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Abstract: This paper addresses the synchronization problem in outer topology networks using
chaotic nodes with hidden attractors. Specifically, we analyze bidirectionally coupled networks
with various inner–outer coupling topologies to identify the optimal configuration that encourages
outer synchronization. The inner–outer coupled networks incorporate a chaotic system capable
of generating hidden attractors. To assess the stability of the synchronization state, we conduct
numerical simulations and examine the maximum Lyapunov exponent of the generic variational
equations. Our results reveal the most suitable bidirectional inner–outer coupling network topology
for achieving outer synchronization.
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1. Introduction

A phenomenon observed in nature, particularly in animals, is the emergent collective
behavior of synchronization, i.e., the temporal adjustment of events between two or more
objects or subjects, see [1]. An example of this can be seen in [2], where an analysis of
emergent synchronization in ecological systems is presented. Another similar paradigm
is seen in [3–6], where the authors analyze collective behaviors, particularly in small-
world networks.

In the last few years, the study of collective emergent behaviors in nature has gained
significant attention from the scientific community. Synchronization phenomena are inter-
esting collective behaviors found in multiple scientific areas, such as mathematics, computer
science, physics, chemistry, etc., see [7–12].

Now, in addition to studies related to this behavior observed in nature, recent research
has focused on analyzing networks with chaotic systems in order to prove that synchro-
nization is possible. For example, in [13], the authors presented a synchronization scheme
by using a control law obtained from some definitions of graph theory.

It is worth noting that there are two methods used to attain synchronization: unidirec-
tional coupling and bidirectional coupling, as stated in [14]. Bidirectional coupling is the
synchronization type used for each network presented in this work. It is remarkable that in
recent works, some researchers have studied the outer synchronization of networks, such
as in [15], where the outer synchronization of networks using an impulse type control was
presented.
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Moreover, in [16], the authors presented an adaptive outer synchronization of networks
for the identification of unknown parameters between two time-delayed coupled networks.
Given the recent works related to outer synchronization, it can be seen that the analysis of
the outer coupling topology of networks is an interesting problem to address.

Hidden attractors in chaotic systems have received significant attention in the field
of complex systems and network dynamics due to their distinctive characteristics. These
systems are characterized by the absence of a homoclinic or heteroclinic orbit, making the
verification of chaos through the Shilnikov method unsuitable. Such attractors can be found
in systems without equilibrium points or in systems with only one stable equilibrium point.
Specifically, the basin of attraction of a hidden attractor does not intersect with any unstable
equilibrium point. The most notable difference between hidden attractors and self-excited
attractors lies in the respective basin of attraction. The basin of attraction of a hidden
attractor does not intersect with any small neighborhood surrounding an equilibrium point,
whereas the basin of attraction of a self-excited attractor intersects with certain unstable
equilibrium points [17]. Consequently, hidden attractors and self-excited attractors exhibit
entirely distinct dynamic characteristics.

Considering the aforementioned gaps in the literature, this paper aims to provide
a comprehensive analysis and comparison of various inner–outer coupling topologies
in networks, in order to identify the optimal configuration for achieving inner–outer
synchronization.

This work is organized as follows. In Section 2, we provide brief preliminaries re-
garding inner–outer coupling schemes and the synchronization of complex networks. In
Section 3, we present the master stability function approach, which is the analysis method
used to study and compare the synchronization state stability of the different inner–outer
coupling topologies. In Section 4, we described an interesting chaotic system that has
hidden attractors and a coexistence property. In Section 5, we present different scenarios
where the inner–outer coupling network topologies are analyzed. Finally, the conclusions
are drawn in Section 6.

2. Complex Dynamical Networks

In this section, we provide brief preliminaries regarding inner–outer coupling schemes
and present the synchronization of complex networks. In a simple way, we consider a set
of M networks, each one composed of N nodes. The inner coupling topology (i.e., coupling
of the nodes in a network) is represented by an inner coupling matrix Ainner; on the other
hand, the outer coupling topology (i.e., the coupling among networks) is represented by an
outer coupling matrix Aouter, in which a complex network of M× N nodes arises.

The couplings are made bidirectionally, taking into account all state variables of each
node, where each node constitutes an n-dimensional chaotic dynamical system, described
as follows

ẋi = f(xi) + ui, (1)

with i = 1, 2, . . . , M× N, where xi = (xi,1, xi,2, . . . , xi,n)
T ∈ Rn is the state vector of node

i, ui = (ui,1, ui,2, . . . , ui,n)
T ∈ Rn is the input signal of node i. In this work, an extensively

studied and well-known diffusive coupling is used as follows:

ui = (A⊗ Γ)xi, (2)

where Γn×n is an arbitrary diagonal matrix of zeros or ones, which involves the selection
of state variables to be used in the inner and outer couplings, ⊗ is the direct or Kronecker
product, and A(M×N)×(M×N) is the total coupling matrix described as follows:

A = c1Ainner + c2Aouter = c1(I⊗Ai) + c2(Ao ⊗ Γo), (3)

where Ainner(M×N)×(M×N) and Aouter(M×N)×(M×N) are the inner and outer coupling ma-
trices, c1 and c2 are the inner and outer coupling strengths, respectively, IM×M is the identity
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matrix, Γo(N×N) is an arbitrary diagonal matrix of zeros or ones that involves the selection
of nodes to be used in order to couple the networks, i.e., in the outer coupling, Ai(N×N)

determines the inner topology, and Ao(M×M) determines the outer topology.
Now, suppose we have strongly connected complex networks (i.e., the complex net-

works are connected without isolated clusters). Then, A is a symmetric and irreducible
matrix. In this case, it can be shown that zero is an eigenvalue of A with multiplicity 1
and all other eigenvalues are strictly negative, see [18,19]. Figures 1–3 show a graphic
representation of the general scheme of the inner and outer coupling strategy to be used
in this work, the left side of each figure shows the inner coupling topology to be used,
while the right side shows the outer topology made up of the inner coupling topologies.
According to [19], complex networks (1) achieve (asymptotic) synchronization, if

x1(t) = x2(t) = . . . = xM×N(t), as t→ ∞. (4)

It is desired that coupling conditions (2)–(3) guarantee that the synchronization state,
s(t) ∈ Rn, be a solution of an isolated node, which is

ṡ(t) = f(s(t)), (5)

where s(t) can be an equilibrium point,a periodic orbit, or a chaotic attractor. Thus, the
stability of the synchronization state,

x1(t) = x2(t) = . . . = xM×N(t) = s(t), (6)

of complex networks (1) is determined by the dynamics of the used chaotic system, de-
scribed by the nonlinear function f and the solution s(t), the coupling strengths c1 and c2,
the diagonal matrix Γ, and the coupling matrix A.

Figure 1. Inner–outer ring network coupling topology.
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Figure 2. Inner–outer star network coupling topology.

Figure 3. Inner–outer small-world network coupling topology.

3. Master Stability Function

This section describes the master stability function used to analyze the stability of
the synchronization state on the inner–outer coupling topologies. In accordance with [20],
and considering (2)–(3), each block of the diagonalized variational equation is described
as follows:

ξ̇k = [Df(s) + ζkΓ]ξk, (7)
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with k = 0, 1, 2, . . . , (M× N)− 1, where ζk is an eigenvalue of the coupling matrix A, with
ζ0 = 0. In this work, Γ is chosen, such that the coupling among the nodes of the networks
is made using all of the state variables, so that, in this case, Γ is chosen as follows:

Γ =

 1 0 0
0 1 0
0 0 1

. (8)

The maximum Lyapunov exponent λmax is calculated for the generic variational
Equation (7). By using certain inner and outer coupling strengths c1 and c2, the sign of λmax
is verified, which indicates the synchronization state; for λmax < 0, the synchronization state
is stable, while for λmax > 0, the synchronization state is unstable. For the computational
calculation of the maximum Lyapunov exponents, we used a modified version of Wolf’s
algorithm presented in [21] . To calculate the maximum Lyapunov exponents, we used
the programming software Matlab with initial conditions s(0) = [0, 0.1, 0]T in the Ode45
function for a simulation time of 100 s.

4. Chaotic Node

In this section, we describe the chaotic system used, such as a chaotic node, in order
to construct the inner–outer coupled networks. The chaotic system, which has hidden
attractors and a coexistence property, is given by [22]:ẋ1

ẋ2
ẋ3

 =

 x2
−x1 − x2x3
|x1|+ x1x2 − a

 (9)

where a ∈ R+ and x1, x2, x3 are state variables. Figure 4 shows the chaotic attractors in the
phase planes x1 vs. x2, x1 vs. x3, and x2 vs. x3 of the system (9), which is obtained when
a = 1.35, and the initial conditions are (x1, x2, x3) = (0, 0.1, 0).

(a) (b) (c)

Figure 4. Phase planes of the chaotic system (9) with a = 1.35 (a) x1 vs. x2 phase plane; (b) x1 vs. x3

phase plane; (c) x2 vs. x3 phase plane.

There are coexisting attractors in system (9) when parameter a = 1.4. Figure 5 shows
the hidden attractors in the phase planes x1 vs. x2, x1 vs. x3, and x2 vs. x3 for different
initial conditions.

Due to the interesting dynamics that this system has when the value of the parameter
a and its initial conditions are varied, the chaotic system was used as the chaotic node
in order for the generated complex dynamics to be used in some applications, such as
information encryption, see, for example, [23] and the generation of complex trajectories
for tracking by mobile robots, see, for example, [24], among others.
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(a) (b) (c)

Figure 5. Phase planes of the chaotic system (9) with a = 1.4 and initial conditions
(x1, x2, x3) = (0, 0.1, 0) (blue), and (x1, x2, x3) = (0,−0.1, 0) (red) (a) x1 vs. x2 phase plane; (b) x1 vs.
x3 phase plane; (c) x2 vs. x3 phase plane.

5. Synchronization of Inner and Outer Coupling Topologies

This section analyzes and compares different inner–outer coupling network topolo-
gies. In the first instance, an analysis of the inner synchronizations of certain networks is
presented, where synchronization states for different inner topologies are compared using
the maximum Lyapunov exponent. On the other hand, the different connection topologies
for the outer synchronizations of networks are also analyzed and compared, by means of
the maximum Lyapunov exponent, considering a fixed value of c1, as well as through a
comparison between c1 vs. c2 to determine which inner–outer coupling topology is the
most optimal for outer synchronization among the networks. The representation of all
nodes, for all of the above cases within the inner–outer coupling topologies, is as followsẋi1

ẋi2
ẋi3

 =

 xi2 + ui1
−xi1 − xi2xi3 + ui2
|xi1|+ xi1xi2 − a + ui3

, (10)

where ui1, ui2, and ui3 are the control inputs using (2).

5.1. Inner Topologies of the Ring, Star, and Small-World Networks Synchronization

For the analysis of the ring, star, and small-world inner network topologies, first, we
consider that each network is isolated from the other, i.e., if there is no outer synchronization
of networks, then c2 = 0 for a set of M = 5 networks composed of N = 5 nodes, where
each node is a chaotic system, as described in (10) with exactly the same parameter values,
as shown in Section 4. For the initial condition values, if node i is an even number, then
we chose xi(0) =

[
0 −0.01i 0

]T ; on the other hand, if node i is an odd number, then

we chose xi(0) =
[

0 0.01i 0
]T , with i = 1, 2, . . . , N ×M nodes; the values of initial

conditions are chosen in order to take advantage of the coexistence property possessed by
the hidden attractor.

Now, in order to obtain the total coupling matrix A, it is necessary to determine the
coupling matrices Ainner and Aouter, which determine the inner–outer coupling topologies.
However, as seen in Equation (3), it is only necessary to obtain the Kronecker product
between the topology matrix Ai and the identity matrix IM×M, since, as mentioned above,
the inner synchronization of the networks is analyzed in isolation, i.e., c2 = 0. Starting with
the ring’s inner coupling network topology, the matrix is defined, such that

Ai = Airing =


−2 1 0 0 1
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
1 0 0 1 −2

, (11)
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for the star’s inner coupling network topology, the matrix Ai is defined as follows

Ai = Aistar =


−4 1 1 1 1
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

, (12)

Despite the regular topologies shown above, it should be noted that complex networks
can be found everywhere and can be represented by random or regular topologies; however,
a large number of real complex networks lies between these two extremes; that is, the
topological structures are neither completely random nor regular. We could affirm that
most of the technological, biological, and social networks are between these two extremes
because these kinds of networks often have high clustering coefficients, such as regular
networks, but with average path lengths similar to random networks, see [25]. These types
of networks are called small-world networks, which are analogous to the small-world
phenomenon (popularly known as the six degrees of separation).

In essence, these networks can be built from regular arrangements in which recon-
nections are made or connections are added with a probability p to the chosen pairs of
nodes. Even very small numbers of these added connections, commonly called shortcuts,
do not change the local properties (such as very high clusterings, which are typical of regu-
lar networks), but cause typical values of random networks in the average path lengths,
see [26]. In this work, for the construction of small-world networks, we used the Newman
and Watts model presented in [27], where we started with a ring-type coupling topology,
then, using a probability p1 = 0.3 of adding a connection between any pair of nodes, we
obtained the small-world coupling matrix presented in (13) with a clustering coefficient of
0.4, an average path length of 1.04, and an average degree of 2.8. In this way, we define Ai
for small-world inner coupling topology, as follows:

Ai = Aismall =


−2 1 0 0 1
1 −3 1 1 0
0 1 −3 1 1
0 1 1 −3 1
1 0 1 1 −3

, (13)

Now, we can calculate the maximum Lyapunov exponent λmax of the variational
Equation (7) for networks (10) built according to the coupling matrices (11)–(13) that define
each inner coupling network topology. Figure 6 shows the maximum Lyapunov exponent
λmax against c1, where we can observe the inner coupling strength c1 necessary to achieve
inner synchronization in the R, S, and SW inner coupling network topologies.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1

0.8

0.6

0.4

0.2

0

0.2

0.4

c
1

λ
m
a
x

Ring

Star

Small-World

Figure 6. The maximum Lyapunov exponent λmax with respect to c1 for inner coupling network
topologies R, S, and SW.



Axioms 2023, 12, 634 8 of 14

With the results shown in Figure 6, we can see that the best performance, in terms
of minor coupling strength, is presented by the small-world network. On the other hand,
to establish which inner–outer coupling network topology has the best performance, we
present the corresponding analysis in the next subsection.

5.2. Outer Topology of Ring, Star, and Small-World Networks Synchronization

The main objective pursued in this work is to find a suitable coupling strength to
achieve the outer synchronization of networks in different topologies, using chaotic systems
with hidden attractors as nodes. This subsection presents a comparative analysis regarding
outer synchronization and using different topologies according to the schemes shown in
Figures 1–3, as well as their combinations. For this case, we use different combinations
of inner and outer network topologies in order to perform a comparative analysis that
allows us to reveal which of the combinations achieves an outer synchronization with a
more suitable coupling strength. We use the notation presented in [28] to represent the
different inner–outer coupling network topologies; for example, we use R for ring, S for
star, and SW for small-world networks, i.e., for the inner ring and outer ring topologies,
notation R-R is used (see Figure 1), for the inner star and outer star topologies, we use S-S
(see Figure 2), for the inner small-world and outer small-world topologies, we use SW-SW
(see Figure 3), and so on. Moreover, the constant diagonal matrix Γo that involves selecting
nodes from the inner topologies for coupling with the outer topologies used in this work is
described as follows:

Γo =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

. (14)

If we take an inner–outer coupling topology R-R with M = N = 5, the matrix
Ao = Aoring is described as follows:

Aoring = Airing =


−2 1 0 0 1
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
1 0 0 1 −2

, (15)

where Aoring ⊗ Γo gives the matrix Aouter. For inner–outer coupling topologies S-S and
SW-SW, matrices Ao = Aostar and Ao = Aosw are described as follows:

Aostar = Aistar =


−4 1 1 1 1
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

, (16)

Aosw = Aisw =


−2 1 0 0 1
1 −3 1 1 0
0 1 −3 1 1
0 1 1 −3 1
1 0 1 1 −3

. (17)

Consequently, Figure 7 shows the calculations of the maximum Lyapunov exponents
λmax for the inner–outer coupling network topologies R-R, R-S, R-SW, S-R, S-S, S-SW,
SW-R, SW-S, and SW-SW for c1 = 0.5 and 0 < c2 < 2.
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Figure 7. The maximum Lyapunov exponents λmax for the inner–outer coupling topologies R-R, R-S,
R-SW, S-R, S-S, S-SW, SW-R, SW-S, and SW-SW for c1 = 0.5 and 0 < c2 < 2.

Moreover, a comparison of the synchronization of the different inner–outer coupling
network topologies is performed, where Figure 8 shows the maximum Lyapunov exponent
λmax for the inner–outer coupling topologies R-R, R-S, R-SW, S-R, S-S, S-SW, SW-R, SW-S,
and SW-SW. In Figure 8, we can see the areas of synchronization and no synchronization
for a sweep of c1 versus c2 with 0 ≤ c1, c2 ≤ 2.

Figure 8. The maximum Lyapunov exponent λmax for the inner–outer coupling topologies R-R, R-S,
R-SW, S-R, S-S, S-SW, SW-R, SW-S, and SW-SW, considering a sweep of c1 versus c2.

In order to corroborate the obtained results, temporal dynamics and synchronization
errors for the most representative cases of inner–outer network coupling topologies are
presented below. Figure 9 and 10 show the temporal dynamics and synchronization errors,
respectively, for the case of the inner–outer network coupling topology R-SW, where we
can see that for 0 < t < 20 values of inner and outer coupling strengths c1 = 0 and c2 = 0
are applied, indicating that all nodes are uncoupled; for 20 ≤ t < 60, the inner and outer
coupling strength values c1 = 0.5 and c2 = 0 are applied, meaning that the networks
are coupled internally but uncoupled externally; for t ≥ 60, the inner and outer coupling
strength values c1 = 0.5 and c2 = 0.4 are applied, indicating that there is inner and outer
coupling among the networks. For coupling strength values c1 = 0.5 and c2 = 0.4, we
can see that synchronization is achieved both internally and externally, corroborating the
findings presented in Figure 8.
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Figure 9. Temporal dynamics of the inner–outer network coupling topology R-SW for different
values of c1 and c2, where the colors are to differentiate the states of each node.
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Figure 10. Synchronization error of the inner–outer network coupling topology R-SW for different
values of c1 and c2, where the colors are to differentiate the states of each node.

We proceed in the same way for the cases of inner–outer network coupling topologies
S-SW and SW-SW, where Figures 11–14 show the temporal dynamics and synchronization
errors of topologies S-SW and SW-SW, respectively.
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Figure 11. Temporal dynamics of the inner–outer network coupling topology S-SW for different
values of c1 and c2, where the colors are to differentiate the states of each node.
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Figure 12. Synchronization error of the inner–outer network coupling topology S-SW for different
values of c1 and c2, where the colors are to differentiate the states of each node..

As we can see, the obtained results regarding temporal dynamics and the synchroniza-
tion errors are in accordance with what is presented in Figure 8, where we can establish that
S-SW is the most suitable inner–outer bidirectional coupling network topology to achieve
outer synchronization. To complement the study using M = N = 5, we consider increasing
N and M, taking into account the number of nodes of an example of a small-world network
presented in [27], where, for this case, we have M = N = 24. To build the small-world
network, in the same way as in the case with N = 5, we choose p1 = 0.3, although it
is true that the average of a certain number of generated small-world networks must be
analyzed and the effects caused would have to be considered, this has been left as an open
problem for future work. In this case, for the fixed topology of the small-world network, the
numerical representation is omitted due to the large dimensions of the generated coupling
network topology, where a clustering coefficient of 0.5388, an average path length of 1.3924,
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and an average degree of 12.5833 are obtained. Figure 15 shows the maximum Lyapunov
exponent λmax in a similar way as in Figure 8, where, for this case, due to the ranges of
the separation of the coupling strengths c1 and c2, only the comparisons of inner–outer
coupling topologies S-SW and S-SW are shown, since it has been verified that S-SW and
S-SW overlap the other inner–outer coupling topologies R-R , R-S, R-SW, S-R, S-S, SW-R,
and SW-S. Note that, from Figure 15, it is shown that the results for N = 5 and M = 5
can be extended to a greater number of nodes N and networks M, preserving the obtained
results for N = M = 5, where the best performance to achieving outer synchronization is
by using the S-SW inner–outer coupling network topology.
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Figure 13. Temporal dynamics of the inner–outer network coupling topology SW-SW for different
values of c1 and c2, where the colors are to differentiate the states of each node.
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Figure 14. Synchronization error of the inner–outer network coupling topology SW-SW for different
values of c1 and c2, where the colors are to differentiate the states of each node.
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Figure 15. The maximum Lyapunov exponent λmax for the inner–outer coupling topologies S-SW,
and SW-SW for N = M = 24.

6. Conclusions

From this work, which is based on the use of a master stability function approach (the
maximum Lyapunov exponent λmax of the generic variational equations) to determine the
suitable inner and outer coupling strengths to achieve synchronization, we established that
the most suitable bidirectional inner–outer coupling topology combination to achieve outer
synchronization is the S-SW topology. Additionally, the obtained results (by means of the
master stability function approach) were corroborated through the numerical calculation of
the temporal dynamics and synchronization errors of some particular and representative
cases. Furthermore, it is possible to obtain complementary results to this study by using a
different number of nodes N or a different number of networks M. It is also possible to use
different discrete or continuous chaotic nodes of different dimensions or fractional orders,
conduct a number of realizations of the small-world network model, study the average
behavior, etc. Moreover, the obtained results can be used in potential applications, such
as the synchronization of mobile robots, sending messages safely, and in electric power
distribution networks, among others.
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