.8671 0.0425 0.8671 0.0004 0.7837 0.9504 0.1667 0.8670 0.8671 0.0002
0.8815 0.0877 0.8815 0.0004 0.7096 1.0533 0.3438 0.8814 0.8815 0.0001

h(0.5) 0.4909 0.1581 0.4909 0.0015 0.1810 0.8008 0.6198 0.4906 0.4912 0.0006
0.4376 0.3242 0.4376 0.0014 0.0000 1.0730 1.0730 0.4373 0.4379 0.0006

In Table 5, several properties of γ, σ, R(t), and h(t) based on the remaining 40,000
MCMC iterations namely: mean, mode, three quartiles Qi, i = 1, 2, 3, standard deviation
(SD) and skewness (Skew.) are listed.
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Figure 8. The profile log-LF (left) and profile log-PS (right) of γ and σ from RME data.
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Table 5. Properties of MCMC iterations of γ, σ, R(t) and h(t) from RME data.

Sample Par. Mean Mode Q1 Q2 Q3 SD Skew.

Bayes LF-based

S1

γ 1.2839 1.2825 1.2826 1.2839 1.2853 0.0020 −0.0066
σ 0.0133 0.0072 0.0120 0.0133 0.0147 0.0020 0.0003

R(0.5) 0.8627 0.8628 0.8624 0.8627 0.8629 0.0004 0.0150
h(0.5) 0.5074 0.5053 0.5063 0.5074 0.5084 0.0015 −0.0145

S2

γ 0.6826 0.6785 0.6813 0.6826 0.6840 0.0020 0.0159
σ 6.7541 6.7498 6.7528 6.7541 6.7555 0.0020 0.0219

R(0.5) 0.8056 0.8058 0.8051 0.8056 0.8061 0.0007 −0.0152
h(0.5) 0.6225 0.6178 0.6210 0.6225 0.6240 0.0022 0.0153

S3

γ 1.2658 1.2658 1.2656 1.2658 1.2659 0.0002 −0.0027
σ 0.0008 0.0002 0.0007 0.0008 0.0010 0.0002 0.0153

R(0.5) 0.8671 0.8671 0.8670 0.8671 0.8671 0.0000 0.0038
h(0.5) 0.4909 0.4907 0.4908 0.4909 0.4910 0.0001 −0.0038

Bayes PS-based

S1

γ 1.1859 1.1859 1.1858 1.1859 1.1861 0.0002 0.0138
σ 0.0256 0.0254 0.0255 0.0256 0.0258 0.0002 0.0180

R(0.5) 0.8779 0.8779 0.8779 0.8779 0.8780 0.0000 −0.0076
h(0.5) 0.4506 0.4505 0.4505 0.4506 0.4507 0.0001 0.0076

S2

γ 0.6822 0.6821 0.6821 0.6822 0.6823 0.0002 0.0143
σ 2.5485 2.5485 2.5484 2.5485 2.5487 0.0002 0.0182

R(0.5) 0.8730 0.8730 0.8730 0.8730 0.8730 0.0001 −0.0143
h(0.5) 0.4493 0.4492 0.4491 0.4493 0.4494 0.0002 0.0144

S3

γ 1.1785 1.1782 1.1784 1.1785 1.1787 0.0002 0.0100
σ 0.0017 0.0013 0.0016 0.0017 0.0019 0.0002 0.0210

R(0.5) 0.8815 0.8815 0.8814 0.8815 0.8815 0.0000 −0.0075
h(0.5) 0.4376 0.4372 0.4375 0.4376 0.4377 0.0001 0.0076

To highlight the performance for 40,000 MCMC draws (from LF and PS) of γ, σ, R(t),
and h(t), both trace and density (with Gaussian line) plots from S1 (as an example) are
displayed in Figure 9. In both trace and density plots, the Bayes estimate is expressed by a
soled (—) horizontal line, whereas the 95% HPD interval limits are mentioned by dashed
(- - -) horizontal lines. Other density and trace diagrams for samples Si for i = 2, 3 are
also plotted and provided in the supplementary file for brevity. Figure 9 indicates that
the proposed Bayes-MH technique, in both LF-based and PS-based approaches, converges
adequately. It also shows that, for all given samples, the simulated marginal posterior
density estimates of γ, σ, R(t), or h(t) behave in a symmetric manner.

As a result, using LF and PS methodologies in the presence of the T2APH mechanism,
the numerical outcomes of the offered estimates of γ, σ, R(t), and h(t) using the RME data
set furnish a significant examination of the WE lifespan model.

(a) Bayes LF-based

(b) Bayes PS-based

Figure 9. Density (left) and Trace (right) diagrams of γ, σ, R(t) and h(t) based on S1 from RME data.
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6. Conclusions

This paper investigates the maximum likelihood and product of spacing estimators of
unknown weighted-exponential parameters of life using an adaptive progressive Type-II
hybrid plan. Under the premise of independent gamma priors, using the squared-error
loss, the Bayes estimators according to both the likelihood and product of spacing functions
have been derived. Because the Bayes estimators have not been offered in closed formulas,
the MH process has been suggested. Two types of intervals for the unknown quantities,
through approximate confidence as well as the highest posterior density methods, have also
been calculated. To compare the efficiency of the acquired estimates, different Monte Carlo
simulations have been provided. A real-world data set of repairable mechanical equipment
items has been analyzed to illustrate the adaptability of the offered model in a real-world
scenario and to confirm how our estimates may be used in practice. We believe that data
analysts and reliability practitioners will find the findings and approach covered in this
paper useful. Finally, the methodologies offered in this article may be extended in future
research to include competing risks, accelerated life tests, other censoring strategies, etc.
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Appendix A

Differentiating log-LF (8) with respect to γ and σ, the Fisher’s members Iij, i, j =
1, 2 are

`11 = − m

(σ + 1)2 +
n
σ2 + R∗m

ξmξ ′′σm − ξ
′2
σm

ξ2
m

+
d

∑
i=1

Ri
ξiξ
′′

σi − ξ ′2σi
ξ2

i
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m
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x2
i e−σγyi

(1− e−σγyi )2 ,

`22 = − m
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ξiξ
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and

`12 = R∗m
ξmξ ′′σγm − ξ ′σmξ ′γm
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ξiξ
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where
ξm = ξ(ym; σ, γ), ξi = ξ(yi; σ, γ),
ξ ′σm = ξ ′σ(ym; σ, γ), ξ ′σi = ξ ′σ(yi; σ, γ), ξ ′γm = ξ ′γ(ym; σ, γ), ξ ′γi = ξ ′γ(yi; σ, γ),

ξ ′′σm = ξ ′′σ(ym; σ, γ) = −(γym)
2e−σγym , ξ ′′σi = ξ ′′σ(yi; σ, γ) = −(γyi)

2e−σγyi ,
ξ ′′γm = ξ ′′γ(ym; σ, γ) = −(σym)

2e−σγym , ξ ′′γi = ξ ′′γ(yi; σ, γ) = −(σyi)
2e−σγyi ,

ξ ′′σγm = ξ ′′σγ(ym; σ, γ) = ym(1− σγym)e−σγym

and ξ ′′σγi = ξ ′′σγ(yi; σ, γ) = yi(1− σγyi)e−σγyi .

Appendix B

Differentiating log-PS (12) with respect to γ and σ, the Fisher’s members
Iij, i, j = 1, 2 are

s11 =
(n + 1)

σ2 + R∗m
ξmξ ′′σm − ξ ′2σm

ξ2
m

+
d

∑
i=1

Ri
ξiξ
′′

σi − ξ ′2σi
ξ2

i

+
m+1

∑
i=1

(ζσi−1 − ζσi)
(
ζ ′′σi−1 − ζ ′′σi

)
−
(
ζ ′σi−1 − ζ ′σi

)2

(ζσi−1 − ζσi)
2 ,

s22 = R∗m
ξmξ ′′γm − ξ ′2γm

ξ2
m

+
d

∑
i=1

Ri
ξiξ
′′

γi − ξ ′2γi

ξ2
i

+
m+1

∑
i=1

(
ζγi−1 − ζγi

)(
ζ ′′γi−1 − ζ ′′γi

)
−
(

ζ ′γi−1 − ζ ′γi

)2

(
ζγi−1 − ζγi

)2 ,

and

s12 = R∗m
ξmξ ′′σγm − ξ ′σmξ ′γm

ξ2
m

+
d

∑
i=1

Ri
ξiξ
′′

σγi − ξ ′σiξ
′
γi

ξ2
i

+
m+1

∑
i=1

(ζσi−1 − ζσi)
(

ζ ′′σγi−1 − ζ ′′σγi

)
−
(
ζ ′σi−1 − ζ ′σi

)(
ζ ′γi−1 − ζ ′γi

)
(ζσi−1 − ζσi)

2 ,

where
ζ ′σi = ζ ′σ(yi; σ, γ), ζ ′γi = ζ ′γ(yi; σ, γ), ζ ′′σi = ζ ′′σ(yi; σ, γ) = e−γyi ξ ′′σ(yi; σ, γ),

ζ ′′γ = ζ ′′γ(yi; σ, γ) = e−γyi
[
ξ ′′γ(yi; σ, γ)− 2yiξ

′
γ(yi; σ, γ) + y2

i ξ(yi; σ, γ)
]

and
ζ ′′σγi = ζ ′′σγ(yi; σ, γ) = e−γyi

[
ξ ′′σγ(yi; σ, γ)− yiξ

′
σ(yi; σ, γ)

]
.
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