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Abstract: Federated learning (FL) is a distributed machine learning framework that can effectively
help multiple players to use data to train federated models while complying with their privacy, data
security, and government regulations. Due to federated model training, an accurate model should
be trained, and all federated players should actively participate. Therefore, it is crucial to design
an incentive mechanism; however, there is a conflict between fairness and Pareto efficiency in the
incentive mechanism. In this paper, we propose an incentive mechanism via the combination of the
Shapley value and Pareto efficiency optimization, in which a third party is introduced to supervise
the federated payoff allocation. If the payoff can reach Pareto optimality, the federated payoff is
allocated by the Shapley value method; otherwise, the relevant federated players are punished.
Numerical and simulation experiments show that the mechanism can achieve fair payoff allocation
and Pareto optimality payoff allocation. The Nash equilibrium of this mechanism is formed when
Pareto optimality payoff allocation is achieved.

Keywords: federated learning; Shapley value; Pareto optimality; Nash equilibrium

MSC: 91A12; 91A06; 58E17

1. Introduction

As artificial intelligence (AI) continues to develop at a rapid pace, massive and diverse
data are rapidly being generated. Data from all walks of life have high utility value and
privacy information. In particular, there are data islands and data privacy problems. To
solve the problems of data islands and data privacy, McMahan et al. [1–3] proposed a
distributed machine learning method called federated learning (FL) in 2016. FL is used to
train the model at each node, and their own sensitive data are not leaked, which not only
makes full use of the data to train models but also protects sensitive data privacy [4].

However, in the FL process, to make each data owner willing to contribute their data to
train the model and improve the accuracy of the model, designing an incentive mechanism
in the FL system is a valuable research topic. If there is a phenomenon of free riding among
federated players, such as the lack of real-time training data, the accuracy of federated
model training will be seriously affected. Therefore, establishing an attractive incentive
mechanism is valuable research work in the FL system.

Nowadays, the FL incentive mechanism has attracted much attention from aca-
demics [5,6]. They have conducted a lot of research in [7–9], and although they considered

Axioms 2023, 12, 636. https://doi.org/10.3390/axioms12070636 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12070636
https://doi.org/10.3390/axioms12070636
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0001-5335-963X
https://orcid.org/0000-0001-8724-6449
https://orcid.org/0000-0001-8733-4596
https://orcid.org/0000-0001-6590-5757
https://orcid.org/0000-0003-1691-3384
https://orcid.org/0000-0003-0403-8834
https://orcid.org/0000-0003-1289-9343
https://doi.org/10.3390/axioms12070636
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12070636?type=check_update&version=3


Axioms 2023, 12, 636 2 of 17

fairness [10,11], they did not consider the Pareto optimality efficiency. We aim to establish
an incentive model in a federated system to achieve fair payoff allocation and Pareto opti-
mality. For this purpose, we propose a method via the Shapley value and Pareto optimality.
Since the Shapley value is consistent with the principle of budget balance, however, accord-
ing to Holmstrom’s team production theory [12], budget balance and Pareto optimality
cannot be reached simultaneously. Therefore, although the Shapley value method can
satisfy fair payoff allocation after the completion of FL, it cannot achieve the optimality
incentive input of each federated player before FL, i.e., it cannot achieve Pareto efficiency
optimization before FL. Therefore, we design this mechanism for the payoff allocation of
FL to make the payoff allocation of FL fair and efficient. We introduce supervisor and set
penalty conditions. If the federated payoffs reach Pareto efficiency optimality, the payoffs
are allocated by Shapley’s value formula; otherwise, the relevant federated players are
penalized. Finally, numerical experiments are performed to confirm our theoretical analysis.
The main contributions of the paper can be summarized as follows:

(1) Discussing the conditions satisfied by the fines paid to the regulator by the limited-
liability federated agent if Pareto optimality is achieved;

(2) Demonstrating that the federated players’ inputs constitute the mechanism’s Nash
equilibrium when Pareto optimality is satisfied;

(3) Numerical examples are performed to verify the rationality of designing the mecha-
nism for the both equal and unequal statuses of the federated players.

The remaining work is organized as follows: The related work is introduced in
Section 2. The preliminaries are introduced in Section 3. The FL incentive mechanism is
established in Section 4. The rationality of this incentive mechanism is verified by numerical
and simulation experiments in Section 5. The conclusion and future work are drawn in
Section 6. The discussion is drawn in Section 7. The proof of the theorem is given in
Appendix A.

2. Related Work

The main theoretical approaches currently used for the FL incentive mechanism in-
clude the Stackelberg game [13], contract theory [14], auction mechanism [15] and Shapley
value [16]. In this paper, we review the research works related to the FL incentive mecha-
nism design by the Shapley value. In [17], Song et al. proposed a new Shapley value based
on the contribution metric to evaluate the contribution of each player who owns the data for
the training of the FL model. In [18], the authors proposed a new expression for the Shapley
value for FL, which can be computed without consuming additional communication costs,
can play a role in the value of the FL data, and can have an incentive effect on the players.
Wang et al. [19] used the Shapley value to fairly calculate each federated player’s contri-
bution. To properly incentivize data owners to contribute their data to train the federated
model, in [20], the authors proposed a blockchain-based peer-to-peer payment system
for FL to achieve a feasible fair payoff allocation mechanism based on the Shapley value.
In the literature [21], a fair incentive mechanism based on the Shapley value was proposed.
This can motivate more players to be willing to share their data and receive a certain fee.
In [22], the authors proposed the bootstrap truncated gradient Shapley approach for the fair
valuation of the FL players’ contributions. This approach mainly reconstructs the FL model
from gradient updates for Shapley value calculation. Nagalapattiet et al. [23] proposed a
cooperative game, where players share gradients and compute players’ Shapley values
to filter those with relevant data. To address the fact that there are still other inequities
in calculating the FL Shapley value, Fan et al. [24] proposed a new complete federated
Shapley value mechanism to improve the fairness of the federated Shapley value. In addi-
tion, to address the fact that the calculation of the Shapley value in FL requires a certain
communication cost, in [25], the authors proposed a Shapley value based on a contribution
evaluation metric called the vertical federated Shapley value (VerFedSV) and verified the
fairness of VerFedSV through experiments. In [26], the authors considered several factors
affecting FL and proposed an FL incentive mechanism according to the enhanced Shapley
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value method, and numerical experiments verified that the payoffs allocated among all
participants can be fairer when using the enhanced Shapley value method.

3. Preliminaries
3.1. Federated Learning Framework

Federated learning (FL) is a distributed machine learning technique or machine learn-
ing framework. The goal of FL is to technically break down data silos and enable AI
collaboration, where participants’ data do not leave the local area during the model training
process, to achieve common modeling based on ensuring data privacy, and security and
legal compliance [1].

Let N = {1, 2, . . . , n} be defined as n data players and participate in the training
model M; their local dataset is D = {D1, D2, . . . , Dn}. MFED denotes the shared model
that FL requires players to train together, and MSUM denotes the traditional machine
learning model, which puts all data together to train the model. VFED and VSUM are the
model accuracy of MFED and MSUM, respectively, if there exists a positive number δ ≥ 0
which satisfies

|VFED −VSUM| < δ, (1)

we say that the FL algorithm has δ-accuracy loss [4].
The framework diagram of FL is shown in Figure 1, and the training steps in the FL

model are as follows:
Step 1: Local federated players download the initialized global model from the aggre-

gation server;
Step 2: Each federated player trains the local model with the initializing global model;
Step 3: After training the local model, the updated model and parameters are uploaded

to the aggregation server;
Step 4: The aggregation server aggregates the models and parameters uploaded by

each federated player for the next update round.
The commonly used aggregation method is the federated averaging (FedAvg) algo-

rithm [27], Steps 2 and 3 are repeated until the local model converges.

……
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3.2. Cooperative Games

Let G(N, v) be a defined cooperative game, satisfying the following conditions [28]:

v(S1) + v(S2) ≤ v(S1 ∪ S2), (2)

S1 ∩ S2 = ∅, v(∅) = 0. (3)

where N is a finite set of players, S1, S2 ∈ 2N , v : 2N → R is a game-characteristic function,
and 2N is the set of all the subsets of N. Let v(S) be the players’ payoff function, v(N)
indicate the coalition payoff, and ϕi(v) be the payoff of player i in v(N), which satisfy
two constraints:

v(N) = ∑ ϕi(v) and v(i) ≤ ϕi(v), ∀i ∈ N, i = 1, 2, . . . , n, (4)

v(S) ≤ ∑
i∈S

ϕi(v), ∀S ⊆ N, S 6= ∅. (5)

Formulas (4) and (5) are called individual rationality and coalition rationality, respectively.

3.3. Shapley Value

The Shapley value was proposed in the cooperative game theory [28], which can
effectively solve the problem of cooperative payoff allocation and is defined as

ϕi(v) = ∑
i∈S,S⊆N

w(|S|)
[
v(S)− v(S \ i)

]
, (6)

w(|S|) = (n− |S|)!(|S| − 1)!
n!

. (7)

where S ⊆ N, i ∈ S, i = 1, 2, . . . , n, |S| is the number of players in subset S, w(|S|) is the
weight coefficient, v(S) is the profit of subset |S| and satisfies the conditions (2) and (3),
the expression v(S) − v(S \ i) assesses the marginal contribution of i to the coalition S,
and v(S \ i) indicates the payoff of the other players in the subset |S| other than i.

3.4. Pareto Optimality

Let π = (π1, π2, . . . , πn) : x → Rn be the vector of the players’ payoff function, and x
be a feasible action space for two actions x1 and x2 ∈ x [29]:

(1) If ∀i ∈ [n] : πi(x1) ≥ πi(x2), then x1 weakly dominates x2 and is marked by x1 � x2;
(2) If x1 � x2 and ∃i ∈ [n] : πi(x1) > πi(x2), then x1 dominates x2 and is marked by

x1 � x2.

If no other action in x dominates it and the collection of the players’ action vectors of all
Pareto optimality actions is the Pareto front, then an action is called the Pareto optimal-
ity [29]. In other words, an allocation is considered to be Pareto optimality if no alternative
allocation could make someone better off without making someone else worse off [30].

3.5. Nash Equilibrium

We consider a game with n players, and the set of players is denoted as N = {1, 2, . . . , n}.
The player i’s payoff function is πi(x), where x = [x1, x2, . . . , xn]

T ∈ Rn is the vector of the
player’s actions, and xi ∈ R is the action of player i. If player j is not a neighbor of player i,
then player i has no direct access to player j’s action.

Nash equilibrium is an action profile on which no player can gain more payoff by
unilaterally changing its action, i.e., an action profile x∗ =

(
x∗i , x∗−i

)
is the Nash equilib-

rium [31,32] if
πi
(
x∗i , x∗−i

)
≥ πi

(
xi, x∗−i

)
, ∀i ∈ N

where x−i = [x1, x2, . . . , xi−1, xi+1, . . . , xn]
T . Note that πi(x) and πx might alternatively be

written as πi(xi, x−i) and (xi, x−i), respectively, in this paper.
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4. Federated Learning Incentive Mechanism
4.1. The FL Incentive Model

We make the following assumptions before setting up the FL incentive model:

(1) All players can pay for FL, and in the payoff distribution process, they adopt the best
payoff distribution scheme.

(2) All players are satisfied with the final distribution of payoffs, as all players were
willing to join the coalition.

(3) All players are entirely trustworthy and have no cheating in the FL.
(4) To ensure the smooth implementation of the strategy, the FL should adopt a multi-

party agreement to accept the payoff distribution plan.

According to the idea of FL, we establish the FL incentive model in Figure 2, and
the main steps of the FL incentive mechanism are as follows:

Step 1: Assume that there are n players for federated model training, and each player
has its local dataset Di.

Step 2: Each player downloads the initialized model from the aggregation server, trains
the model using its local dataset Di, and uploads the trained model mi to the federated
aggregation server.

Step 3: The federated aggregation server collects the model parameters mi uploaded
by all players and uses the federated aggregation algorithm (FedAvg) to aggregate these
parameters to obtain a new global model.

Step 4: The contribution of each player to the global model is calculated using Shapley
values or other methods. These contribution values are used to determine the distribution
of the player’s payoffs.

Step 5: The supervising organization determines whether each player’s payoff is
Pareto optimal, and if it is, the federated payoff is distributed using the Shapley value
formula; otherwise, the player receives a penalty from the supervising organization.

Step 6: According to the gain allocation formula, rewards are issued to each player
who achieves Pareto optimality.

……
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Figure 2. Federated learning incentive model.

4.2. The Conflict between Fairness and Pareto Optimality

All players are allowed to actively contribute to the FL to guarantee that each player
is happy with the federated payoff allocation method and to make the allocation process
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motivating. The Shapley value considers each player’s contribution to be 1/n and ignores
the conflict between the fairness of Shapley’s value and Pareto optimality.

Assume there are n players, and the coalition input of player i is xi and satisfies
xi ∈ (0, ∞), i = 1, 2, . . . , n. The coalition inputs of all players form an n-dimensional vector
x = (x1, x2, . . . , xn). The coalition cost input of player i is ci(xi) and is a differentiable

convex function that is strictly monotonically increasing, which satisfies ∂ci
xi

> 0, ∂2ci
∂x2

i
> 0,

and ci(0) = 0. The federated payoff v(x1, x2, . . . , xn) determined by the federated input
of n players is a strictly monotonically increasing differentiable concave function, which

satisfies ∂vi
xi

> 0, ∂2vi
∂x2

i
< 0, and v(0, 0, . . . , 0) = 0. The federated payoffs of n players are

distributed according to Formulas (6) and (7).
Although the Shapley value method is fair for the federated payoff allocation, the phe-

nomenon of the free-riding of federated players cannot be avoided. That is, the Pareto opti-
mization before payoff allocation is not satisfied. Therefore, we obtain the following theorem:

Theorem 1. The Shapley value method satisfies the fairness payoff allocation after FL but not
the optimality incentive of federated players’ inputs before FL, i.e., it does not achieve the Pareto
efficiency optimization before FL.

Proof. The proof is given in Appendix A.1 of the Appendix A.

4.3. FL Incentive Mechanism via Introducing Supervisory Organization
4.3.1. The Establishment of Supervisory Organization Mechanism

In [33], Alchian and Demsetz argued that introducing supervisory organizations
would address free riding in the FL process. To encourage supervisor initiative, feder-
ated members must pay a certain fee to the supervisor. In [12], Holmstrom pointed out
that the phenomenon of free riding can be addressed by using an incentive mechanism.
The supervisor’s main task is to break the equilibrium and create incentives.

If the supervisor knows that the federated payoff is greater than or equal to the Pareto
optimality payoff, and the supervisor distributes this payoff to the players according to
Formulas (6) and (7), then if the federated payoff is less than the Pareto optimality value,
the federated player must pay a fee ki as in the following:

ri(x) =
{

ϕi(v), i f v ≥ v(x∗)
ϕi(v)− ki, i f v < v(x∗)

(8)

where x∗ = (x∗1 , x∗2 , . . . , x∗n) is the federated input vector satisfying Formula (A4).

4.3.2. Penalty Conditions

Theorem 2. When the mechanism of federated input x∗ = (x∗1 , x∗2 , . . . , x∗n) that satisfies Pareto
optimality is a Nash equilibrium, the penalty ki must satisfy the two conditions as follows:

(1) If the independent input xi of the player i is less than the Pareto optimality federated input x∗i ,
i.e., e.g., xi < x∗i , and v(x) is monotonically increasing, i.e., v(xi, x∗n−i) < v(x∗i , x∗n−i), then
the player i is fined, and the payoff remaining after the fine is ri[v(xi, x∗n−i)] = ϕi(v)− ki,
and finally the profit of the player i is

πi[v(xi, x∗n−i)] = ϕi(v)− ki − ci(xi), i = 1, 2, . . . , n. (9)

(2) If the independent input xi of the player i is equal to the Pareto optimality federated input x∗i ,
i.e.,xi = x∗i , then v = v(x∗), and the payoff remaining after the penalty is ri[v(x∗i , x∗n−i)] =
ϕi(v∗), and finally the profit of player i is

πi[v(x∗i , x∗n−i)] = ϕi(v∗)− ci(x∗i ), i = 1, 2, . . . , n. (10)
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where x∗n−i = (x∗1 , . . . x∗i−1, x∗i+1, . . . , x∗n) represents the Pareto optimality federated input
vector composed of n− i players.

Proof. The proof is given in Appendix A.2 of the Appendix A.

5. Numerical Examples and Simulation Experiments

In this section, we will use two examples to verify the rationality of the above discus-
sion. In example 1, we consider that the status of the federated players is equal, and in
example 2, we consider that the status of the federated players is unequal.

5.1. Numerical Example 1: Equal Status of Federated Players

Assuming there are three players in the FL system, and the federated payoff function
is v(x1, x2, x3) = x1 + x2 + x3 + x1x2 + x1x3 + x2x3, and the return function v(x1, x2, x3) is
a strictly monotonically increasing concave function, the cost functions of the three players
are c1(x1) =

3
2 x2

1, c2(x2) =
3
2 x2

2, and c3(x3) =
3
2 x2

3. It is easy to know that the cost function
ci(xi) is a strictly increasing convex function. When the federated input is x∗ = (x∗1 , x∗2 , x∗3)
, the federated profit

max R = v(x1, x2, x3)−
3

∑
i=1

ci(xi)

maximizes and satisfies Pareto optimality, and its first-order condition is
1 + x∗2 + x∗3 − 3x∗1 = 0
1 + x∗1 + x∗3 − 3x∗2 = 0
1 + x∗1 + x∗2 − 3x∗3 = 0

We determine that the federated inputs satisfying the Pareto optimality conditions
are x∗1 = 1, x∗2 = 1, and x∗3 = 1, the federated profit is v(x∗) = 6, and maximum profit is
max R∗ = 1.5. Because of the equal status of the three players, according to the anonymity
of Formulas (6) and (7), the effectiveness of Formulas (6) and (7) can be obtained as

ϕ1(v(x)) = ϕ2(v(x)) = ϕ3(v(x))

ϕ1(v(x)) + ϕ2(v(x)) + ϕ3(v(x)) = v(x)

ϕ1(v(x)) = ϕ2(v(x)) = ϕ3(v(x)) =
1
3

v(x).

Therefore, the profit functions of the three players are

π1(
1
3

v, x1) =
1
3

v(x)− 3
2

x2
1

π2(
1
3

v, x2) =
1
3

v(x)− 3
2

x2
2

π3(
1
3

v, x3) =
1
3

v(x)− 3
2

x2
3.

The Nash equilibrium requires other players to decide their investment in the FL,
and each player has the right to decide their investment to maximize their profits. Therefore,
the first-order condition that satisfies the Nash equilibrium is

1 + x2 + x3 − 9x1 = 0
1 + x1 + x3 − 9x2 = 0
1 + x1 + x2 − 9x3 = 0

We determine that the federated input satisfying the Nash equilibrium conditions are
x̃1 = 0.14, x̃2 = 0.14, and x̃3 = 0.14, the federated payoff is v(x̃) = 0.49 and the maximum
profit is max R̃ = 0.4.



Axioms 2023, 12, 636 8 of 17

By comparing the Pareto optimality solution and Nash equilibrium solution in Table 1,
we know that using the Shapley value method can achieve fairness post-FL; the optimality
incentive is not reached before FL. Under the Nash equilibrium, the input of each player is
lower than the Pareto optimality level, and the federated profit cannot reach the maximum.

Table 1. Example 1: Federated input and profit comparison.

Input and Profit Comparison Input x1 Input x2 Input x3 Federated Profit Maximum Profit

Pareto optimality 1 1 1 6 1.5
Nash equilibrium 0.14 0.14 0.14 0.49 0.4

Next, we introduce the supervisory authority. If the supervisory authority knows that
the federated payoff is greater than or equal to Pareto optimality payoff 6, the payoff is
allocated to the federated players by Formulas (6) and (7). If it knows that the federated
payoff is lower than Pareto optimality payoff 6, the payoff of the federated players is 0.
The specific expression is as follows:

ϕi(v(x)) =
{ 1

3 v(x), i f v(x) ≥ 6,
0, i f v(x) < 6.

Here, we prove that the Nash equilibrium constituting the supervision mechanism
satisfies the Pareto optimality condition x∗ = (x∗1 , x∗2 , x∗3) = (1, 1, 1). If the Pareto optimality
values of the players 2 and 3 are x∗1 = 1 and x∗2 = 1, respectively, the federated payoff is
v(x) = 3 + 3x3. If the input of player 3 is x3 < 1, there is v(x) < 6, at this time,

ϕ3(v(x)) = 0,

π3(0, x3) = 0− 3
2

x2
3 < 0,

so rational player 3 will not input x3 < 1. If the federated input of player 3 is x3 > 1, then
v(x) > 6 and

ϕ3(v(x)) =
1
3

v(x) =
4
3
+

2
3

x3,

π3(x3) =
4
3
+

2
3

x3 −
3
2

x2
3.

when x3 ≥ 1, then ∂π3(x3)
∂x3

= 2
3 − 3x3 < 0, obviously, π3(ϕ3, x3) is a monotonic decreasing

function of x3 on interval [1, ∞), and the profit of player 3 reaches the maximum at x3 = 1.
Therefore, the Nash equilibrium constituting the supervision mechanism satisfies the Pareto
optimality condition x∗ = (x∗1 , x∗2 , x∗3) = (1, 1, 1).

Next, we consider the minimum value of penalty mechanism ki = ϕi(x)− πi(x∗). If the
supervisory authority knows that the federated payoff is greater than or equal to Pareto
optimality payoff 6, the payoff is allocated to the federated players by Formulas (6) and (7).
If it knows that the federated payoff is lower than Pareto optimality payoff 6, the payoff of
the federated players is 0.5. The specific expression is as follows:

ϕi(v(x)) =
{ 1

3 v(x), i f v(x) ≥ 6,
0.5, i f v(x) < 6.

Here, we prove that the Nash equilibrium constituting the supervision mechanism
satisfies the Pareto optimality condition x∗ = (x∗1 , x∗2 , x∗3) = (1, 1, 1). If the Pareto optimality
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values of players 2 and 3 are x∗1 = 1 and x∗2 = 1, respectively, the federated payoff is
v(x) = 3 + 3x3. If the input of player 3 is x3 < 1, there is v(x) < 6. At this time,

ϕ3(v(x)) = 0.5,

π3(0, x3) = 0.5− 3
2

x2
3 ≤ 0.5,

so rational player 3 will not input x3 < 1. If the federated input of player 3 is x3 ≥ 1, then
v(x) ≥ 6 and

ϕ3(v(x)) =
1
3

v(x) =
4
3
+

2
3

x3,

π3(x3) =
4
3
+

2
3

x3 −
3
2

x2
3.

In the last part, we proved that π3(ϕ3, x3) is a monotonic decreasing function of x3 on
interval [1, ∞), and the profit of player 3 reaches the maximum at x3 = 1.

According to the above, when x∗1 = 1, x∗2 = 1, and the input of player 3 is x∗3 = 1, it just
reaches the Pareto optimality value. At this time, π3(x∗3) = 0.5. Therefore, the condition
to reach the Nash equilibrium of the mechanism is that the Pareto optimality input is
x∗ = (x∗1 , x∗2 , x∗3) = (1, 1, 1).

5.2. Numerical Example 2: Unequal Status of Federated Players

Assuming that there are three federated players that form a coalition, and the federated
payoff function is

v(x1, x2, x3) = 2x1 + 4x2 + 6x3 + x1x2.

The payoff function v(x1, x2, x3) is a strictly increasing linear function, and the cost
functions c(x1) = 1

2 x2
1, c(x2) = x2

2 and c(x3) = 1
4 x2

3 of these three players are strictly
monotonically increasing convex functions. When the federated input x∗ = (x∗1 , x∗2 , x∗3) ,
the federated profit

max R = v(x1, x2, x3)−
3

∑
i=1

ci(xi) = 2x1 + 4x2 + 6x3 + x1x2 −
1
2

x2
1 − x2

2 −
1
4

x2
3

maximizes and satisfies Pareto optimality, its first-order condition is
2− x∗1 + x∗2 = 0
4 + x∗1 − 2x∗2 = 0
6− 1

2 x∗3 = 0.

we determine that the federated inputs satisfying the Pareto optimality conditions are
x∗1 = 8, x∗2 = 6, and x∗3 = 12, the federated payoff is v(x∗) = 160, and the maximum
profit is max R∗ = 56. According to Formulas (6) and (7), because v(0) = 0, v(x1) = 2x1,
v(x2) = 4x2, v(x3) = 6x3, v(x1, x2) = x1x2, v(x1, x3) = v(x2, x3) = 0, and v(x1, x2, x3) =
2x1 + 4x2 + 6x3 + x1x2, then

ϕ1(v(x)) =
4
3

x1 +
2
3

x2 + x3 +
1
2

x1x2

ϕ2(v(x)) =
1
3

x1 +
8
3

x2 + x3 +
1
2

x1x2

ϕ3(v(x)) =
1
3

x1 +
2
3

x2 + 4x3.
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Therefore, the profit functions of the three players are

π1(v, x1) =
4
3

x1 +
2
3

x2 + x3 +
1
2

x1x2 −
1
2

x2
1

π2(v, x2) =
1
3

x1 +
8
3

x2 + x3 +
1
2

x1x2 − x2
2

π3(v, x3) =
1
3

x1 +
2
3

x2 + 4x3 −
1
4

x2
3.

Nash equilibrium requires other players to decide their investment in the FL, and each
player has the right to decide their investment, to maximize their profits. Therefore,
the first-order condition satisfying Nash equilibrium is

4
3 − x1 +

1
2 x2 = 0

8
3 + 1

2 x1 − 2x2 = 0
4− 1

2 x3 = 0.

we determine that the federated inputs satisfying the Pareto optimality conditions are
x1 = 2.29, x2 = 1.90, and x3 = 8, the federated profit is v(x) = 64.53, and the maximum
profit is max R = 42.30.

Comparing Pareto optimality and the Nash equilibrium solution in Table 2, we know
that using the Shapley value method can achieve post fairness, but there is no prior
optimality incentive. Under the Nash equilibrium, the input of each player is lower than
the Pareto optimality level, and the federated profit does not reach the maximum.

Table 2. Example 2: Federated input and profit comparison.

Input and Profit Comparison Input x1 Input x2 Input x3 Federated Profit Maximum Profit

Pareto optimality 8 6 12 160 56
Nash equilibrium 2.19 1.90 8 64.53 42.30

Next, we introduce the supervisory authority. If the supervisory authority knows
that the federated payoff is greater than or equal to the Pareto optimality payoff 160, the
payoff is allocated to the federated players by Formulas (6) and (7). If it knows that the
federated payoff is lower than Pareto optimality payoff 160, the federated player payoff is
τi. When the input of players reaches the Pareto optimality value, i.e., x∗1 = 8, x∗2 = 6, and
x∗3 = 12, then

ϕ1(v(x∗) =
4
3

x∗1 +
2
3

x∗2 + x∗3 +
1
2

x∗1 x∗2 = 50.67

ϕ2(v(x∗) =
1
3

x∗1 +
8
3

x∗2 + x∗3 +
1
2

x∗1 x∗2 = 54.67

ϕ3(v(x∗) =
1
3

x∗1 +
2
3

x∗2 + 4x∗3 = 54.67

π1(x∗) = 18.67

π2(x∗) = 18.67

π3(x∗) = 18.67.

Therefore, the value ranges of τ1, τ2 and τ3 are 0 ≤ τ1 ≤ 18.67, 0 ≤ τ2 ≤ 18.67 and
0 ≤ τ3 ≤ 18.67, respectively. The payoffs ϕ1(v(x)), ϕ2(v(x)) and ϕ3(v(x)) of players 1, 2
and 3 are as follows:

ϕ1(v(x)) =
{ 4

3 x1 +
2
3 x2 + x3 +

1
2 x1x2, i f v(x) ≥ 160

τ1, i f v(x) < 160

ϕ2(v(x)) =
{ 1

3 x1 +
8
3 x2 + x3 +

1
2 x1x2, i f v(x) ≥ 160

τ2, i f v(x) < 160
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ϕ3(v(x)) =
{ 1

3 x1 +
2
3 x2 + 4x3, i f v(x) ≥ 160
τ3, i f v(x) < 160.

In further work, we will prove that the Nash equilibrium constituting the supervision
mechanism satisfies the Pareto optimality condition x∗ = (x∗1 , x∗2 , x∗3) = (8, 6, 12).

(1) We consider the value of player 1. When x∗2 = 6 and x∗3 = 12, then

ϕ1(v(x)) =
{ 13

3 x1 + 16, i f v(x) ≥ 8
τ1, i f v(x) < 8.

where 0 ≤ τ1 ≤ 18.67, and if the input of player 1 is x1 ≥ 8, there is v1(x) = 13
3 x1 + 16,

π1(x) = 13
3 x1 + 16− 1

2 x2
1, then ∂π1(x1)

∂x1
= 13

3 − x1 < 0. It indicates that the profit function
π1(x) of player 1 is monotonically decreasing on [8, ∞); therefore, when player 1 invests
x1 = 8, it can obtain the maximum profit π1(x) = 18.67. If player 1 invests x1 < 8, the
player payoff is τ1 and profit is π1(x) = τ1 − 1

2 x2
1, then π1(x) = τ1 − 1

2 x2
1 ≤ 18.67. Thus,

when x∗2 = 6 and x∗3 = 12, player 1 can obtain the maximum profit π1(x) = 18.67 by
investing x∗1 = 8.

(2) We consider the value of player 2. When x∗1 = 8 and x∗3 = 12, then

ϕ2(v(x)) =
{ 20

3 x2 +
44
3 , i f v(x) ≥ 6

τ2, i f v(x) < 6.

where 0 ≤ τ2 ≤ 18.67, and if the input of player 2 is x2 ≥ 6, there is v2(x) = 20
3 x2 +

44
3 and

π2(x) = 20
3 x2 +

44
3 − x2

2, then ∂π2(x2)
∂x2

= 20
3 − 2x2 < 0. It indicates that the profit function

π2(x) of player 2 is monotonically decreasing on [6, ∞); therefore, when player 2 invests
x2 = 6, it can obtain the maximum profit π2(x) = 18.67. If player 2 invests x1 < 6, the
player payoff is τ2 and profit is π2(x) = τ2 − x2

2, then π2(x) = τ2 − x2
2 ≤ 18.67. Thus, when

x∗1 = 8 and x∗3 = 12, player 2 can obtain the maximum profit π2(x) = 18.67 by investing
x2 = 6.

(3) We consider the value of player 3. When x∗1 = 8 and x∗2 = 6, then

ϕ3(v(x)) =
{

4x3 +
20
3 , i f v(x) ≥ 12

τ3, i f v(x) < 12.

where 0 ≤ τ3 ≤ 18.67, and if the input of player 3 is x3 ≥ 12, there is v3(x) = 4x3 +
20
3 ,

π3(x) = 4x3 +
20
3 −

1
4 x2

3, then ∂π3(x3)
∂x3

= 4− 1
2 x3 < 0. It indicates that the profit function

π3(x) of player 3 is monotonically decreasing on [12, ∞); therefore, when player 3 invests
x3 = 12, it can obtain the maximum profit π3(x) = 18.67. If player 1 invests x1 < 12, player
payoff is τ3 and profit is π3(x) = τ3− 1

4 x2
3, then π3(x) = τ3− 1

4 x2
3 ≤ 12. Thus, when x∗1 = 8

and x∗2 = 6, player 3 can obtain the maximum profit π3(x) = 18.67 by investing x3 = 12.

5.3. Numerical Simulation Experiments

Figure 3 shows the simulations of numerical experiments 1 and 2, respectively. Subplot
(a) and subplot (c) in Figure 3 show that the optimality inputs of the federated players
have reached the Pareto optimality, and satisfying the Nash equilibrium’s inputs does
not reach the Pareto optimality. Subplots (b) and (d) show that the payoffs of satisfying
the Pareto optimality inputs are more than the federal payoffs of satisfying the Nash
equilibrium inputs.

As in the literature [17,19], although the Shapley value method can satisfy the fair dis-
tribution of payoffs after FL, it cannot achieve Pareto efficiency optimality before FL, i.e., it
cannot reach the optimality incentives for federated player inputs before FL, and neither
individual nor collective maximum payoffs are achieved.
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Figure 3. Federated player’s input and payoff comparison. (a) Example 1: Federated player’s input.
(b) Example 1: Federated player’s payoff. (c) Example 2: Federated player’s input. (d) Example 2:
Federated player’s payoff.

Therefore, according to the supervisory organization introduced in this paper, all
federated players are observed to have lower federated payoffs than those satisfying the
Pareto optimality, and the penalty goes to the supervisory organization. In this way,
the supervisory organization supervises and disciplines all federated players.

By analyzing and proving that the inputs that satisfy the Pareto efficiency optimality
constitute a Nash equilibrium for FL through the introduced supervisory organization, it is
possible to solve the conflict that the payoff allocation of FL is fair and efficient.

6. Conclusions and Future Work

In the model training of FL, to obtain an accurate federated model, this paper designs
an incentive mechanism to encourage all federated players to contribute to their data-
training model. Under the condition of payoff determination, combined with the Shapley
value method, a federated payoff allocation mechanism with third-party supervision is
introduced. Under this mechanism, the federated payoff can reach Pareto optimality,
and finally, the federated payoff is allocated by the Shapley value method. This mechanism
solves the conflict between the fairness and efficiency of the payoff allocation in the FL
system. Through the verification of numerical and simulation experiments, when the
optimality payoff allocation of Pareto optimality is achieved, the Nash equilibrium of the
mechanism is formed. Therefore, the use of an incentive mechanism will play a better role
for federated players.

In future research, we apply the incentive mechanism solution proposed in this paper
to solve the problem of payoff allocation among players in the training scenario of the FL
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model. In particular, the incentive mechanism proposed in this paper can be applied to
banks, hospitals, insurance companies, etc., providing important theoretical assistance for
them to train accurate federated models and improve economic efficiency in practice.

7. Discussion

The Shapley value method is a way to measure how much each player contributes to
FL, and it is a fair rule for allocating resources. Pareto efficiency is a resource allocation’s
ideal state, in which all resources are in full use and there is no waste. Although the
Shapley value method can achieve fair payoff allocation after the completion of FL, it
cannot guarantee that the inputs of each federated player achieve optimality before FL.

Therefore, the combination of the Shapley value and Pareto optimality provides a
solution for federated payoff distribution that is both fair and efficient, and the solution
can help ensure the stability and dynamic equilibrium of the payoff distribution.

However, this combination may have some shortcomings. For example, calculating
the Shapley values in federated model training can be very complicated in the case of a
large number of players. Furthermore, to determine the distribution of Pareto efficiency,
the utility functions of all federated payers must be provided, which may be difficult to
implement in practical applications.
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Notations

N The set of n players
D The set of players’ local dataset
M The model trained jointly by all players
MFED The FL sharing model
MSUM The traditional machine learning model
VFED The model accuracy of MFED
MSUM The model accuracy of MSUM
S The alliance subset of different players, S ⊆ N
v(.) A characteristic function
v(S) The player’s payoff through the alliance S
v(N) The overall federated payoff
ϕi(v) The payoff allocated to player i
|S| The number of players in subset S
(|S| − 1)! The sorted total number when players i participates in coalition S
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(n− |S|)! The sorted total number of remaining (n− |S|) players
S \ i The alliance after removing player i from alliance S
[v(S)− v(S \ i)] The marginal contribution of i to coalition S
w(|S|) The weight coefficient
x A feasible action space
π(x) The federated player’s payoff function
c(x) The coalition cost input of player
ki The penalty condition for the supervisor to achieve Pareto optimality
ri(x) The supervisor obtained fines
R The federated player’s profit

Appendix A

Appendix A.1. Proof of Theorem 1

Proof. According to the validity of the Shapley value, we can obtain

n

∑
i=1

ϕi(v) = v, ∀v (A1)

By differentiating Formula (A1) with respect to x, we obtain

n

∑
i=1

ϕ′i(v) = 1. (A2)

where ϕ′i(v) = ∂ϕi/∂v, from the Nash equilibrium, assuming that the input of each feder-
ated player i is xi and the profit is πi(ϕi, xi) = ϕi(v)− ci(xi). The profit maximization of
player i is

max πi(ϕi, xi) = ϕi(v)− ci(xi), i = 1, 2, . . . , n (A3)

Therefore, the first-order condition of the Nash equilibrium is

ϕ′i(x)x′i = c′i, i = 1, 2, . . . , n. (A4)

Here, ϕ′i(x) = ∂ϕi/∂x, x′i = ∂x/∂yi, and c′i = ∂ci/∂yi. To maximize federated
profits, the federated investment needs to meet Pareto optimality:

y∗ = arg max
y

(
x(y)−

n

∑
i=1

ci(yi)

)
(A5)

the first-order condition of Pareto optimality is

x′i = c′i, i = 1, 2, . . . , n. (A6)

In combination with Formulas (A4) and (A6), it can be seen that the Nash equilibrium
achieves Pareto optimality, which only needs to satisfy the following conditions:

ϕ′i(x) = 1, i = 1, 2, . . . , n (A7)

However, this is in contradiction to satisfying Shapley value condition
n
∑

i=1
ϕ′i(x) = 1.

Appendix A.2. Proof of Theorem 2

Proof. To make the proof meaningful, we assume that when the federated players achieve
Pareto optimality, the federated payoffs allocated by each player i according to the Shapley
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value method are greater than their input costs, i.e., v(x∗i ) > ci(x∗i ). If x∗ = (x∗1 , x∗2 , . . . , x∗n) is
the Nash equilibrium of this mechanism, it should satisfy πi[v(x∗i , x∗n−i)] ≥ πi[v(xi, x∗n−i)] and

ϕi(v∗)− ci(x∗i ) ≥ ϕi(v)− ki − ci(xi)

ki ≥ [ϕi(v)− ci(xi)]− [ϕi(v∗)− ci(x∗i )]
(A8)

During the FL process, the coalition input ci(xi) is invisible, and the value is not
unique, so Formula (A8) cannot be used as a basis for formulating fines, but more impor-
tantly ci(xi) ≥ 0, so there is ϕi(v)− [ϕi(v∗)− ci(x∗i )] ≥ [ϕi(v)− ci(xi)]− [ϕi(v∗)− ci(x∗i )].
Therefore, Formula (A8) is only satisfied if the condition ki ≥ ϕi(v)− [ϕi(v∗)− ci(x∗i )] is
satisfied so that the Pareto optimality value is achieved. The penalty condition for the
supervisor to achieve Pareto optimality is

ki ≥ ϕi(v)− [ϕi(v∗)− ci(x∗i )] (A9)

However, to increase the players’ enthusiasm, it should be noted that fines should not
be too high, and the principles of limited participation and limited liability are followed.
Here, we assume that all players in federated learning are only responsible for limited
liability. The amount of the penalty cannot exceed the amount of the player’s payoff,
so if the player’s payoff is zero, there is no need for a penalty. Therefore, according to
Formula (8), ϕi(v)− ki ≥ 0 is obtained, then

ki ≤ ϕi(v). (A10)

According to Formulas (A9) and (A10), we obtain

ϕi(v)− [ϕi(v∗)− ci(x∗i )] ≤ ki ≤ ϕi(v). (A11)

Assuming that the net payoff of player i after being fined is δi, then δi = ϕi(v)− ki,
and the following formula can be obtained according to Formula (A11):

0 ≤ δi ≤ ϕi(v∗)− ci(x∗i ) (A12)

According to the above, under the constraint of limited liability, the Pareto value
is optimized. When the penalty of the supervisor meets Formula (A11), the optimality
mechanism is

ri(x) =
{

ϕi(v), i f v ≥ v(x∗)
δi, i f v < v(x∗)

(A13)

where the value of δi satisfies Formula (A12), i = 1, 2, . . . , n. Next, we explain the mecha-
nism under two conditions of the penalty value in Formula (A12).

When ki = ϕi(v), it means that the supervisor knows that the federated payoff is
greater than or equal to the Pareto optimality payoff, and the supervisor will distribute the
federated payoff to all players according to the Shapley value formula. If the federated
payoff is less than the Pareto optimality payoff, all federated payoffs will belong to the
supervisor. The expression is

ri(x) =
{

ϕi(v), i f v ≥ v(x∗)
0, i f v < v(x∗)

(A14)

Furthermore, we will prove that the federated input x∗ = (x∗1 , x∗2 , . . . , x∗n) satisfying
Pareto optimality is the Nash equilibrium of this mechanism.

Assuming that the federated input of player i is xi < x∗ and the federated input of
other players is x∗n−i because v(x) is a monotonically increasing function, then v(xi, x∗n−i) <
v(x∗i , x∗n−i), ri(xi, x∗n−i) = 0, and the profit of player i is πi(xi) = −ci(xi) ≤ 0; therefore,
rational player i will not invest xi < x∗. If the federated input of player i is xi ≥ x∗
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and because v(x) is a monotonically increasing function, then the profit of player i is
πi(xi) = ϕi(xi)− ci(xi) > 0; therefore, rational player i will invest xi ≥ x∗.
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