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Abstract: In this research, we propose fourth-order non-uniform Hermitian differencing with a fifth-
order adaptive time integration method for pricing system of free boundary exotic power put options
consisting of the option value, delta sensitivity, and gamma. The main objective for implementing the
above scheme is to carefully account for the irregularity in the locality of the left corner point after
fixing the free boundary. Specifically and mainly, we stretch the performance of our proposed method
threefold. First, we exploit the non-uniform fourth-order Hermitian scheme to locally concentrate
space grid points arbitrarily close to the left boundary. Secondly, we further leverage the adaptive
nature of the embedded time integration method, which allows optimal selection of a time step based
on the space grid point distribution and regional variation. Thirdly, we introduce a fourth-order
combined Hermitian scheme, which requires fewer grid points for computing the near boundary
point of the delta sensitivity and gamma. Another novelty is how we approximate the optimal
exercise boundary and its derivative using a fifth-order Robin boundary scheme and fourth-order
combined Hermitian scheme. Our proposed method consistently achieves reasonable accuracy with
very coarse grids and little runtime across the numerical experiments. We further compare the results
with existing methods and the ones we obtained from the uniform space grid.

Keywords: power options; optimal exercise boundary; compact finite difference scheme; 5(4)
Dormand–Prince embedded pairs
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1. Mathematical Model

In this research, we propose a high-order non-uniform space and adaptive time
stepping scheme for pricing a system of free fixed-boundary exotic power put options
pricing models. Specifically, the high-order schemes in space and time are obtained from
the non-uniform fourth-order Hermitian differencing and Runge–Kutta adaptive time
integration based on 5(4) Dormand–Prince embedded pairs [1]. We formulate our solution
framework as a free boundary problem which approximates, simultaneously, the optimal
exercise boundary, option value, and Greeks. To this end, we first revisit the original
Black–Scholes equation. Let us consider non-dividend-paying put options V(t, S) written
on an underlying asset with price S(t), strike price K, and time-to-maturity T; the free
boundary partial differential equation is then given as

∂V(t, S)
∂t

+
σ2S2

2
∂2V(t, S)

∂S2 + rS
∂V(t, S)

∂S
− rV(t, S) = 0. (1)

The asset price S(t) is driven by geometric Brownian motion W(t), given as

dS(t) = µS(t)dt + σS(t)dW(t). (2)
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Here, {W(t), t ≥ 0} is a standard Brownian motion. σ represents the volatility, and r is the
interest rate. Let us consider F(St) = Sm(t) as a new underlying asset, with m representing
the power of the option value. Applying Itô’s formula, and under risk-neutral probability
Q, we then obtain

dF(St) = dSm(t) = m
(

σ2(m− 1)
2

+ r
)

Sm(t)dt + σmSm(t)dW(t), (3)

with the governing differential equation given as below as

∂V(t, Sm)

∂t
+

σ2m2(Sm)2

2
∂2V(t, Sm)

∂(Sm)2 + mSm
(

σ2(m− 1)
2

+ r
)

∂V(t, Sm)

∂Sm − rV(t, Sm) = 0. (4)

In this context, m ∈ N1. Kim [2] classified power options as standard power options,
capped power options, and powered options. For standard power options, the payoff is
given as

V(T, Sm) = (Km − Sm
T )

+, m > 0. (5)

Here, (x)+ = max{x, 0}. For the capped power options, we also have the following

V(T, Sm) = ((Km − Sm
T )

+, L)− m > 0, L > 0. (6)

Here, (x)− = min{x, 0}, and L represents a pre-defined, capped level. For the powered
option, we also provide the following:

V(T, Sm) = [(K− ST)
+]m m > 0. (7)

Lee et al. [3] and Topper [4] described an option representing the payoff in (7) as sym-
metric power options. Heynen and Kat [5] further presented power options with a more
generalized payoff given as

V(T, Sm
T ) =

(
m

∑
i=1

Ki −
m

∑
i=1

Si
T

)+

, m > 0. (8)

Here, we focus on the power payoff function presented in the work of Nwozo and
Fadugba [6] and Lee [7], which is as follows

V(T, Sm) = (K− Sm
T )

+. (9)

This is similar to the standard power options in (5), except that K is fixed with m = 1. It
is also known as an asymmetric power option [4]. Lee et al. [3] and Wang [8] described a
generalization of such options in (9) as polynomial options, given as

V(T, Sm) = (K− A(ST))
+, A(ST) =

m

∑
i=1

Si
T . (10)

Power options are high-risk, high-reward options. They leverage a magnified position
compared to vanilla options due to the non-linear nature of the payoff. Small changes in
the asset price can lead to a substantial change in the price of the option based on the power
term m. Therefore, for a security that it is expected to rise or fall, the call option holder
is bound to incur substantial gains or losses [9,10]. As described in the work of Kim [2]
and Huang et al. [9], power options are widely traded in the financial market and have
been issued in some countries in the form of polynomial power options [5] and capped FX
power options [4].
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In the American style framework with τ = T − t, the governing differential equation
in (4) is then reduced to a free boundary partial differential equation as shown below

∂V(τ, Sm)

∂τ
− σ2m2(Sm)2

2
∂2V(τ, Sm)

∂(Sm)2 −m
(

σ2(m− 1)
2

+ r
)

Sm ∂V(τ, Sm)

∂Sm

+ rV(τ, Sm) = 0 , Sm > s f (τ); (11)

V(τ, Sm) = K− Sm,
∂V(τ, Sm)

∂Sm = −1, Sm < s f (τ). (12)

The boundary and the initial condition are further given as shown below

V(τ, s f (τ)) = K− s f (τ),
∂V(τ, s f (τ))

∂Sm = −1; (13)

V(τ, ∞) = 0,
∂V(τ, ∞)

∂Sm = 0; (14)

V(0, Sm) = (K− Sm)+. (15)

To fix the free boundary and remove the convective term that could further introduce error,
we then implement a Landau transformation and further take the derivative as given below

x = ln
Sm

s f (τ)
, V(τ, Sm) = U(τ, x), W(τ, x) =

∂U(τ, x)
∂x

, Y(τ, x) =
∂2U(τ, x)

∂x2 . (16)

Hence, the transformed system of nonlinear American options pricing model consisting of
option value, delta sensitivity, and gamma is given below

∂U(τ, x)
∂τ

− σ2m2

2
∂2U(τ, x)

∂x2 − ξm(τ)W(τ, x) + rU(τ, x) = 0 , x > 0; (17)

∂W(τ, x)
∂τ

− σ2m2

2
∂2W(τ, x)

∂x2 − ξm(τ)
∂2U(τ, x)

∂x2 + rW(τ, x) = 0 , x > 0; (18)

∂Y(τ, x)
∂τ

− σ2m2

2
∂2Y(τ, x)

∂x2 − ξm(τ)
∂2W(τ, x)

∂x2 + rY(τ, x) = 0 , x > 0; (19)

ξm(τ) = m
(

σ2(m− 1)
2

+ r
)
+

s′f (τ)

s f (τ)
− σ2m2

2
= mr +

s′f (τ)

s f (τ)
− mσ2

2
, (20)

U(τ, x)) = K− exs f (τ), W(τ, x)) = −exs f (τ), x < 0; (21)

U(0, x) = 0, U(τ, 0) = K− s f (τ), U(τ, ∞) = 0, τ > 0; (22)

W(0, x) = 0, W(t, 0) = −s f (τ), W(τ, ∞) = 0, τ > 0; (23)

Y(0, x) = 0, Y(τ, ∞) = 0, x > 0. (24)

When x → 0+ and τ > 0, we need to substitute the left boundary values of the option
value with the first derivative in time and space to (17), from which we obtain

Y(τ, 0) =
∂2U(τ, 0)

∂x2 =
2rK

m2σ2 −
2

m2σ2

(
mσ2

2
−mr + r

)
s f (τ). (25)
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Several authors have proposed methods for solving exotic power options in both
European- and American-style frameworks using both integral and differential solution
forms. Okelola et al. [10] solved the power options model in the European framework
using the Lie group method. Heynen and Kat [5] presented power options in the European
framework with a more generalized polynomial payoff. The authors then considered
standard power options, generalized power options, and parabola options. Kim [2] solved
the power options in the European framework based on the regime switching model.
Rao [11] solved the Asian power options under fractional Brownian motion. Esser [12]
derived a compact formulation for general payoff and applied it to standard power options,
powered options, and capped power options under stochastic volatility. Kim et al. [13]
solved the exotic power options under the Heston volatility model. Blenman et al. [14]
solved a power exchange options written on a zero-coupon bond in a stochastic interest
rate framework. Ha et al. [15] solved a time power option under stochastic volatility.

Lee [7] numerically solved a non-dividend-paying American-style power option PDE
model as a free boundary problem with a second-order finite difference scheme. To the
best of our knowledge, only this author has attempted to solve such an exotic option PDE
model as a free boundary problem with a low-order scheme. Our main objective here is
to propose a high-order, fast, stable, and accurate non-uniform and adaptable numerical
scheme that solves a system of American-style exotic power option pricing models as a
free boundary problem. These systems of free boundary PDEs will solve the option value,
delta sensitivity, gamma, and optimal exercise boundary simultaneously. To the best of our
knowledge, we are the first to propose such a high-order scheme, non-uniform in space
and adaptive in time, for solving systems of free boundary exotic power option pricing
PDEs that simultaneously approximate the option value, Greeks, and the free boundary.

The remaining sections of this work are organized as follows. In Section 2, we intro-
duce a fourth-order non-uniform compact finite difference scheme and fifth-order adaptive
time integration based on 5(4) Dormand–Prince, Runge–Kutta embedded pairs [1] for
solving the free boundary exotic power options pricing problem on a locally refined space
grid. We verify the performance of this non-uniform and adaptive scheme and present our
numerical results in Section 3. We further compare with the existing method and conclude
our study in Section 4.

2. Numerical Methods

In this section, we present the numerical methods for computing the value function,
Greeks, and the optimal exercise feature of the American power put options. The numerical
computation was carried out in the domain (τ, x) ∈ ([0, T]× [0, xM]). Here, we replace the
infinite space domain [0, ∞) with the far-field boundary [0, xM]. This is because, for the
put options, the value function vanishes rapidly as we move further away from the right
boundary (out of the money). The space–time grid and its node points are described below

hi = xi+1 − xi, kn = τn+1 − τn, |[0, xM]| =
M−1

∑
i=0

hi, |[0, T]| =
N−1

∑
n=0

τn. (26)

We further label the numerical approximation of the option price, delta sensitivity, gamma,
and the optimal exercise boundary as un, wn, yn, and sn

f , with

un
xM

= wn
xM

= yn
xM

= 0, un
x0

= K− s f (τn), wx0 = −s f (τn); (27)

yn
x0

=
2rK

m2σ2 −
2

m2σ2

(
mσ2

2
+ mr− r

)
s f (τn). (28)

Stable treatment of the variation at the left corner point and computation of the optimal
exercise boundary and its derivative with precision are at the heart of this research work,
and both objectives are intertwined. Moreover, the precise computation of the optimal
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exercise boundary and its first derivative will influence the accuracy of the option value
and the hedge sensitivity. The secondary intention here is to understand how we can use
a few grid points to achieve greater accuracy by feeding more of those grid points to the
locality of the left corner point. To this end, we seek some leverage and control in the
locality of the left corner point of the grid such that we can manipulate the space grid
distribution in that neighborhood and further allow the fifth-order time integration method
based on Dormand–Prince, Runge–Kutta embedded pairs [1] to select the optimal time step
at each time level that adapts well to the regional variation and space grid distribution. The
adaptive attribute of the embedded time stepping plays well in our favor here by allowing
us to initialize our proposed method with arbitrary time steps k0 and fixed step sizes h,
thus circumventing the stability challenge associated with explicit time integration schemes.
The strategic implementation is described fully in the subsections of this section.

2.1. Fourth-Order Non-Equidistant Hermitian Differencing on a Locally Refined Grid

In this subsection, we present a high-order numerical scheme that enables grid re-
finement about the locality of the left corner point by introducing local mesh refinement
results in a non-uniform grid. Hence, the conventional fourth-order compact scheme is no
longer applicable. To this end, we introduce the non-equidistant fourth-order Hermitian
differencing presented in the work of Shukla and Zhong [16] and Shukla et al. [17] for
discretizing interior nodes as given below

di,1 f ′′(xi−1) + f ′′(xi) + di,3 f ′′(xi+1) ≈ ei,1 f (xi−1) + ei,2 f (xi) + ei,3 f (xi+1), i = 2, 3, · · ·M− 1; (29)

with

di,1 =

(
hi+1

hi + hi+1

)( h2
i + h2

i h2
i+1 − h2

i+1

h2
i + 3hi+1hi + h2

i+1

)
, di,3 =

(
hi

hi + hi+1

)( h2
i+1 + h2

i h2
i+1 − h2

i

h2
i + 3hi+1hi + h2

i+1

)
; (30)

ei,1 =

(
hi+1

hi + hi+1

)(
12

h2
i + 3hi+1hi + h2

i+1

)
, ei,2 =

−12
h2

i + 3hi+1hi + h2
i+1

; (31)

ei,3 =

(
hi

hi + hi+1

)(
12

h2
i + 3hi+1hi + h2

i+1

)
. (32)

Refining grids in the locality of the optimal exercise boundary point gives us some advan-
tages, which will be described below. It allows us to use more nodal points very close to
x0 when computing the optimal exercise boundary. We will exploit this feature in a more
strategic way in this subsection.

Here, we will first establish a uniform grid and then manually add a few extra grid
points very close to the left boundary point. We will use the near-left boundary grid points
to initialize the first derivative of the optimal exercise boundary and further compute the
optimal exercise boundary and its first derivative after each successive function evaluation
stage with the fifth-order Runge–Kutta embedded time integration method based on
Dormand–Prince pairs. This implementation will both allow us to use points very close
to the left boundary to approximate the optimal exercise boundary and its derivative and
enable a locally refined grid in the left corner, where inherent irregularities and variation
reside. Here, we delicately add these few grid points in such a way that the points we
use for computing the free boundary and the near boundary discrete values are both very
refined and equidistant, even though the grid is globally non-uniform. For a description,
please see Figure 1. For a similar implementation for solving the options pricing problem
with a high-order compact scheme, please see the work of Chen et al. [18] and Lee and
Sun [19].
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Figure 1. Uniform and locally refined space grids (ha ≤ min hi).

For the near boundary scheme, i.e, x1, we will consider fourth-order combined compact
finite difference schemes for approximating the solution of the option value as given below

6u′′(τn, x1) =
12
h2

a
(u(τn, x0)− 2u(τn, x1) + u(τn, x2))−

3
ha

(w(τn, x2)− w(τn, x0)), ha ≤ min hi. (33)

We point out that the fourth-order, one-sided, non-combined compact scheme given below

14u′′(τn, x1)− 5u′′(τn, x2) + 4u′′(τn, x3)−u′′(τn, x4) =

12
h2

a
(u(τn, x0)− 2u(τn, x1) + u(τn, x2)), ha ≤ min hi (34)

can also be used as the near boundary scheme for the option value as presented in the
work of Zhao and Corless [20] and Nwankwo and Dai [21]. However, we observe that, for
uniform implementation, the fourth-order combined compact scheme in (33) provides more
reasonable accuracy, although the discrepancy when compared with (34) is not substantial.
We imagine that the reason could be that we use fewer grid points for approximation.
The availability of discrete solutions for hedge sensitivity also works in our favor here.
Moreover, for the non-uniform grid, we are trying to avoid using more grid points to
account for the near boundary scheme based on the slight uniformity we achieve near the
left boundary. Any selected grid points for accounting for the near boundary value must
fall within the local uniform domain, even though our space grid is globally non-uniform.
Hence, in the Section 3, we consider only (33). Furthermore, for the delta sensitivity, we
use a different fourth-order near boundary combined compact finite difference scheme by
considering the following lemma

Lemma 1. Assume that u(τ, x) ∈ C1,3((0, T], (0, xmax]); we have

u′′′(τ, x1) =
15
2h3

a
[u(τ, x2)− u(τ, x0)])−

3
2h2

a
[w(τ, x0) + 8w(τ, x1) + w(τ, x2)] + O(h4). (35)

Proof. Let xi+j − xi = jh. To prove the lemma in (35), we consider two well-known
differences of two Taylor series expansions

u(τ, xi−1)− u(τ, xi+1) = 2hux(τ, xi) +
h3

3
ux3(τ, xi) +

h5

60
ux5(τ, xi) + O(h7), (36)
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u(τ, xi−1) + u(τ, xi+1) = 2u(τ, xi) + h2ux2(τ, xi) +
h4

12
ux4(τ, xi) + O(h6). (37)

Taking the derivative of (37) with respect to x and multiplying by h
5 , we obtain the equation

h
5

ux(τ, xi−1) +
h
5

ux(τ, xi+1) =
2h
5

ux(τ, xi) +
h3

5
ux3(τ, xi) +

h
60

ux5(τ, xi) + O(h7). (38)

Subtracting (36) from (38) and re-arranging, we then obtain (35), and the derivation is
complete.

We observed after deriving this fourth-order combined compact scheme in (35) that the
latter had already been presented and used in the work of Abrahamsen and Fornberg [22]
and, as such, we recognized the need to acknowledge their work here. The high-order
scheme in (35) allows us to use the discrete value of the option value to approximate
the near boundary value of delta, thereby reducing sensitivity. Moreover, fewer nodal
values of the higher derivatives are used when deriving the near boundary scheme for
the delta sensitivity, as shown in (35). It is worth mentioning that, for the delta sensitivity,
the novel near-boundary fourth-order combined compact scheme in (35) is much more
suitable and provides a more accurate result when compared with (34). In the uniform
case, the condition number of the discrete matrix system generated with (34) is larger when
compared with (35). Similarly, the near boundary value for the gamma is approximated
as follows

u′′′′(τ, x1) =
15
2h3

a
[w(τ, x2)− w(τ, x0)])−

3
2h2

a
[y(τ, x0) + 8y(τ, x1) + y(τ, x2)] + O(h4). (39)

More importantly, we present below a high-order Robin boundary scheme for approxi-
mating the optimal exercise boundary and its derivative after each function evaluation
stage with the high-order embedded time integration method. To this end, we consider the
following lemma

Lemma 2. Assume that u(τ, x) ∈ C1,2((0, T], [0, xmax]); we have

−85
18

u(τ, x0) + 6u(τ, x1)−
3
2

u(τ, x2) +
2
9

u(τ, x3) =
11
3

hau′(τ, x0) + h2
au′′(τ, x0) + O(h5). (40)

Proof. Let xi+1 − xi = ha, i = 1,2,3. To prove the lemma in (40), we first present the Taylor
series expansion around x0 = 0 as follows

u(τ, x1) = u(τ, x0) + haux(τ, x0) +
h2

a
2

ux2(τ, x0) +
h3

a
6

ux3(τ, x0) +
h4

a
24

ux4(τ, x0) + O(h5), (41)

u(τ, x2) = u(τ, x0) + 2haux(τ, x0) +
4h2

a
2

ux2(τ, x0) +
4h3

a
3

ux3(τ, x0) +
2h4

a
3

ux4(τ, x0) + O(h5), (42)

u(τ, x3) = u(τ, x0) + 3haux(τ, x0) +
9h2

a
2

ux2(τ, x0) +
9h3

a
2

ux3(τ, x0) +
27h4

a
8

ux4(τ, x0) + O(h5). (43)

Multiplying (41) by 8 and subtracting from (42), we obtain

8u(τ, x1)− u(τ, x2) = 7u(τ, x0) + 6haux(τ, x0) + 2ux2(τ, x0) +
h4

a
3

ux4(τ, x0) +O(h5). (44)

Multiplying (42) by 27
8 and subtracting from (43), we obtain

27
8

u(τ, x2)− u(τ, x3) =
19
8

u(τ, x0) +
15
4

haux(τ, x0) +
9h2

a
4

ux2(τ, x0)−
9h8

a
3

ux4(τ, x0) + O(h5). (45)
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Multiplying (44) by 27
8 and subtracting from (42) with some re-arrangement, we obtain (40),

and the proof is completed.

The high-order scheme above will enable us to approximate the optimal exercise
boundary and its first derivative in time with better precision. If we consider value
matching, smooth pasting, and the implied second derivative boundary conditions

u(τ, x0) = K− s f (τ), u′(τ, x0) = −s f (τ); (46)

u′′(τ, x0) =
2rK

m2σ2 −
2

m2σ2

(
mσ2

2
+ mr− r

)
s f (τ), (47)

we obtain

6u(τ, x1)−
3
2

u(τ, x2) +
2
9

u(τ, x3) =

(
85
18

+
2rh2

a
m2σ2

)
K

−
[

85
18

+
11
3

ha +
2

m2σ2

(
mσ2

2
+ mr− r

)
h2

a

]
s f (τ) + O(h5). (48)

For simplicity, let

σ̄ = m2σ2, a1 =

(
85
18

+
2rh2

a
σ̄2

)
, a2 =

85
18

+
11
3

ha +
2
σ̄2

(
mσ2

2
+ mr− r

)
h2

a. (49)

Hence,

6u(τ, x1)−
3
2

u(τ, x2) +
2
9

u(τ, x3) = a1K− a2s f (τ) + O(h5). (50)

Equation (50) approximates the optimal exercise boundary after each function evaluation
based on Runge–Kutta embedded pairs that are described in the following subsection.
Equation (50) is also used to formulate an analytical approximation for initializing and
further correcting the first derivative of the optimal exercise boundary. To this end, we take
the derivative of (48) with respect to time and obtain the following

6uτ(τ, x1)−
3
2

uτ(τ, x2) +
2
9

uτ(τ, x3) = −a2s′f (τ) + O(h5). (51)

Due to the time-dependent coefficient present in our model, the first derivative of the
optimal exercise boundary needs to be computed with precision, especially very close
to the expiration. Here, we derive a novel high-order analytical approximation for the
initialization (prediction) of the first derivative of the optimal exercise boundary at each
time level, which will be subsequently corrected from the solutions of the Runge–Kutta
pairs at each stage of function evaluation using (51). To this end, we recall the fourth-order
combined compact finite difference presented as given below

6u′′(τn, xi) ≈
12
h2

a
(u(τn, xi−1)− 2u(τn, xi) + u(τn, xi+1))−

3
ha

(w(τn, xi+1)− w(τn, xi−1)). (52)

For simplicity, let

U (τ, xi) =
12
h2

a
(u(τn, xi−1)− 2u(τn, xi) + u(τn, xi+1))

− 3
ha

(w(τn, xi+1)− w(τn, xi−1)), i = 1, 2, 3. (53)
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Furthermore, considering the PDE governing the fixed free boundary American options,
we obtain the following

σ̄2

2

(
6U (τn, x1)−

3
2
U (τn, x2) +

2
9
U (τn, x3)

)
=

σ̄2

2

(
6uxx(τn, x1)−

3
2

uxx(τn, x2) +
2
9

uxx(τn, x3)

)
=

6uτ(τn, x1)−
3
2

uτ(τn, x2) +
2
9

uτ(τn, x3)−
1

s f (τn)
s′f (τn)

(
6w(τn, x1)−

3
2

w(τn, x2) +
2
9

w(τn, x3)

)

−
(

mr− mσ2

2

)(
6w(τn, x1)−

3
2

w(τn, x2) +
2
9

w(τn, x3)

)

+ r
(

6u(τn, x1)−
3
2

u(τn, x2) +
2
9

u(τn, x3)

)
=

−
[

a2 +
1

s f (τ)

(
6w(τ, x1)−

3
2

w(τ, x2) +
2
9

w(τ, x3)

)]
s′f (τn)

−
(

mr− mσ2

2

)(
6w(τ, x1)−

3
2

w(τ, x2) +
2
9

w(τ, x3)

)

+ r
(

6u(τ, x1)−
3
2

u(τ, x2) +
2
9

u(τ, x3)

)
+ O(h4). (54)

Further simplification reveals that

s′f (τn) =
F (τn)

G(τn)
+ O(h4), (55)

with

F (τn) =
σ̄2

2

(
6U (τn, x1)−

3
2
U (τn, x2) +

2
9
U (τn, x3)

)
− r
[

a1K− a2s f (τn)]
)

+

(
mr− mσ2

2

)(
6w(τn, x1)−

3
2

w(τn, x2) +
2
9

w(τn, x3)

)
, (56)

G(τ) = −
[

a2 +
1

s f (τn)

(
6w(τn, x1)−

3
2

w(τn, x2) +
2
9

w(τn, x3)

)]
. (57)

It is important to observe that establishing a system of free boundary PDEs consisting
of the option value and hedge sensitivity is very useful here. Not only does it enable
us to deal with the convective term that could further introduce error and allow simple
implementation of the fourth-order compact scheme, but we also use the discrete solution
of the delta sensitivity for predicting the initial value of the first derivative of the optimal
exercise boundary for each time level. Furthermore, computing the Greeks simultaneously
with the option value and optimal exercise boundary using a fourth-order compact op-
erator presents some benefits that could be substantial if the computational cost is very
low. We hope to demonstrate extensively in the numerical experiment section that our
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implementation holds such an advantage. For the rest of the interior points for the option
value and delta sensitivity, we use the same fourth-order compact scheme presented in (29).
Hence,

Auuxx = Buu + bu, Aw,ywxx = Bw,yw + bw, Aw,yyxx = Bw,yy + by; (58)

with Au, Bu, bu, Aw,y, Bw,y, bw, and by, given as:

Au =



6 0 0 0 0 0 · · · 0 0
di,1 1 di,3 0 0 0 · · · 0 0
0 d3,2 1 d3,4 0 0 · · · 0 0
0 0 d4,3 1 d4,5 0 · · · 0 0
...

...
...

. . . . . . . . .
...

...
...

0 0 · · · 0 dM−5,M−4 1 dM−3,M−4 0 0
0 0 · · · 0 0 dM−4,M−3 1 dM−2,M−3 0
0 0 · · · 0 0 0 dM−3,M−2 1 dM−1,M−2
0 0 · · · 0 0 0 0 dM−2,M−1 1


,

Aw,y =



10 0 0 0 0 0 · · · 0 0
0 d3,2 1 d3,4 0 0 · · · 0 0
0 0 d4,3 1 d4,5 0 · · · 0 0
...

...
...

. . . . . . . . .
...

...
...

0 0 · · · 0 dM−5,M−4 1 dM−3,M−4 0 0
0 0 · · · 0 0 dM−4,M−3 1 dM−2,M−3 0
0 0 · · · 0 0 0 dM−3,M−2 1 dM−1,M−2
0 0 · · · 0 0 0 0 dM−2,M−1 1


,

Bu =



− 24
h2

a

12
h2

a
0 0 0 0 · · · 0 0

e2,1 e2,2 e2,3 0 0 0 · · · 0 0
0 e3,2 e3,3 e3,4 0 0 · · · 0 0
0 0 e4,3 e4,4 e4,5 0 · · · 0 0
...

...
...

. . . . . . . . .
...

...
...

0 0 · · · 0 eM−5,M−4 eM−4,M−4 eM−3,M−4 0 0
0 0 · · · 0 0 eM−4,M−3 eM−3,M−3 eM−2,M−3 0
0 0 · · · 0 0 0 eM−3,M−2 eM−2,M−2 eM−1,M−2
0 0 · · · 0 0 0 0 eM−2,M−1 eM−1,M−1


,

Bw,y =



− 120
h2

a
− 15

h2
a

0 0 0 0 · · · 0 0
e2,1 e2,2 e2,3 0 0 0 · · · 0 0
0 e3,2 e3,3 e3,4 0 0 · · · 0 0
0 0 e4,3 e4,4 e4,5 0 · · · 0 0
...

...
...

. . . . . . . . .
...

...
...

0 0 · · · 0 eM−5,M−4 eM−4,M−4 eM−3,M−4 0 0
0 0 · · · 0 0 eM−4,M−3 eM−3,M−3 eM−2,M−3 0
0 0 · · · 0 0 0 eM−3,M−2 eM−2,M−2 eM−1,M−2
0 0 · · · 0 0 0 0 eM−2,M−1 eM−1,M−1


,
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bu =



12
h2

a
un

0 − 3
ha

(
wn

2 − wn
0
)

0
0
0
0
0
0
0
0


, bw =



75
h3

a

(
un

2 − un
0
)
− 15

h2
a
wn

0

0
0
0
0
0
0
0
0


, by =



75
h3

a

(
wn

2 − wn
0
)
− 15

h2
a
yn

0

0
0
0
0
0
0
0
0


.

With the discrete matrix system above, we then obtain the semi-discrete system for the
option value and hedge sensitivity as follows

un
τ =

σ̄2

2
A−1

u (Buun + bn
u) + ξm(n)w

n − run + O(h4), (59)

wn
τ =

σ̄2

2
A−1

w,y
(

Bw,ywn + bn
w
)
+ ξm(n)A−1

u (Buun + bn
u)− rwn + O(h4), (60)

yn
τ =

σ̄2

2
A−1

w,y

(
Bw,yyn + bn

y

)
+ ξm(n)A−1

w,y
(

Bw,ywn + bn
w
)
− ryn + O(h4). (61)

Remark 1. It is worth acknowledging here the recent work of [23], where the authors implemented
a high-order non-uniform Hermitian scheme for solving the fractional Black–Scholes model. The
non-uniform high-order scheme proposed by the authors in their paper can also be used in this
research work.

2.2. 5(4) Dormand–Prince, Runge–Kutta Embedded Time Integration Method

As mentioned in the previous subsection, at each time level (and more importantly,
when τ = 0), the first derivative of the optimal exercise boundary is initialized (predicted)
as given below.

Preliminary stage:

s′f (τn) =
Fn

Gn + O(h4), ξm(n) = mr +
s′f (τn)

s f (τn)
−m

σ2

2
. (62)

The numerical procedure for the implementation of adaptive time stepping at each time
level based on the 5(4) Dormand–Prince, Runge–Kutta embedded time integration method
is described below.

First stage:

un
τ =

σ̄2

2
A−1

u (Buun + bn
u) + ξm(n)w

n − run + O(h4)

un+1/7 = un +
k
5

un
τ

wn
τ =

σ̄2

2
A−1

w,y

(
Bw,yyn + bn

w,y

)
+ ξm(n)A−1

u (Buun + bn
u)− rwn + O(h4)

wn+1/7 = wn +
k
5

wn
τ

yn
τ =

σ̄2

2
A−1

w,y

(
Bw,ywn + bn

w,y

)
+ ξm(n)A−1

w,y

(
Bw,ywn + bn

w,y

)
− ryn + O(h4)

yn+1/7 = yn +
k
5

yn
τ
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s f (τn+1/7) = −
M(τn+1/7)− a1K

a2
+ O(h5), s′f (τn+1/7) = −

M′(τn+1/7)

a2
+ O(h5)

u(τn+1/7, x0) = K− s f (τn+1/7), w(τn+1/7, x0) = −s f (τn+1/7)

M(τn+1/7) = 6u(τn+1/7, x1)−
3
2

u(τn+1/7, x2) +
2
9

u(τn+1/7, x3)

ξm(n+1/7) = mr +
s′f (τn+1/7)

s f (τn+1/7)
−m

σ2

2

Second stage:

un+1/7
τ =

σ̄2

2
A−1

u

(
Buun+1/7 + bn+1/7

u

)
+ ξm(n+1/7)w

n+1/7 − run+1/7 + O(h4)

un+2/7 = un +
3k
40

un
τ +

9k
40

un+1/7
τ

wn+1/7
τ =

σ̄2

2
A−1

w,y

(
Bw,ywn+1/7 + bn+1/7

w

)
+ ξn+1/7 A−1

u

(
Buun+1/7 + bn+1/7

u

)

− rwn+1/7 + O(h4)

wn+2/7 = wn +
3k
40

wn
τ +

9k
40

wn+1/7
τ

yn+1/7
τ =

σ̄2

2
A−1

w,y

(
Bw,yyn+1/7 + bn+1/7

y

)
+ ξm(n+1/7)A−1

w,y

(
Bw,ywn+1/7 + bn+1/7

w

)

− ryn+1/7 + O(h4)

yn+2/7 = yn +
3k
40

yn
τ +

9k
40

yn+1/7
τ

s f (τn+2/7) = −
M(τn+2/7)− a1K

a2
+ O(h5), s′f (τn+2/7) = −

M′(τn+2/7)

a2
+ O(h5)

u(τn+2/7, x0) = K− s f (τn+2/7), w(τn+2/7, x0) = −s f (τn+2/7)

M(τn+2/7) = 6u(τn+2/7, x1)−
3
2

u(τn+2/7, x2) +
2
9

u(τn+2/7, x3)

ξm(n+2/7) = mr +
s′f (τn+2/7)

s f (τn+2/7)
−m

σ2

2

Third stage:

un+2/7
τ =

σ̄2

2
A−1

u

(
Buun+2/7 + bn+2/7

u

)
+ ξm(n+2/7)w

n+2/7 − run+2/7 + O(h4)

un+3/7 = un +
44k
45

un
τ −

55k
16

un+1/7
τ +

32k
9

un+2/7
τ

wn+2/7
τ =

σ̄2

2
A−1

w,y

(
Bw,ywn+2/7 + bn+2/7

w

)
+ ξm(n+2/7)A−1

u

(
Buun+2/7 + bn+2/7

u

)

− rwn+2/7 + O(h4)
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wn+3/7 = wn +
44k
45

wn
τ −

55k
16

wn+1/7
τ +

32k
9

wn+2/7
τ

yn+2/7
τ =

σ̄2

2
A−1

w,y

(
Bw,yyn+2/7 + bn+2/7

y

)
+ ξm(n+2/7)A−1

w,y

(
Bw,ywn+2/7 + bn+2/7

w

)

− ryn+2/7 + O(h4)

yn+3/7 = yn +
44k
45

yn
τ −

55k
16

yn+1/7
τ +

32k
9

yn+2/7
τ

s f (τn+3/7) = −
M(τn+3/7)− a1K

a2
+ O(h5), s′f (τn+2/7) = −

M′(τn+3/7)

a2
+ O(h5);

u(τn+3/7, x0) = K− s f (τn+3/7), w(τn+3/7, x0) = −s f (τn+3/7)

M(τn+3/7) = 6u(τn+3/7, x1)−
3
2

u(τn+3/7, x2) +
2
9

u(τn+3/7, x3),

ξm(n+3/7) = mr +
s′f (τn+3/7)

s f (τn+3/7)
−m

σ2

2

Fourth stage:

un+3/7
τ =

σ̄2

2
A−1

u

(
Buun+3/7 + bn+3/7

u

)
+ ξn+3/7wn+3/7 − run+3/7 + O(h4)

un+4/7 = un +
19732k
6561

un
τ −

25360k
2187

un+1/7
τ +

64448k
6561

un+2/7
τ − 212k

729
un+3/7

τ

wn+3/7
τ =

σ2

2
A−1

w,y

(
Bw,ywn+3/7 + bn+3/7

w

)
+ ξm(n+3/7)A−1

u

(
Buun+3/7 + bn+3/7

u

)

− rwn+3/7 + O(h4)

wn+4/7 = wn +
19732k
6561

wn
τ −

25360k
2187

wn+1/7
τ +

64448k
6561

wn+2/7
τ − 212k

729
wn+3/7

τ

yn+3/7
τ =

σ̄2

2
A−1

w,y

(
Bw,yyn+3/7 + bn+3/7

y

)
+ ξm(n+3/7)A−1

w,y

(
Bw,ywn+3/7 + bn+3/7

w

)

− ryn+3/7 + O(h4)

yn+4/7 = yn +
19732k
6561

yn
τ −

25360k
2187

yn+1/7
τ +

64448k
6561

yn+2/7
τ − 212k

729
yn+3/7

τ

s f (τn+4/7) = −
M(τn+4/7)− a1K

a2
+ O(h5), s′f (τn+4/7) = −

M′(τn+4/7)

a2
+ O(h5)

u(τn+4/7, x0) = K− s f (τn+4/7), w(τn+4/7, x0) = −s f (τn+4/7)

M(τn+4/7) = 6u(τn+4/7, x1)−
3
2

u(τn+4/7, x2) +
2
9

u(τn+4/7, x3),

ξm(n+4/7) = mr +
s′f (τn+4/7)

s f (τn+4/7)
−m

σ2

2
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Fifth stage:

un+4/7
τ =

σ̄2

2
A−1

u

(
Buun+4/7 + bn+4/7

u

)
+ ξm(n+4/7)w

n+4/7 − run+4/7 + O(h4)

un+5/7 = un +
9017k
3168

un
τ −

355k
33

un+1/7
τ +

46732k
5247

un+2/7
τ +

49k
176

un+3/7
τ − 5103k

18656
un+4/7

τ

wn+4/7
τ =

σ̄2

2
A−1

w,y

(
Bw,ywn+4/7 + bn+4/7

w

)
+ ξm(n+4/7)A−1

u

(
Buun+4/7 + bn+4/7

u

)

− rwn+4/7 + O(h4)

wn+5/7 = wn +
9017k
3168

wn
τ −

355k
33

wn+1/7
τ +

46732k
5247

wn+2/7
τ +

49k
176

wn+3/7
τ − 5103k

18656
wn+4/7

τ

yn+4/7
τ =

σ̄2

2
A−1

w,y

(
Bw,yyn+4/7 + bn+4/7

y

)
+ ξm(n+4/7)A−1

w,y

(
Bw,ywn+4/7 + bn+4/7

w

)

− ryn+4/7 + O(h4)

yn+5/7 = yn +
9017k
3168

yn
τ −

355k
33

yn+1/7
τ +

46732k
5247

yn+2/7
τ +

49k
176

yn+3/7
τ − 5103k

18656
yn+4/7

τ

s f (τn+5/7) = −
M(τn+5/7)− a1K

a2
+ O(h5), s′f (τn+5/7) = −

M′(τn+5/7)

a2
+ O(h5)

u(τn+5/7, x0) = K− s f (τn+5/7), w(τn+5/7, x0) = −s f (τn+5/7)

M(τn+5/7) = 6u(τn+5/7, x1)−
3
2

u(τn+5/7, x2) +
2
9

u(τn+5/7, x3)

ξm(n+5/7) = mr +
s′f (τn+5/7)

s f (τn+5/7)
−m

σ2

2

Sixth stage:

un+5/7
τ =

σ̄2

2
A−1

u

(
Buun+5/7 + bn+5/7

u

)
+ ξm(n+5/7)w

n+5/7 − run+5/7 + O(h4)

un+6/7 = un +
35k
384

un
τ +

500k
1113

un+1/7
τ +

125k
192

un+2/7
τ − 2187k

6784
un+3/7

τ +
11k
84

un+4/7
τ

wn+5/7
τ =

σ̄2

2
A−1

w,y

(
Bw,ywn+5/7 + bn+5/7

w

)
+ ξm(n+5/7)A−1

u

(
Buun+5/7 + bn+5/7

u

)

− rwn+5/7 + O(h4)

wn+6/7 = wn +
35k
384

wn
τ +

500k
1113

wn+1/7
τ +

125k
192

wn+2/7
τ − 2187k

6784
wn+3/7

τ +
11k
84

wn+4/7
τ

yn+5/7
τ =

σ̄2

2
A−1

w,y

(
Bw,yyn+5/7 + bn+5/7

y

)
+ ξm(n+5/7)A−1

w,y

(
Bw,ywn+5/7 + bn+5/7

w

)

− ryn+5/7 + O(h4)



Axioms 2023, 12, 602 15 of 26

yn+6/7 = yn +
35k
384

yn
τ +

500k
1113

yn+1/7
τ +

125k
192

yn+2/7
τ − 2187k

6784
yn+3/7

τ +
11k
84

yn+4/7
τ

s f (τn+6/7) = −
M(τn+6/7)− a1K

a2
+ O(h5), s′f (τn+6/7) = −

M′(τn+6/7)

a2
+ O(h5)

u(τn+6/7, x0) = K− s f (τn+6/7), w(τn+6/7, x0) = −s f (τn+6/7)

M(τn+6/7) = 6u(τn+6/7, x1)−
3
2

u(τn+6/7, x2) +
2
9

u(τn+6/7, x3)

ξm(n+6/7) = mr +
s′f (τn+6/7)

s f (τn+6/7)
−m

σ2

2

Seventh stage:

s f (τn+1) = s f (τn+6/7), un+1 = un+6/7, wn+1 = wn+6/7, yn+1 = yn+6/7

un+6/7
τ =

σ̄2

2
A−1

u

(
Buun+6/7 + bn+6/7

u

)
+ ξm(n+6/7)w

n+6/7 − run+6/7 + O(h4)

ūn+1 = un +
5179k
57600

un
τ +

7571k
16695

un+2/7
τ +

393k
640

un+3/7
τ − 92097k

339200
un+4/7

τ +
187k
2100

un+5/7
τ

+
k

40
un+6/7

τ

wn+6/7
τ =

σ̄2

2
A−1

w,y

(
Bw,ywn+6/7 + bn+6/7

w

)
+ ξm(n+6/7)A−1

u

(
Buun+6/7 + bn+6/7

u

)

− rwn+6/7 + O(h4)

w̄n+1 = wn +
5179k
57600

wn
τ +

7571k
16695

wn+2/7
τ +

393k
640

wn+3/7
τ − 92097k

339200
wn+4/7

τ

+
187k
2100

wn+5/7
τ +

k
40

wn+6/7
τ

yn+6/7
τ =

σ̄2

2
A−1

w,y

(
Bw,yyn+6/7 + bn+6/7

y

)
+ ξm(n+6/7)A−1

w,y

(
Bw,ywn+6/7 + bn+6/7

w

)

− ryn+6/7 + O(h4)

ȳn+1 = yn +
5179k
57600

yn
τ +

7571k
16695

yn+2/7
τ +

393k
640

yn+3/7
τ − 92097k

339200
yn+4/7

τ

+
187k
2100

yn+5/7
τ +

k
40

yn+6/7
τ

s̄ f (τn+1) = −
M̄(τn+1)− a1K

a2
+ O(h5)

ū(τn+1, x0) = K− s̄ f (τn+1), w̄(τn+1, x0) = −s̄ f (τn+1)
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M̄(τn+1) = 6ū(τn+1, x1)−
3
2

ū(τn+1, x2) +
2
9

ū(τn+1, x3)

Here, s f (τn+1), un+1, and wn+1 are obtained from the fifth-order Runge–Kutta integra-
tion scheme, which will represent the numerical approximation of the optimal exercise
boundary, option value, and hedge sensitivity. Moreover, s̄ f (τn+1), ūn+1, and w̄n+1 are
fourth-order accurate in time and will be used in conjunction with the solution from the
fifth-order scheme to establish an error threshold for the selection of the optimal time step
based on the regional variation and grid point distribution. For brevity, we skip further ex-
planation. Please see the work of Nwankwo and Dai [21,24,25], where the author describes
the implementation of these embedded pair(s) for solving the American options pricing
model that involves coupled systems of diffusive–convective–reaction PDEs on a uniform
space grid.

3. Numerical Experiment

In this section, we investigate the efficiency of our implementation and compare
its performance with some of the existing methods in the literature, as well as with the
results obtained with the uniform fourth-order compact scheme and 5(4) Dormand–Prince
embedded pairs. Numerical experiments were carried out on a workstation with a 12th
Gen Intel(R) Core(TM) i7-12700H at 2.30 GHz on a 64-bit Windows 11 operating system.
Furthermore, the MATLAB programming language was used for numerical experiments
and visualization. For convenience, we label our methods as follows

• DPC-Uniform: Fourth-order compact scheme with 5(4) Dormand–Prince embedded
pairs on an equidistant space grid;

• DPC-Loc1: Fourth-order compact scheme with 5(4) Dormand–Prince embedded pairs
on a locally refined space grid (ha = 0.5 h).

• DPC-Loc2: Fourth-order compact scheme with 5(4) Dormand–Prince embedded pairs
on a locally refined space grid (ha = 0.25 h).

• DPC-Loc3: Fourth-order compact scheme with 5(4) Dormand–Prince embedded pairs
on a locally refined space grid (ha = 0.125 h).

In all the examples in this section, we conduct our experiment with very coarse
grids. h = 0.025 is the minimum step size we use for computing our numerical solutions.
Furthermore, ha = 0.5 h, ha = 0.25 h, and ha = 0.125 h represent the smallest step size
in the space grid, which represents the step size of the local uniform domain close to
the left corner point in the non-uniform grids for DPC-Loc1, DPC-Loc2, and DPC-Loc3,
respectively. The reason for conducting our experiment with a very coarse grid is to better
understand if there are significant impacts our mesh refinement strategies could have on
the solution accuracy, optimal time selection, and computational speed.

3.1. Investigating Solution Accuracy on Both Uniform and Non-Equidistant Space Grids with
Unit Power Terms

In this subsection, we first consider a case for the power put option where the power
term m = 1. When m = 1, we are simply investigating the vanilla American put options
pricing problem. Here, we want to verify the performance of the presented method in terms
of solution accuracy and computational runtime on both uniform and non-equidistant
space grids with adaptive time stepping techniques. With a non-equidistant grid, we
investigate the impact of local refinement and coordinate transformation on the solution
accuracy and runtime in seconds using very coarse grids. To this end, we first consider the
example presented in the work of Nwankwo and Dai [21] with the parameter shown in
Table 1.

Table 1. First numerical data.

K T r σ xmax

100 6/12 5% 20% 3.00
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Here, we will use the numerical data above to investigate the solution accuracy
of the optimal exercise boundary using both uniform and non-equidistant grids. Our
experiment for this example is conducted on very coarse grids (h = 0.05 and h = 0.025).
The plot profile of the optimal exercise display is shown in Figure 2. In Tables 2 and 3, we
present the numerical approximation when τ = T with a runtime in seconds. Here, the
runtime in seconds is defined as the time required to run the whole code from initialization
to visualization. The benchmark solution is obtained from a sixth-order compact finite
difference scheme with a third-order Runge–Kutta adaptive time integration method
and free boundary improvement [25]. A step size of h = 0.01 is used to obtain the
benchmark value.
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Table 2. Comparing the optimal exercise boundary and runtime in seconds (ε = 10−3).
s f (T) = 83.91996 is the benchmark value.

h DPC-Loc1 DPC-Loc2 DPC-Loc3 DPC-Uniform

0.05 83.92016 83.92055 83.92042 83.92703
0.025 83.92008 83.91988 83.91985 83.91961

Table 3. Comparing the runtime in seconds.

h DPC-Loc1 DPC-Loc2 DPC-Loc3 DPC-Uniform

0.05 0.186678 0.355253 1.161236 0.279023
0.025 1.059206 2.429464 8.883537 0.628332

We observe from Figure 2 the importance of the local mesh refinement as it improves
accuracy close to the left corner point where x = 0 and τ = 0. In Figure 2, for instance,
with a uniform grid, when h = 0.05, the optimal exercise boundary is not very smooth
close to the payoff. However, with locally refined grids, especially with DPC-Loc2 and
DP-Loc3, we observe that the optimal exercise boundary is very smooth with h = 0.05,
thus establishing the importance of refining the grid at the left corner point. Moreover, the
scheme with a locally refined grid, as shown in Table 4, presents the most accurate result
when compared with the one obtained from the uniform grid. Another advantage of the
local mesh refinement as presented here is that only a few grid points are introduced while
retaining the uniformity of the grid in most regions.

Next, we establish that our proposed methods can be implemented with arbitrary step
sizes and time steps, which is an important feature of the Runge–Kutta embedded time
integration method. To this end, we fix h = 0.025 and initialize with varying initial time
steps k0 = 6.25 and 0.000625. We display the result in Table 4.

Table 4. Initializing with varying initial time step k0 and fixed step size (h = 0.025 and ε = 10−3).

k0 DPC-Loc1 DPC-Loc2 DPC-Loc3 DPC-Uniform

6.25 83.92008 83.91988 83.91985 83.91961
0.000625 83.92008 83.91988 83.91985 83.91961

We observe from Table 4 that our proposed method is well-adapted to fixed step
size h and to varying initial time step k0, and that this provides consistent and reasonable
approximation for both large and small time steps. This is because the time integration
scheme selects an optimal time step at each time level adaptively based on regional variation
and grid point distribution. Hence, the choice of initialization for the time step does not
matter and has no significant implication.

Finally, for this example, to better understand the impact of the grid distribution on
the optimal time selection at each time level, we display the time stepping profile based on
the uniform and non-equidistant grid distribution in Figure 3 with a step size of h = 0.025
and ε = 10−4. We observe that the time stepping is very small close to the payoff, which is
expected based on the adaptability of our numerical scheme and the inherent irregularity
that is more pronounced close to the payoff. Furthermore, we observe from Figure 3 that if
we introduce more grid points in the locality of the left corner point, as can be observed
from DPC-Loc1, DPC-Loc2, and DPC-Loc3, the time step for a fixed time level is smaller
when compared with the uniform space grid distribution. However, from Table 3, we
observe that the overall impact on the total runtime is insignificant when compared with
the solution accuracy.
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Figure 3. Plot of the optimal time stepping for each time level (h = 0.025 and ε = 10−3).

In the second example, we will focus on option value and delta sensitivity. Here, we
consider the example in the work of Bunch and Johnson [26] and Gutiérrez [27] with the
following parameters displayed in Table 5.

Table 5. Second numerical data.

K T r σ xmax ε

35 4/12 4.88% 30% 3.00 10−4

The benchmark value used in their work was obtained from the binomial tree method
with 10,000 steps. Here, we consider the numerical solution of the option value and delta
sensitivity with a very coarse grid (h = 0.05) and compare the performance of the uniform
and non-equidistant space-grid implementation with the benchmark value. We display the
results in Tables 6 and 7.

Table 6. Comparing the option value with varying strike price (h = 0.05, S0 = 40).

K DPC-Uniform DPC Loc1 DPC Loc2 DPC Loc3 Binomial Method

35 0.6944 0.6967 0.6974 0.6976 0.6975
40 2.4782 2.4815 2.4823 2.4825 2.4825
45 5.7028 5.7050 5.7055 5.7057 5.7056

Table 7. Comparing the delta sensitivity with varying strike price (h = 0.05, S0 = 40).

K DPC-Uniform DPC Loc1 DPC Loc2 DPC Loc3 Binomial Method

35 −0.1738 −0.1740 −0.1741 −0.1741 −0.1741
40 −0.4422 −0.4420 −0.4420 −0.4420 −0.4420
45 −0.7272 −0.7268 −0.7267 −0.7266 −0.7266

From Tables 6 and 7, we observe reasonable solution accuracy for both the option
value and delta sensitivity when compared with the binomial method. The interesting
part is that reasonable solution accuracy was obtained with the non-equidistant space grid,
which is closer to the benchmark value when compared with the results from the uniform
grid. Achieving such solution accuracy on very coarse grids as described in Tables 6 and 7
further validates the importance of our local mesh refinement strategy.
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Remark 2. It is worth mentioning that the approximation in the first and second examples involves
only two system of PDEs in (17) and (18) consisting of the option value and delta sensitivity. The
error threshold for selecting the optimal time step is established with the difference in the solution
of the optimal exercise boundary, option value, and delta sensitivity for these examples based on
the Runge–Kutta pairs. Moreover, the reported runtime in seconds only accounts for both PDEs.
In the last example below, we consider the three systems of PDEs in (17)–(19) when accounting
for gamma.

In this last example for this subsection, we investigate the importance of our proposed
method in approximating gamma. Consider the example in the work of Tangman et al. [28]
given in Table 8.

Table 8. Third numerical data.

K T r σ xmax

100 3 5% 20% 3.00

The differential and semi-discrete equations in (17), (18), (59), and (60) governing the
option value and delta sensitivity are not coupled with that of their gamma counterpart.
Hence, the investigation for gamma is done separately in this example. Here, we include
the three PDEs in (17)–(19) and the three semi-discrete PDEs in (59)–(61). For the error
threshold, which we establish for the optimal time step at each time level, we use maximum
error obtained from the difference of the solutions of the optimal exercise boundary, option
value, delta sensitivity, and gamma from the Runge–Kutta pairs as follows:

eu = ||un+1 − ūn+1||∞, es f = |sn+1
f − s̄n+1

f |; (63)

ew = ||wn+1 − w̄n+1||∞, ey = ||yn+1 − ȳn+1||∞, e = max{es f , eu, ew, ey}; (64)

kn+1
new =

ρ
(

ε
e
) 1

4 kn+1
old , i f e < ε,

ρ
(

ε
e
) 1

5 kn+1
old , i f e ≥ ε.

(65)

Here, 0 < ρ < 1. The optimal time step is selected if e < ε and if the true solutions are un+1,
wn+1, yn+1, and sn+1

f are selected. We observe that including the error from gamma in
establishing the optimal time step ensures a stable and non-oscillatory solution for gamma.
The important part, as we see in the result below, is that we can achieve reasonable solution
accuracy with a large tolerance and very coarse grids, provided we include the error term
from gamma when accounting for the optimal time step. Our main interest for this last
example is to understand if we can achieve reasonable accuracy and little computational
runtime with our local grid refinement. Furthermore, we also want to investigate how the
local grid refinement impacts the solution accuracy and runtime in seconds. Here, our
runtime in seconds includes the time it takes to run the whole code (approximate the early
exercise boundary, option value, delta sensitivity, and gamma), excluding initialization
to visualization.

To this end, we present the solution accuracy of the gamma obtained with our proposed
method and compare our result from the non-equidistant space grid with the binomial tree
method [29], which serves as benchmark value. For the non-equidistant grid, we consider
DPC-Loc2. The binomial tree method is obtained with 15,001 steps as reported in the work
of Tangman et al. [28]. Because of the high accuracy we observed from the gamma solution,
we only consider very coarse grids with h = 0.2, 0.1, and 0.05. The results are displayed in
Tables 9–11.
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Table 9. Gamma solution with DPC-Loc1 (ε = 10−2).

S h = 0.2 h = 0.1 h = 0.05 Binomial Method

80 0.0138 0.0340 0.0361 0.0361
90 0.0257 0.0236 0.0234 0.0234
100 0.0147 0.0153 0.0154 0.0155
110 0.0104 0.0103 0.0102 0.0103
120 0.0064 0.0067 0.0068 0.0068
Runtime (s) 0.2651 0.5294 1.2769 None

Table 10. Gamma solution with DPC-Loc2 (ε = 10−2).

S h = 0.2 h = 0.1 h = 0.05 Binomial Method

80 0.0340 0.0361 0.0361 0.0361
90 0.0236 0.0234 0.0234 0.0234
100 0.0153 0.0154 0.0154 0.0155
110 0.0103 0.0103 0.0103 0.0103
120 0.0067 0.0068 0.0068 0.0068
Runtime (s) 0.4810 0.7951 3.4038 None

Table 11. Gamma solution with DPC-Loc3 (ε = 10−2).

S h = 0.2 h = 0.1 h = 0.05 Binomial Method

80 0.0361 0.0361 0.0361 0.0361
90 0.0234 0.0234 0.0234 0.0234
100 0.0154 0.0154 0.0155 0.0155
110 0.0102 0.0103 0.0103 0.0103
120 0.0067 0.0068 0.0068 0.0068
Runtime (s) 0.5354 1.7565 9.5990 None

The importance of our local mesh refinement is very visible in Tables 9–11. We observe
that our solution accuracy is very close to the benchmark with a very coarse grid. More
importantly, however, as we introduce few more grid points to the grid from DPC-Loc1-
DPC-Loc3, the solution accuracy improve substantially. It is easy to see that we have
achieved a result that is the same in most cases as the benchmark value, even with a
very coarse grid (h = 0.2) using DPC-Loc3. This important gain will be very useful in
high-dimensional models due to space complexity. In general, very little computational
time is required to approximate the early exercise boundary, option value, delta sensitivity,
and gamma simultaneously with the locally refined grid.

Finally, to see the importance of including the error term ey in the optimal time step
equation presented in (63)–(65), we call the implementation in the latter Scenario 1. For
Scenario 2, we remove the error term for gamma ey from (63)–(65) and compute the gamma.
To ensure an adequate result comparison for Scenario 2, we compute the result with very
small and very large ε. The results are displayed in Tables 12 and 13.

Table 12. Gamma solution with DPC-Loc3 (ε = 10−2, h = 0.1).

S Scenario 1 (with ey) Scenario 2 (without ey) Binomial Method

80 0.0361 −2.548 ×1040 0.0361
90 0.0234 −9.047 ×1039 0.0234
100 0.0154 −4.343 ×1039 0.0155
110 0.0103 −1.555 ×1039 0.0103
120 0.0068 −6.230 ×1038 0.0068
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Table 13. Gamma solution with DPC-Loc3 (ε = 10−6, h = 0.1).

S Scenario 1 (with ey) Scenario 2 (without ey) Binomial Method

80 0.0361 0.0361 0.0361
90 0.0234 0.0234 0.0234
100 0.0154 0.0154 0.0155
110 0.0103 0.0103 0.0103
120 0.0068 0.0068 0.0068

From Tables 12 and 13, we observe that the solution accuracy for Scenario 2 is quite
unreasonable with ε = 10−2 when compared with Scenario 1. However, the result of
Scenario 2 starts stabilizing as we reduce the tolerance, which can be observed with
ε = 10−6. Moreover, increasing the tolerance ε will impact the computational cost. Hence,
we can conclude that, to enable better estimation of the optimal exercise boundary, option
value, delta sensitivity, and gamma from the three systems of PDEs consisting of the option
value, delta sensitivity, and gamma, it might be ideal to include the error term associated
with the four solutions as described in (63)–(65).

3.2. Investigating Solution Accuracy on both Uniform and Non-Equidistant Space Grids with an
Arbitrary Power Term

Here, we consider the power put options pricing problem with an arbitrary power
term m and also consider the three systems of fixed free boundary PDEs in (17)–(19) and
their discrete systems in (59)–(61). We verify the performance of our proposed method for
solving such a model. By implementing an adaptive scheme, we have circumvented the
stability challenges. We now focus more on understanding how varying m impacts the
adaptive selection of time steps and the local mesh refinement strategy while presenting
the numerical solutions. We carry out the whole experiment here with DPC-Loc2 because
it presented more optimality in terms of computational time and solution accuracy in the
previous subsection. Further, our experiment here is done with a very coarse grid h = 0.025
and ε = 10−3.

Few research studies exist that solve free boundary power options. Consider the
example in the work of Lee [7] with the parameters as described in Table 14 below.

Table 14. Fourth numerical data.

K T r σ xmax

100 6/12 8% 10% 3.00

First, we compute the optimal exercise boundary for varying power term m = 1, 2, 3,
4, and 5, similar to the one presented in Lee’s [7] paper, and display the results in Figure 4.
We observe that, for a fixed time, the optimal exercise boundary decreases as the power
term m increases. This is further reflected in the value of the optimal exercise boundary
with varying power term m as presented in Table 15. Our plot also closely resembles the
one presented in the work of Lee [7].

Table 15. Optimal exercise boundary with varying power term m (h = 0.025, ha = 0.25 h).

Parameter m = 1 m = 2 m = 3 m = 4 m = 5

s f (T) 95.17035 90.80024 86.82542 83.19370 79.86161
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Figure 4. Optimal exercise boundary with varying power term m.

Next, we present the plot profile of the time step versus time level for each considered
power term m. The plot is displayed in Figure 5. The optimal time step at each time level
decreases substantially as the power term increases. This is expected because of the m2

associated with the diffusive term. This power term m may impact the stability condition if
a non-adaptive scheme is implemented.

Figure 5. Optimal time step for each time level with varying power m (h = 0.025, ha = 0.25 h).

Finally, we display the plot profile and the numerical solutions of the option value and
delta sensitivity for each power term m, as presented in Figure 6. For a fixed asset price,
Figure 6 shows that the option value increases as the power term m increases. This is also
reflected in the numerical solution presented in Table 16. Lee [7] describes that this feature
given by the exotic options provides the buyer with the possibility of receiving a reasonably
higher payoff than its vanilla counterpart. Moreover, in the money, the delta sensitivity
decreases as the power term increases. Furthermore, out of the money, delta sensitivity
increases as the power term increases. This is fully described in Table 17. Additionally, the
numerical solution for gamma at some interpolated grid points is also listed in Table 18.
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(a) Option value (h = 0.025, ha = 0.25 h). (b) Delta sensitivity (h = 0.025, ha = 0.25 h).

Figure 6. Option value and delta sensitivity with varying power term m.

Table 16. Option values with varying power term m (h = 0.025, ha = 0.25 h).

S m = 1 m = 2 m = 3 m = 4 m = 5

80 20.00000 20.00000 20.00000 20.00000 20.00051
100 1.63347 3.19848 4.70042 6.14327 7.53094
120 0.00185 0.20491 0.85746 1.79875 2.88475

Table 17. Delta sensitivity with varying power term m (h = 0.025, ha = 0.25 h).

S m = 1 m = 2 m = 3 m = 4 m = 5

80 −1.00000 −1.00000 −1.00000 −1.00000 −0.99282
100 −0.39823 −0.38896 −0.38013 −0.37174 −0.36375
120 −0.00080 −0.03126 −0.07634 −0.11197 −0.13754

Table 18. Gamma with varying power term m (h = 0.025, ha = 0.25 h).

S m = 1 m = 2 m = 3 m = 4 m = 5

80 0.00000 0.00000 0.00000 0.00000 0.00947
100 0.08271 0.04223 0.02870 0.02192 0.01784
120 0.00033 0.00446 0.00647 0.00683 0.00664

4. Conclusions

We have proposed a high-order adaptive numerical scheme for approximating a free
boundary exotic power put options pricing problem on a non-uniform space grid for which
a locally adopted mesh refinement strategy is implemented. Our proposed implementation
leverages some advantages. By selecting time steps adaptively at each time level, we
circumvent the stability challenges in an explicit time integration scheme, which could
be more pronounced here due to the coefficient of the diffusive term. This is because the
coefficient of the diffusive term involves m2, which can substantially vary and impact any
stability criterion. However, the adaptive nature of our proposed method worked in our
favor here. More importantly, by refining our space grid locally and allowing time steps to
be adaptively selected based on regional variation and space grid distribution, the solution
accuracy in the neighborhood of the left corner point, where large variation, discontinuity,
and even singularity exist in the pricing model, was substantially improved.

The importance of our implementation can further be observed in the manner in which
we recover highly accurate results with very coarse grids using the locally refined grid
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strategy at each time level. This gain will be very useful in a high-dimensional pricing
model due to space complexity. We have already established in the numerical experiment
that, even with a very coarse grid (h = 0.2), a reasonable solution accuracy was achieved
with gamma when we concentrated more of the grid points in the locality of the left
corner point.

In our future work, we hope to further extend our proposed method to include a suite
of space grid stretching strategies and, possibly, a pure high-order adaptive space–time
scheme for pricing free boundary Asian stochastic volatility models and other non-standard
options. In the context of a pure high-order adaptive space–time scheme, the grid points in
both the space and time grids will be dynamically selected and updated.
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