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Abstract: In this paper, we propose a new approach for optimizing a large-scale non-convex dif-
ferentiable function subject to linear equality constraints. The proposed method, RPCGB (random
perturbation of the conditional gradient method with bisection algorithm), computes a search direc-
tion by the conditional gradient, and an optimal line search is found by a bisection algorithm, which
results in a decrease of the cost function. The RPCGB method is designed to guarantee global con-
vergence of the algorithm. An implementation and testing of the method are given, with numerical
results of large-scale problems that demonstrate its efficiency.
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1. Introduction

Non-convex optimization is a type of mathematical optimization problem in which
the objective function to be optimized is not convex. Unlike convex optimization problems,
non-convex problems can have multiple local optima, which can make it difficult to find
the global optimum. Non-convex optimization has many applications in various fields,
including finance (portfolio optimization, risk management, and option pricing) [1–3], com-
puter vision (image segmentation, object recognition) [4,5], signal processing (compressed
sensing, channel estimation, and equalization) [6–8], engineering (control systems, opti-
mization of structures) [9,10], machine learning [11–14], and damage characterization [15]
based on deep neural networks and the YUKI algorithm [16].

To solve non-convex optimization problems, two broad classes of techniques have
been developed: deterministic and stochastic methods [17]. Deterministic methods include
gradient-based methods, which rely on computing gradients of the objective function, and
which can be sensitive to the choice of initialization and can converge to local optima. On
the other hand, stochastic methods use randomness to explore the search space and can be
less sensitive to initialization and more likely to find the global optimum.

Several reasons make stochastic methods more appropriate for non-convex optimiza-
tion problems. Stochastic methods avoid getting stuck in local optima or saddle points,
as they explore the search space more thoroughly. Additionally, complex non-convex
optimization problems often have a large number of variables, making gradient-based
methods computationally expensive. In contrast, stochastic methods can scale better to
high-dimensional problems. Stochastic methods can also be more robust to noise and
uncertainty in the problem formulation.

Scientific studies have shown the effectiveness of stochastic methods in solving non-
convex optimization problems. One of the most widely studied deterministic methods
that has been extended with random perturbations is gradient descent. For example, a
study by Pogu and Souza de Cursi (1994) [18] compared the performance of deterministic
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gradient descent and stochastic gradient descent on a variety of non-convex optimization
problems and found that stochastic gradient descent was more robust and could converge
to better solutions. Another study by Mandt et al. (2016) [19] investigated the use of
random perturbations in the context of Bayesian optimization and found that it could
lead to better exploration of the search space and improved optimization performance.
In addition to stochastic gradient descent, other deterministic methods have also been
extended with random perturbations. For example, a study by Nesterov and Spokoiny
(2017) [20] proposed a variant of the conjugate gradient method that adds random noise to
the search direction at each iteration and showed that it could improve the convergence rate
and solution quality compared to the standard conjugate gradient method. Another study
by Songtao Lu et al. (2019) [21] proposed a variant of the projected gradient descent method
that added random perturbations to the method, and they demonstrated its effectiveness
in solving non-convex optimization problems.

We consider non-convex optimization problems with linear equality or inequality
constraints of the form 

min f (x)
s.t Ax ≤ b

ν ≤ x ≤ µ

where f : Rn → R is a continuously differentiable function, A is an m× n matrix with rank
m, b is an m-vector, and the lower and upper bound vectors, ν and µ, may contain some
infinite components; and {

min f (x)
s.t Ax = b

(1)

where A ∈ Rm×n, b ∈ Rm, and f : Rn → R is a continuously differentiable, non-convex
objective function.

One possible numerical method to solve problem (1) is the conditional gradient with
bisection (CGB) method. This method generates a sequence of feasible points {xt}t≥0,
starting with an initial feasible point x0. A new feasible point xt+1 is obtained from xt for
each t > 0, using an operator Qt (details can be found in Section 3). The iterations can be
expressed as follows:

xt+1 = Qt(xt), ∀t ≥ 0.

In this paper, we present a new approach for solving large-scale non-convex opti-
mization problems by using a modified version of the conditional gradient algorithm that
incorporates stochastic perturbations. The main contribution of this paper is to propose
the RPCGB algorithm, which is an extension of a method previously presented in [22]
that was designed for small- and medium-scale problems. The RPCGB algorithm was
developed to deal with large-scale global optimization problems and aims to determine the
global optimum.

This method involves replacing the sequence of vectors {xt}t≥0 with a sequence of
random vectors {Xt}t≥0, and the iterations are modified as follows:

Xt+1 = Qt(Xt) + Pt, ∀t ≥ 0,

where Pt is a random variable that is chosen appropriately, which is commonly known as
the stochastic perturbation. It is important that the sequence {Pt}t≥0 converges to zero at a
rate slow enough to avoid the sequence {Xt}t≥0 convergence to local minima. For more
details, refer to Section 4.

The paper is structured as follows: Section 3 revisits the principle of the conditional
gradient with bisection method, while Section 4 provides details on the random pertur-
bation of the CGB method. Notations are introduced in Section 2, and in Section 5, the
results of numerical experiments for non-convex optimization tests with linear constraints
are presented for large-scale problems.
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2. Notations and Assumptions

We denote by R the set of the real numbers, and E = Rn is the n-dimensional real Eu-
clidean space. xT denotes the transpose of x. We denote by ‖x‖ =

√
xTx = (x2

1 + · · ·+ x2
n)

1/2

the euclidean norm of x, and let

M = {x ∈ E | Ax = b, x ≥ 0}

and η∗ = min
M

f , the lower bound of f on M. Let us introduce

Mϕ = Nϕ ∩M; where Nϕ = {x ∈ E | f (x) ≤ ϕ}.

Supposing

∀ϕ > η∗ : meas(Mϕ) > 0, (2)

∀ϕ > η∗ : Mϕ is not empty, closed, and bounded, (3)

f is continuously differentiable on E, (4)

where meas(Mϕ) is the measure of Mϕ.
As the space E is of finite dimensions, condition (3) holds true if M is bounded or if f

is coercive, i.e., lim
‖x‖→+∞

f (x) = +∞. Assumption (3) is satisfied when M comprises a series

of neighborhoods of an optimal point x∗ that possesses a strictly positive measure, meaning
x∗ can be approximated by a sequence of points from the interior of M.

We see that the results of assumptions (3) and (4) are

M =
⋃

ϕ>η∗
Nϕ, i.e., ∀x ∈ M : ∃ϕ > η∗ such that x ∈ Mϕ.

From (3) and (4), one has:

δ1 = sup
{
‖∇ f (x)‖ : x ∈ Mϕ

}
< +∞.

Consequently, one deduces

δ2 = sup
{
‖d‖ : x ∈ Mϕ

}
< +∞,

where d is the direction of conditional gradient method.
Thus,

ρ(ϕ, ε) = sup
{
‖y− (x + αd)‖ : (x, y) ∈ Mϕ ×Mϕ, 0 ≤ α ≤ ε

}
< +∞, (5)

where α and ε are positive real numbers.

3. Conditional Gradient Method
3.1. Conditional Gradient Algorithm

The conditional gradient method, also known as the Frank–Wolfe algorithm, is an
iterative optimization algorithm used to find the minimum of a convex function over a
convex set. It was introduced by Philip Wolfe and Marguerite Frank in 1956 [23] and is
one of the oldest nonlinear constrained optimization techniques. It has recently gained
renewed interest due to its projection-free iterations and low memory requirement. This
algorithm enables the approximation of a function during each iteration by utilizing the
first-order Taylor series expansion.

The algorithm starts with an initial point in the feasible set and iteratively moves
towards a direction that minimizes the gradient of the objective function over the feasible
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set. At each iteration, the algorithm solves a linear optimization problem over the feasible
set to find the direction that minimizes the gradient.

The conditional gradient algorithm has several advantages over other optimization
methods, including its ability to handle large-scale problems and its ability to find sparse
solutions. However, it may converge slowly and may not always find the global minimum.
Moving forward, we focus on a problem related to nonlinear programming that involves
constraints in the form of linear equalities or inequalities of the form

minimize f (x)

subject to x ∈ M
(6)

The search direction is dt := st − xt, with st being the optimal solution of a linear
programming problem and

xt+1 = Qt(xk) = xt + αkdt. (7)

We ascertain the optimal step by selecting the value of αt that satisfies

f
(
xt + αtdt

)
= min

0≤α≤1

{
f
(
xt + αdt

)}
. (8)

The conditional gradient algorithm can be summarized as follows (Algorithm 1):

Algorithm 1 Conditional gradient algorithm.

1: Choose an initial point x(0) ∈ M in the feasible set M.
2: for t = 0, 1, 2, . . . , T do
3: Compute st := LMOM (∇ f (x(t))) := arg min

s∈M
∇ f (x(t))>s

(LMO: Linear minimization oracle)
4: Let dt := st − x(t) (Conditional gradient direction)
5: Compute gt :=

〈
−∇ f (x(t)), dt

〉
(Conditional gradient gap)

6: if gt < ε then return x(t)

7: optimal line search step size
αk ∈ arg min

α∈[0,1]
f (x(k) + αdk)

8: Update x(t+1) := x(t) + αkdt
9: end for

10: return x(T)

For non-convex objectives, the conditional gradient algorithm may not converge to a
global minimum, but it can still converge to a stationary point under certain conditions.
Simon Lacoste-Julien and his colleagues have shown that the Frank–Wolfe algorithm can
converge to a stationary point for non-convex objectives, as shown in [24].

3.2. Bisection Algorithm

In this paper, we employ the bisection algorithm to tackle the unconstrained opti-
mization problem with one variable (8). The method is described in [25]. We refer to the
recursive bisection procedure as bis(h, θ1, θ2, ε), which takes as inputs the h calculation
procedure, the [θ1, θ2] interval, and the precision ε. The outputs of this procedure are an
approximation of xm for the minimizer x∗ and hm for the minimum value of the h function
over the [θ1, θ2] interval.
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The recursive procedure iteration involves the application of the subsequent steps.

Step 0: If θ2 − θ1 ≥ ε, go to step 1, otherwise stop.

Step 1: Compute

θ3 =
θ1 + θ2

2
, θ′1 =

θ2 + θ3

2
, θ′2 =

θ3 + θ2

2
, h(θ3), h

(
θ′1
)
, h
(
θ′2
)
.

Step 2: If h
(
θ′1
)
≤ h(θ3) ≤ h(θ′2), set θ2 = θ′2 If h

(
θ′1
)
≥ h(θ3) ≥ h(θ′2), set θ1 = θ′1.

If h(θ3) ≤ min
{

h
(
θ′1
)
, h
(
θ′2
)}

, set θ1 = θ′1, θ2 = θ′2.

Step 3: Execute bis(h, θ1, θ2, ε) with new inputs.

4. RPCGB Method

From [23], when it comes to objective functions that are non-convex, optimization
algorithms based on gradients (CGB) cannot guarantee the discovery of the global min-
imum. Convex functions are the only ones for which CGB methods can find the global
minimum. To deal with this issue, we suggest utilizing a suitable random perturbation
method. Next, we will demonstrate how RPCGB can converge to a global minimum for
non-convex optimization problems.

The sequence of real numbers
{

xt}
t≥0 is replaced by a sequence of random variables{

Xt}
t≥0 involving a random perturbation Pt of the deterministic iteration (7). We have

X0 = x0;

∀t ≥ 0 Xt+1 = Qt(Xt) + Pt = Xt + αkdt + Pt = Xt + αt(dt +
Pt

αt
), (9)

Pt is independent from (Xt−1, . . . , X0), ∀t ≥ 1,

where αt 6= 0 satisfies Step 7 in the conditional gradient algorithm (Algorithm 1), and

X ∈M⇒ Qt(X) + Pt ∈ M.

Equation (9) can be considered a perturbation of the upward direction dt, which is
substituted with a new direction Dk = dt + Pt

αt
. As a result, iterations (9) become:

Xt+1 = Xt + αtDt.

In the literature [18,26,27], general properties can be found to select a sequence suitable
for perturbation {Pt}t≥0. Typically, perturbations that satisfy these features are produced
using sequences of Gaussian laws.

We define a random vector Zt and use the symbols Φt and φt to represent its cumula-
tive distribution function and probability density function, respectively.

The conditional probability density function of Xt+1 is represented by ft+1, and the
conditional cumulative distribution function is designated as Ft+1(y | Xt = x).

Ft+1(y | Xt = x) = P(Xt+1 < y | Xt = x).

We define a sequence of n-dimensional random vectors {Zt}t≥0 ∈ M. Additionally,
we also take into account {ξt}t≥0, a decreasing sequence of positive real numbers that
steadily approaches 0, where ξ0 is less than or equal to 1.

Let Pt = ξtZt

Ft+1(y | Xt = x) = P(Xt+1 < y | Xt = x).

It follows that
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Ft+1(y | Xt = x) = P
(

Zt <
y−Qt(x)

ξt

)
= Φt

(
y−Qt(x)

ξt

)
.

Therefore, we have

ft+1(y | Xt = x) =
1
ξn

t
φt

(
y−Qt(x)

ξt

)
, y ∈M. (10)

Relation (5) shows that

‖y−Qt(x)‖ ≤ ρ(ϕ, ε) for (x,y) ∈ Mϕ ×Mϕ.

We suppose that t 7→ ht(t) > 0 is a decreasing function defined on R+ such that

y ∈Mϕ ⇒ φt

(
y−Qt(x)

ξt

)
≥ ht(

ρ(ϕ, ε)

ξt
). (11)

For simplicity, let

Zt = 1M(Zt)Zt, (12)

and Z ∼ N(0,1), where Z is a random variable.
The procedure generates a sequence Vt = f (Xt). By construction, this sequence is

increasing and upper-bounded by η∗.

∀t ≥ 0 : η∗ ≥ Vt+1 ≥ Vt. (13)

Thus, there exists V ≤ η∗ such that

Vt → V f or t→ +∞.

Lemma 1. Let Pt = ξtZt and γ = f (x0) if Zt is given by (12). Then, there exists ` > 0 such that

P(Vt+1 > ω|Vt ≤ ω) ≥
meas(Mγ −Mω)

ξn
t

ht

(
ρ(γ, ε)

ξt

)
> 0 ∀ω ∈ (η∗, η∗ + `],

where n = dim(E).

Proof. Let Mω = {x ∈M | f (x) < ω}, for ω ∈ (η∗, η∗ + `].
Since Mϕ ⊂ M̂ω, η∗ < ϕ < ω, it can be deduced from (2) that M̂ω is non-empty and

has a strictly positive measure.
If meas(M−M̂ω) = 0 for any ω ∈ (η∗, η∗ + `], the result is immediate, since we have

f (x) = η∗ on M.
Let us assume that there exists ε > 0 such that meas(M−M̂ω) > 0. For ω ∈ (η∗, η∗ + ε],

we have M̂ω ⊂ M̂ε and meas(M−M̂ω) > 0.
P(Xt /∈ M̂ω) = P(Xt ∈ S−M̂ω) =

∫
M−M̂ω

P(Xt ∈ dx) > 0 for any ω ∈ (η∗, η∗ + ε]
and, since the sequence {Vi}i≥0 is increasing, we also have{

Xi
}

i≥0
⊂ Mγ. (14)

Thus

P(Xt /∈ M̂ω) = P(Xt ∈ N−M̂ω) =
∫

Mγ−M̂ω

P(Xt ∈ dx) > 0 for any ω ∈ (η∗, α∗ + ε].

Letting ω ∈ (η∗, α∗ + ε], we have from (13)
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P(Vt+1 > ω | Vt ≤ ω) = P(Xt+1 ∈ M̂ω | Xi /∈ M̂ω, i = 0, . . . , t).

However, the Markov chain produces

P(Xt+1 ∈ M̂ω | Xi /∈ M̂ω, i = 0, . . . , t) = P(Xt+1 ∈ M̂ω | Xt /∈ M̂ω).

By the conditional probability rule,

P(Xt+1 ∈ M̂ω | Xt /∈ M̂ω) =
P(Xt+1 ∈ M̂ω, Xt /∈ M̂ω)

P(Xt /∈ M̂ω)
.

Moreover,

P(Xt+1 ∈ M̂ω | Xt /∈ M̂ω) =
∫

M−M̂ω

P(Xt ∈ dx)
∫

M̂ω

ft+1(y | Xt = x)dy.

From (14), we have

P(Xt+1 ∈ M̂ω | Xt /∈ M̂ω) =
∫

Mγ−M̂ω

P(Xt ∈ dx)
∫

M̂ω

ft+1(y | Xt = x)dy,

and

P(Xt+1 ∈ M̂ω | Xt /∈ M̂ω) ≥ inf
x∈Mγ−M̂ω

{∫
M̂ω

ft+1(y | Xt = x)dy
} ∫

Mγ−M̂ω

P(Xt ∈ dx).

Thus

P(Xt+1 ∈ M̂ω | Xt /∈ M̂ω) ≥ inf
x∈Mγ−M̂ω

{∫
M̂ω

ft+1(y | Xt = x)dy
}

.

Taking (10) into account, we have

P(Xt+1 ∈ M̂ω | Xt /∈ M̂ω) ≥
1
ξn

t
inf

x∈Mγ−M̂ω

{∫
M̂ω

φt

(
y−Qt(x)

ξt

)
dy
}

.

Relation (5) shows that

‖y−Qt(x)‖ ≤ ρ(γ, ε),

and (11) yields

φt

(
y−Qt(x)

ξt

)
≥ ht

(
ρ(γ, ε)

ξt

)
.

Hence,

P(Xt+1 ∈ M̂ω |Xt /∈ M̂ω) ≥
1
ξn

t
inf

x∈Mγ−M̂ω

∫
M̂ω

ht

(
ρ(γ, ε)

ξt

)
dy.

P(Xt+1 ∈ M̂ω |Xt /∈ M̂ω) ≥
meas(Mγ −Mω)

ξn
t

ht

(
ρ(γ, ε)

ξt

)
.

The following result, which follows from Borel–Catelli’s lemma (as described in [18],
for example), is a consequence of the global convergence:
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Lemma 2. Let {Vt}t≥0 be a increasing sequence, upper-bounded by η∗. Then, there exists V such
that Vt → V for t → +∞. Assume that there exists ` > 0 such that, for any ω ∈ (α∗, α∗ + `],
there is a sequence of strictly positive real numbers {ct(ω)}t≥0, such that

∀t ≥ 0 : P(Vt+1 > ω | Vt ≤ ω) ≥ ct(ω) > 0 and
+∞

∑
t=0

ct(ω) = +∞.

Then V=η∗ almost surely.

Proof. For instance, see [18,28].

Theorem 1. Assuming x0 belongs to M, and letting γ = f (x0), let the sequence ξt be non-
increasing, and

+∞

∑
t=0

ht

(
ρ(γ, ε)

ξt

)
= +∞. (15)

Then V=η∗ almost surely.

Proof. Let

ct(ω) =
meas(Mγ −Mω)

ξn
t

ht

(
ρ(γ, ε)

ξt

)
> 0.

Since the sequence {ξt}t≥0 is non increasing,

ct(ω) ≥
meas(Mγ −Mω)

ξn
t

ht

(
ρ(γ, ε)

ξt

)
> 0.

Thus, Equation (15) shows that

+∞

∑
t=0

ct(ω) ≥
meas(Mγ −Mω)

ξn
t

+∞

∑
t=0

ht

(
ρ(γ, ε)

ξt

)
= +∞.

We can conclude that V=η∗ almost surely by applying Lemmas 1 and 2.

Theorem 2. Let Zt be defined by (12) and ξt by

ξt =

√
b̂

log(t + â)
, (16)

where b̂ > 0, â > 0, and t is the iteration number. If x0 ∈ M, then for b̂ large enough, V=η∗

almost surely.

Proof. We have

φt(Z) =
1

(
√

2π)n
exp(−1

2
‖Z‖2) = ht(‖Z‖) > 0,

so

ht

(
ρ(γ, ε)

ξt

)
=

1

(
√

2π)n(t + â)ρ(γ,ε)2/2b̂
.

For b̂, such that

0 <
ρ(γ, ε)2

2b̂
< 1,
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we have

+∞

∑
t=0

ht

(
ρ(γ, ε)

ξt

)
= +∞;

furthermore, as per the previous Theorem 2, it can be deduced that V is almost surely equal
to η∗.

5. Numerical Results

In this section, we present numerical results of six examples implemented using the
CGB method and the perturbed RPCGB method. Our aim is to compare the performance
of these two algorithms.

We begin by applying the algorithm to the initial value, which is X0 = x0 ∈ M. At
each step t ≥ 0, Xt is known, and we calculate Xt+1.

ksto denotes the number of perturbations. When ksto = 0, the method used is the
conditional gradient with bisection, without any perturbations (unperturbed conditional
gradient with bisection method).

The Gaussian variates used in our experiments are generated using regular generator
calls. Specifically, we use

ξt =

√
b̂

log(t + 2)
, where b̂ > 0.

The definitions of the methods listed in the tables are as follows:

(i) “CGB”, the method of conditional gradient and bisection;
(ii) “RPCGB”, the method of random perturbation of conditional gradient and bisection.

The proposed RPCGB algorithm is implemented using the MATLAB programming
language. We evaluate the performance of the RPCGB method and compare it with the CGB
method for high-dimensional problems. We test the efficacy of these algorithms on several
problems [29–32] with linear constraints, using predetermined feasible starting points x0.
The results are presented in Tables 1–6 and Figures 1–6, where n denotes the dimension of
the problem under consideration and nc represents the number of constraints. The reported
test results include the optimal value f ∗RPCGB and the number of iterations kiter.

The optimal line search process of CGB and RPCGB is found using the bisection
method with ε = 10−4. We terminate the iterative process when either the best solution
(global solution) is found or the maximum number of iterations has been reached.

All algorithms were run on a TOSHIBA Intel(R) Core(TM) CPU running at 2.40 GHz
with 6 GB of RAM, a Core i7 processor, and the 64-bit Windows 7 Professional operating
system. The “CPU” column in the table displays the mean CPU time for one run in seconds.

Problem 1. The Neumaier 3 Problem (NF3) is a mathematical optimization problem introduced by
Arnold Neumaier in 2003 (see [29]). The problem is defined as follows:

minimize:
n
∑

j=1
(xj − 1)2 −

n
∑

j=2
xjxj−1

subject to: − n2 ≤ xj ≤ n2, j = 1, . . . , n
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Table 1. The results obtained from the CGB and RPCGB algorithms.

Problem 1
Algorithm

CGB RPCGB

n nc kiter CPU f∗CGB kiter CPU ksto f∗RPCGB

500 1000 9 0.11 −1.06 × 106 9 0.68 2 −1.61 × 107

900 1800 9 0.13 −3.41 × 106 4 0.25 2 −6.32 × 107

2000 4000 10 3.27 −1.08 × 107 6 5.31 5 −3.53 × 108

4000 8000 12 19.33 −5.53 × 107 7 27.27 10 −1.48 × 109

6000 12,000 19 35.70 −1.34 × 107 9 46.54 10 −3.35 × 109

9000 18,000 27 87.92 −1.61 × 107 13 91.16 10 −7.62 × 109

(a) (b)

(c) (d)

Figure 1. (a) Scatter plot of solution distribution for the CGB and RPCGB algorithms (n = 900).
(b) Objective function values over iterations for the CGB method (n = 9000). (c) Objective function
values over iterations for the RPCGB method (n = 9000). (d) Convergence performance for the CGB
and RPCGB methods with n = 9000 for Problem 1.

Problem 2. The Cosine Mixture Problem (CM) is an optimization problem introduced by Breiman
and Cutler in 1993 (see [29]). The problem is defined as follows:

minimize:
n
∑

j=1
x2

j − 0.1
n
∑

j=1
cos(5πxj)

subject to: − 1 ≤ xj ≤ 1, j = 1, . . . , n
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Table 2. The results obtained from the CGB and RPCGB algorithms.

Problem 2
Algorithm

CGB RPCGB

n nc kiter CPU f∗CGB kiter CPU ksto f∗RPCGB

500 1000 4 0.07 −50 2 0.02 1 −50
900 1800 5 0.09 −90 2 0.05 1 −90

2000 4000 7 0.11 −199.99 3 0.09 1 −200
4000 8000 9 0.19 −400 4 0.12 1 −400
6000 12,000 10 0.37 −599.99 7 0.15 1 −600
9000 18,000 13 0.42 −900 9 0.21 1 −900

(a) (b)

(c) (d)

Figure 2. (a) Scatter plot of solution distribution for the CGB and RPCGB algorithms (n = 900).
(b) Objective function values over iterations for the CGB method (n = 9000). (c) Objective function
values over iterations for the RPCGB method (n = 9000). (d) Convergence performance for the CGB
and RPCGB methods with n = 9000 for Problem 2.

Problem 3. The Inverted Cosine Wave Function or the Cosine Mixture with Exponential Decay
Problem. This is a commonly used benchmark problem in global optimization and was introduced
by Price et al. in 2006 (see [30]). The problem is defined as follows:


minimize: −

n
∑

j=1
exp(

−x2
j − x2

j+1 − 0.5xjxj+1

8
) cos(4

√
x2

j + x2
j+1 + 0.5xjxj+1)

subject to: − 5 ≤ xj ≤ 5, j = 1, . . . , n
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Table 3. The results obtained from the CGB and RPCGB algorithms.

Problem 3
Algorithm

CGB RPCGB

n nc kiter CPU f∗CGB kiter CPU ksto f∗RPCGB

500 1000 5 0.05 −498.99 3 0.04 1 −499
900 1800 7 0.07 −898.99 6 0.07 1 −898.76
2000 4000 11 0.12 −1475.44 11 0.19 1 −1998.99
4000 8000 18 0.31 −2951.62 12 0.47 1 −3999
6000 12,000 24 0.79 −4427.81 19 0.74 1 −5998.87
9000 18,000 35 1.03 −6642.08 27 0.96 1 −8998.25

(a) (b)

(c) (d)

Figure 3. (a) Scatter plot of solution distribution for the CGB and RPCGB algorithms (n = 900).
(b) Objective function values over iterations for the CGB method (n = 9000). (c) Objective function
values over iterations for the RPCGB method (n = 9000). (d) Convergence performance for the CGB
and RPCGB methods with n = 9000 for Problem 3.

Problem 4. The Epistatic Michalewicz Problem (EM) is a type of optimization problem com-
monly used as a benchmark in evolutionary computation and optimization. It was introduced by
Michalewicz in 1996 (see [29]). The problem is defined as follows:

minimize: −
n
∑

j=1
sin(yj)(sin(

jy2
j

π
))20

subject to: 0 ≤ xj ≤ π, j = 1, . . . , n

yj =



xj cos(
π

6
)− xj+1 sin(

π

6
), j = 1, 3, 5, . . . ,≤ n

xj sin(
π

6
) + xj+1 cos(

π

6
), j = 2, 4, 6, . . . ,≤ n

xj, j = n
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Table 4. The results obtained from the CGB and RPCGB algorithms.

Problem 4
Algorithm

CGB RPCGB

n nc kiter CPU f∗CGB kiter CPU ksto f∗RPCGB

500 1000 23 11.41 −131.81 45 19.53 25 −176.72
900 1800 29 17.06 −214.79 57 21.34 30 −293.51

2000 4000 34 42.66 −417.95 69 71.26 30 −536.38
4000 8000 56 67.18 −768.22 75 96.02 50 −1.06 × 103

6000 12,000 73 79.63 −846.01 94 110.63 70 −1.11 × 103

9000 18,000 89 99.25 −919.85 124 136.71 90 −1.35 × 103

(a) (b)

(c) (d)

Figure 4. (a) Scatter plot of solution distribution for the CGB and RPCGB algorithms (n = 2). (b) Ob-
jective function values over iterations for the CGB method (n = 9000). (c) Objective function values
over iterations for the RPCGB method (n = 9000). (d) Convergence performance for the CGB and
RPCGB methods with n = 9000 for Problem 4.

Problem 5. The problem is a mathematical optimization problem used in global optimization which
comes from [32] and is defined as follows:

minimize:
n
∑

j=1
(x2

j − 10 cos(2πxj) + 10)

subject to:
n
∑

j=1
xj = 0,

− 5.12 ≤ xj ≤ 5.12, j = 1, . . . , n
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Table 5. The results obtained from the CGB and RPCGB algorithms.

Problem 5
Algorithm

CGB RPCGB

n nc kiter CPU f∗CGB kiter CPU ksto f∗RPCGB

500 500 19 8.04 4.71 × 10−4 14 9.23 70 1.38× 10−11

900 900 29 14.13 8.51 × 10−4 14 14.25 70 3.05× 10−10

2000 2000 42 33.09 0.0097 26 45.31 150 4.96× 10−10

4000 4000 30 53.63 0.0194 17 97.27 200 7.93 × 10−7

6000 6000 59 71.47 0.0291 19 122.54 300 7.93 × 10−9

9000 9000 77 92.55 0.0436 13 153.16 800 7.93 × 10−5

(a) (b)

(c) (d)

Figure 5. (a) Scatter plot of solution distribution for the CGB and RPCGB algorithms (n = 2). (b) Ob-
jective function values over iterations for the CGB method (n = 9000). (c) Objective function values
over iterations for the RPCGB method (n = 9000). (d) Convergence performance for the CGB and
RPCGB methods with n = 9000 for Problem 5.

Problem 6. Rastrigin’s function is a non-convex, multi-modal function commonly used as a
benchmark problem in optimization. It was introduced by Rastrigin in 1974 (see [31]) and is
defined as: 

minimize:
n
∑

j=1
cos(2πxj sin(

π

20
))

subject to: xj − xj+1 = 0.4 j = 1, . . . , n− 1
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Table 6. The results obtained from the CGB and RPCGB algorithms.

Problem 6
Algorithm

CGB RPCGB

n nc kiter CPU f∗CGB kiter CPU ksto f∗RPCGB

500 499 2 0.09 −1.8856 5 0.28 10 −4.0147
900 899 19 1.65 0.7033 7 0.38 10 −4.4432
1000 999 13 0.92 0.1626 12 1.08 10 −4.6572
2000 1999 21 1.70 2.0535 8 17.24 40 −3.1399
3000 2999 23 2.96 0.9158 9 27.54 60 −3.2145
4000 3999 12 1.47 2.0097 11 48.56 100 −4.6168

(a) (b)

(c) (d)

Figure 6. (a) Scatter plot of solution distribution for the CGB and RPCGB algorithms (n = 2). (b) Ob-
jective function values over iterations for the CGB method (n = 4000). (c) Objective function values
over iterations for the RPCGB method (n = 4000). (d) Convergence performance for the CGB and
RPCGB methods with n = 4000 for Problem 6.

To gain a deeper understanding of the effect of the modifications on the proposed
algorithm, we utilized a scatter plot that illustrates the distribution of the algorithm’s
solutions in two dimensions for both the CGB and RPCGB algorithms. The goal was to
generate scatter plots to depict the distribution of solutions in a 2D space for all problems
when using two variables (n = 2). However, we found that for Problems 1 to 3, we were
able to obtain the optimal solution value using only one iteration, which made the creation
of a scatter plot unnecessary in this case. Thus, we generated a scatter plot of the solution
distribution for the case of n = 900. This allowed us to effectively illustrate the distribution
of solutions using scatter plots. In each algorithm, the scatter plot was generated at the
first iteration and continued up to the limit of the required number of iterations to reach
the solution. After analyzing Figures 1–6, we concluded that the modified algorithm
exhibited a more tightly clustered solution distribution in the scatter plot compared to the
original algorithm.

We also present in Figures 1–6 the results of plotting the objective function values in
each iteration and the convergence performance for the CGB and RPCGB methods with
9000 variables. The plots (d) show that the proposed algorithm performs better than the
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CGB algorithm, with the majority of cases showing that the suggested algorithm achieves
convergence in fewer iterations than the CGB algorithm. However, there is an exception
observed in Problem 4, as presented in Figure 4, where the CGB algorithm stops early. This
demonstrates that the convergence behavior of optimization algorithms can vary based
on the problem being solved. It is worth noting that both algorithms terminated their
execution before the 30th iteration, which is because a stopping criterion of approximately
ε = 10−4 was met. The algorithms cease their iterations upon reaching the optimal solution
(the local or global solution) or upon reaching the maximum number of iterations. We
observe that the random perturbation has a significant effect on the convergence. This
suggests that the changes made to the algorithm led to an improvement in its performance.

The results presented in Tables 1–6 demonstrate that the CGB algorithm is capable
of obtaining global solutions in certain instances regardless of the number of dimensions,
such as Problem 2 (see Table 2). However, in some cases, the CGB algorithm fails to
obtain global solutions as the number of dimensions increases, as seen in Problem 3 (see
Table 3). In contrast, our RPCGB algorithm can obtain a global solution for all cases, and
the computational results indicate that it performs effectively for these high-dimensional
problems. These results also indicate that, for larger-dimensions problems, the CGB
method necessitates a greater number of iterations to finalize the optimization process,
whereas the RPCGB method does not, as evidenced by Problem 5. This difference can be
explained by the ksto parameter, which denotes the number of perturbations. If the number
of perturbations is raised, then the number of iterations needed to achieve the optimal
solution is reduced.

When analyzing the obtained results, it is evident that the perturbed conditional gradi-
ent method with bisection algorithm (RPCGB) performs well compared to the conditional
gradient algorithm (CGB).

6. Conclusions

In this work, we generalized the RPCGB method to solve large-scale non-convex
optimization problems. The algorithms mentioned in this paper, specifically the condi-
tional gradient algorithm, are commonly used optimization techniques for solving convex
optimization problems. However, in the case of non-convex optimization problems, these
algorithms may converge to a local minimum instead of the global minimum. To overcome
this problem, the proposed approach introduces a random perturbation to the optimization
problem. Specifically, at each iteration of the algorithm, a random perturbation is added to
the Qt operator, which allows the algorithm to escape from local minima and explore the
search space more effectively. The bisection algorithm is used to find the optimal step size
along the search direction. It involves solving a one-dimensional optimization problem to
find the step size that minimizes the objective function. By combining these two algorithms
with the random perturbation approach, the proposed method is able to efficiently explore
the search space for large-scale non-convex optimization problems under linear constraints
and reach a global minimum. The tuning of the parameters ksto and b̂ is related to the main
difficulty in applying random perturbation in practice.

The RPCGB algorithm has the ability to solve various problems, such as control
systems, as well as optimization problems in machine learning, robotics, and image re-
construction. There are problems that contain a part that is not smooth. Therefore, in the
future, we plan to use the random perturbation of the conditional subgradient method with
bisection algorithm to solve non-convex, non-smooth (non-differentiable) programming
under linear constraints. Additionally, we intend to use the perturbed conditional gradient
method to address non-convex optimization problems in support vector machines (SVM).
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