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Abstract: A new Type-II generalized progressively hybrid censoring strategy, in which the experi-
ment is ensured to stop at a specified time, is explored when the lifetime model of the test subjects
follows a two-parameter alpha-power inverted exponential (Alpha-PIE) distribution. Alpha-PIE’s
parameters and reliability indices, such as reliability and hazard rate functions, are estimated via
maximum likelihood and Bayes estimation methodologies in the presence of the proposed censored
data. The estimated confidence intervals of the unknown quantities are created using the normal
approximation of the acquired classical estimators. The Bayesian estimators are also produced using
independent gamma density priors under symmetrical (squared-error) loss. The Bayes’ estimators
and their associated highest posterior density intervals cannot be calculated theoretically since the
joint likelihood function is derived in a complicated form, but they can potentially be assessed using
Monte Carlo Markov-chain algorithms. We next go through four optimality criteria for identifying
the best progressive design. The effectiveness of the suggested estimation procedures is assessed
using Monte Carlo comparisons, and certain recommendations are offered. Ultimately, two different
applications, one focused on the failure times of electronic tubes and the other on vinyl chloride,
are analyzed to illustrate the effectiveness of the proposed techniques that may be employed in
real-world scenarios.

Keywords: alpha power-inverted exponential model; symmetric Bayes inference; MCMC sampler;
maximum likelihood; reliability inference; Type-II generalized progressive hybrid censoring

MSC: 62F10; 62F15; 62N01; 62N02; 62N05

1. Introduction

Inverted exponential distribution has been popularly used in several sectors such as
engineering, biology, medicine, and others. It has an inverted bathtub failure rate, which
describes the relative failure rate, which initially increases, comes to a head after some
time, and then decreases over time. A new simple two-parameter alpha power-inverted
exponential distribution (denoted as Alpha-PIE(α, µ)) has been proposed by Ünal et al. [1]
as an extension of the conventional inverted exponential distribution. They also stated,
by making use of two lifetime data sets, that the Alpha-PIE model offers superior fits to
some other lifetime models, namely, Lindley, inverted exponential, generalized inverted
exponential, and inverted Rayleigh distributions. However, a lifetime random variable X
is said to have the Alpha-PIE(α, µ) distribution, where ϑ = (α, µ)T is a vector of the model
parameters, if its probability density function (PDF) f (·); cumulative distribution function,
say F(·) (CDF); reliability function, say R(·) (RF); and hazard rate function, say h(·) (HRF),
are provided by
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f (x; ϑ) =
µ log(α)

α− 1
x−2 exp

(
−µ

x

)
αexp(− µ

x ), x > 0, α 6= 1, (1)

F(x; ϑ) =
αexp(− µ

x ) − 1
α− 1

, (2)

R(x; ϑ) =
α

α− 1

(
1− αexp(− µ

x )−1
)

, x > 0, (3)

and

h(x; ϑ) =
µ log(α)x−2 exp

(
− µ

x
)
αexp(− µ

x )−1(
1− αexp(− µ

x )−1
) , (4)

respectively, where α > 0 and µ > 0 are the shape and scale parameters, respectively.
Obviously, when we put α → 1, the alpha-PIE distribution is reduced to the inverted
exponential distribution by Keller et al. [2]. When we fix µ = 1 and consider different values
of α, in Figure 1, several shapes for the PDF and HRF of the Alpha-PIE distribution are
demonstrated. This shows that the density of the alpha-PIE distribution is unimodal, while
its HRF is a monotonically increasing function. Recently, in the presence of complete data,
Amjad et al. [3] derived various Bayes estimators of the alpha-PIE parameters and stated
that the alpha-PIE model behaved better than the inverted exponential and generalized
inverted exponential models.
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Figure 1. Plots for the PDF (a) and HRF (b) of the alpha-PIE distribution when µ = 1.

In a reliability context, the failure time data of the experimental objects are frequently
not totally accessible, so minimizing both the expense and duration of the experiment is
critical for any researcher. Progressive Type-II censoring (PTIIC) was proposed to allow
the experimenter to remove items at times other than the stop time. This technique may
be advantageous when some of the live test objects that are removed early on can be
used again for future tests or when a balance between observing even some extreme
lifetimes and reducing testing duration is desired, one may refer to Balakrishnan and
Cramer [4] for additional details. Recently, if PCS-II is applied, because of the lengthy
lifespan of many items, particularly electronics, the total experimental time might be
quite long. This is the main drawback of PTIIC sampling. Therefore, to ensure that the
experiment is completed at a specified optimal time without losing the ability to collect
an effective number of observable failures, a generalized Type-II progressively hybrid
censored (GTIIPHC) strategy was introduced by Lee et al. [5]. This strategy starts with
putting n independent items into a test at time zero, specifying two threshold points
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of failures, Ti, i = 1, 2 and the desired number m, where (1 < m ≤ n), and designing
the progressive censoring R = (R1, R2, . . . , Rm). When the experimenter records the first
failure (say X1:m:n), R1 items are randomly chosen from n− 1 and removed from the test;
next, at the second failure (say X2:m:n), R2 items are randomly chosen from n− R1 − 2 and
out of the test, and so on. At T ∗ = max{min{Xm:m:n, T2}, T1}, where 0 < T1 < T2, the test
is stopped and all remaining survival subjects are removed. Note that (d1, d2) represents
the size of recorded failures up to (T1, T2).

If Xm:n < T1, the test is stopped at T1 (Case 1) without any additional removals.
If T1 < Xm:m:n < T2, similar to the PTIIC, the test is stopped at Xm:m:n (Case-2); otherwise,
the test is stopped at T2 (Case-3). Thus, the partitioner will collect one of the samples:

{X, R} =


{(X1:m:n, R1), . . . , (Xm−1:m:n, Rm−1), (Xm:m:n, 0), . . . , (Xd1 :n, 0)}; Case-1,

{(X1:m:n, R1), . . . , (Xd1 :n, Rd1), . . . , (Xm−1:m:n, Rm−1), (Xm:m:n, Rm)}; Case-2,

{(X1:m:n, R1), . . . , (Xd1 :n, Rd1), . . . , (Xd2−1:n, Rd2−1), (Xd2 :n, Rd2)}; Case-3.

Let {X, R} be the censoring members of GTIIPHC in a distribution with a PDF and CDF.
Therefore, the joint likelihood function, say Lq(·), of the proposed censoring mechanism
can be expressed as

Lq(ϑ|X) = Kq<q(Tτ ; ϑ)
Dq

∏
i=1

f (xi:m:n; ϑ)[1− F(xi:m:n; ϑ)]Ri , q = 1, 2, 3, (5)

where <q(·) is a composite term of reliability functions and τ = 1, 2.
It is critical to note that the GTIIPHC modifies the Type-II progressive hybrid censoring

(PHC), proposed by Childs et al. [6], by guaranteeing that the test is completed at the
specified time T2. Thus, T2 is the greatest duration that the examiner is willing to allow the
test to continue. Table 1 lists the GTIIPHC notations. Furthermore, from (5), six sampling
plans can be introduced and provided in Table 2. A diagrammatic demonstration of
GTIIPHC sampling is depicted in Figure 2.

Table 1. The GTIIPHC notations.

q Kq Dq <q(Tτ ; ϑ) R∗dτ+1

1 Πd1
i=1 ∑m

k=i (Rk + 1) d1 [1− F(T1)]
R∗d1+1 n− d1 −∑m−1

k=1 Rk
2 Πm

i=1 ∑m
k=i (Rk + 1) m 1 0

3 Πd2
i=1 ∑m

k=i (Rk + 1) d2 [1− F(T2)]
R∗d2+1 n− d2 −∑d2

k=1 Rk

Table 2. Special sampling plans from GTIIPHC.

Plan Author(s) Setting

Type-I PHC Kundu and Joarder [7] T1 → 0
Type-II PHC Childs et al. [6] T2 → ∞
Type-I Hybrid Epstein [8] T1 → 0, Ri = 0, i = 1, 2, . . . , m− 1, and Rm = n−m
Type-II Hybrid Childs et al. [9] T2 → ∞, Ri = 0, i = 1, 2, . . . , m− 1, and Rm = n−m
Type-I censoring Epstein and Sobel [10] T1 = 0, m = n, Ri = 0, i = 1, 2, . . . , m− 1, and Rm = n−m
Type-II censoring Epstein and Sobel [10] T1 = 0, T2 → ∞, Ri = 0, i = 1, 2, . . . , m− 1, and Rm = n−m

In the context of GTIIPHC data, several researchers have carried out important re-
search on the statistical estimation of unknown parameter(s) and/or reliability time func-
tions in various lifetime models; for example, Ashour and Elshahhat [11] studied both
frequentist and Bayes estimators of the Weibull parameters; Ateya and Mohammed [12]
studied the prediction issue of the Burr-XII failure times; Seo [13] discussed the Bayesian
inference of Weibull’s model; Cho and Lee [14] analyzed the competing risks from expo-
nential data; Nagy et al. [15] pointed out different estimates of the Burr-XII parameters;
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Wang et al. [16] derived various estimators of the Kumaraswamy parameters; Elshah-
hat et al. [17] addressed the Nadarajah–Haghighi parameters; later, Alotaibi et al. [18]
estimated the Fréchet Parameters.

Figure 2. Diagram of GTIIPHC sampling.

Although there are many studies that give a mathematical treatment to the proposed
distribution, they do not shed light on the application aspects of the alpha-PIE distribution,
especially in reliable practice. To our understanding, no study has been performed to
evaluate the parameters or reliability features of the alpha-PIE lifetime model when an
incomplete dataset is available. Thus, to resolve this issue, our objectives in this work
are fourfold:

• Derive the maximum likelihood estimators (MLEs) in addition to their two-sided
approximate confidence intervals (ACIs), using observed Fisher’s information, of the
alpha-PIE parameters α and µ or any associated function such as R(t) and h(t).

• Derive the Bayes’ estimators in addition to their two-sided highest posterior density
(HPD) intervals, under independent gamma priors assumption, of α, µ, R(t), and h(t)
using the squared error loss (SEL) function.

• To select the best progressive censoring patterns among various competing strategies,
several criteria of optimality are proposed.

• Via extensive Monte Carlo simulations, on the basis of four accuracy criteria, namely,
(i) root mean squared-errors, (ii) mean relative absolute biases, (iii) average confidence
lengths, and (iv) coverage percentages, the performance of the acquired estimators
is examined. Additionally, two real-word applications from the engineering and
chemistry sectors, to evaluate how the offered approaches operate in practice and to
choose the best censoring strategy, are examined.

The organization of the article is as follows: Sections 2 and 3 provide the point
and interval inferences using frequentist and Bayes approaches. Simulation results are
obtained and discussed in Section 4. Section 5 examines two applications of actual data
sets. Optimum criteria of progressive patterns are presented in Section 6. Lastly, Section 7
lists the study’s conclusions.

2. Classical Inference

This section investigates the maximum likelihood and approximate asymptotic interval
estimators of α, µ, R(t) and h(t).

2.1. Maximum Likelihood Estimators

Suppose x = {xi:m:n, Ri} for i = 1, . . . , d2 is a GTIIPHC sample of size d2 collected
from the alpha-PIE population with PDF (1) and CDF (2). Substitute (1) and (2) into (5).
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Utilizing xi in place of xi:m:n, the likelihood function of GTIIPHC (5), ignoring the constant
term, can be expressed as

Lq(ϑ|x) ∝ ξq(Tτ ; ϑ)

(
α

α− 1

)n(µ log(α)
α

)Dq

e−∑
Dq
i=1 η(xi ,Ri ;ϑ), q = 1, 2, 3, (6)

where ξ1(T1; ϑ) =
[

α
α−1

(
1− αexp(−µT−1

1 )−1
)]R∗d1+1 , ξ3(T2; ϑ) =

[
α

α−1

(
1− αexp(−µT−1

2 )−1
)]R∗d2+1 ,

ξ2(Tτ ; ϑ) = 1 and η(xi, Ri; ϑ) = µx−1
i − exp(−µx−1

i ) log(α)− Ri log
(

1− αexp(−µx−1
i )−1

)
.

Consequently, the natural logarithm of (6) becomes

logLq(ϑ|x) ∝ ζq(Tτ ; ϑ) + n log
(

α

α− 1

)
+ Dq log

(
µ log(α)

α

)
−∑Dq

i=1 η(xi, Ri; ϑ), (7)

where ζ1(T1; ϑ) = R∗d1+1 log
[

α
α−1

(
1− αexp(−µT−1

1 )−1
)]

, ζ2(Tτ ; ϑ) = 0, and

ζ3(T2; ϑ) = R∗d2+1 log
[

α
α−1

(
1− αexp(−µT−1

2 )−1
)]

.
To acquire the MLEs α̂ and µ̂ of α and µ, respectively, by differentiating (7) with regard

to α and µ, we obtain the following normal equations:

∂

∂α
logLq(ϑ|x) = ζ◦q (Tτ ; ϑ) +

1
α

[
Dq

(
log−1(α)− 1

)
− n

α− 1

]
−∑Dq

i=1 η◦(xi, Ri; ϑ), (8)

and
∂

∂µ
logLq(ϑ|x) = ζ•q (Tτ ; ϑ) + Dqµ−1 −∑Dq

i=1 η•(xi, Ri; ϑ), (9)

where ζ◦2(Tτ ; ϑ) = ζ•2(Tτ ; ϑ) = 0, ζ◦q (Tτ ; ϑ) = − R∗dτ+1
(α−1)R(Tτ ;α,µ){α

exp(−µT−1
τ )−1e−µT−1

τ − (α−

1)−1 [αexp(−µT−1
τ )−1 − 1]}, and ζ•q (Tτ ; ϑ) =

R∗dτ+1
(α−1)Tτ R(Tτ ;α,µ)αexp(−µT−1

τ ) log(α)e−µT−1
τ .

It is more clear, due to the complex expressions in (8) and (9), that the MLEs α̂ and
µ̂ cannot be derived in closed form. Applying the Newton–Raphson procedure via the
’maxLik’ package, proposed by Henningsen and Toomet [19], the offered estimators can
be directly evaluated. Once α̂ and µ̂ are obtained, replacing α and µ in (3) and (4) by their
MLEs α̂ and µ̂, the MLEs R̂(t) and ĥ(t) of R(t) and h(t), for a mission time t > 0, are

R̂(t) =
α̂

α̂− 1

(
1− α̂

exp
(
− µ̂

t

)
−1
)

,

and

ĥ(t) =
µ̂ log(α̂)t−2 exp

(
− µ̂

t

)
α̂

exp
(
− µ̂

t

)
−1(

1− α̂
exp

(
− µ̂

t

)
−1
) ,

respectively.
In addition to obtaining a point estimate for an unknown parameter, it is also beneficial

to obtain a limit of values that may include the real parameter with a given degree of
confidence, this methodology is called interval estimation. Therefore, in the next subsection,
we shall derive the ACIs of all unknown quantities of our interest.

2.2. Asymptotic Interval Estimators

To construct the (1− ε)100% ACIs for α, µ, R(t) or h(t), the asymptotic 2× 2 variance-
covariance (inverted Fisher information) matrix must be first obtained. Following mild regularity
conditions, we can say that ϑ̂ has an approximately normal distribution, i.e., ϑ ∼ N(ϑ, I−1(ϑ)).
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By replacing α and µ by α̂ and µ̂, respectively, one can estimate I−1(ϑ) by I−1(ϑ̂) (see
Lawless [20]), as

I−1(ϑ̂) ∼=
[
−F11 −F12
−F21 −F22

]−1

=

[
v̂11 v̂12
v̂21 v̂22

]
, (10)

where ϑ̂ = (α̂, µ̂)T and Fij, i, j = 1, 2 are presented in Appendix A. Therefore, the two-sided
100(1− ε)100% ACIs for α and µ are given by(

α̂ ∓ zε/2
√

v̂11

)
and

(
µ̂ ∓ zε/2

√
v̂22

)
,

respectively, where zε/2 refers to the upper ε/2 percentage level for the distribution of the
standard normal.

On the other hand, to build the two-sided 100(1− ε)100% ACIs of RF R(t) and HRF
h(t), following Greene [21], the delta method is considered to derive the estimated variances
v̂R and v̂h of R̂(t) and ĥ(t), respectively, as

v̂R = CT
R I−1(ϑ) CR

∣∣∣
(α̂,µ̂)

and v̂h = CT
h I−1(ϑ) Ch

∣∣∣
(α̂,µ̂)

,

where CT
R = [ ∂R(t)

∂α
∂R(t)

∂µ ] and CT
h = [ ∂h(t)

∂α
∂h(t)

∂µ ].
Therefore, the (1− ε)100% ACIs of R(t) and h(t) are given by(

R̂(t) ∓ zε/2
√

v̂R

)
and

(
ĥ(t) ∓ zε/2

√
v̂h

)
,

respectively.

3. Bayes Inference

In this section, the Bayes estimators of α, µ, R(t), and h(t), along with their HPD
intervals, based on the SEL, are obtained.

3.1. Prior Functions

In practice, the Bayesian technique might leverage additional prior information, such
as historical data or expertise in the statistical inferential process, to obtain more accurate
estimates for tests with small sample sizes or when censored data are available. Regarding
Bayes’ reliability analysis, several recent works have addressed this issue; see, for example,
Chen and Ye [22], Wang et al. [23], Luo et al. [24], and Luo and Xu [25]. To acquire the
Bayes point estimator of α, µ, R(t) or h(t), we suppose that α and µ are independent
and distributed with gamma (G) density priors, i.e., α ∼ G(a1, b1) and µ ∼ G(a2, b2),
respectively. We employ gamma priors, which are regarded as having greater adaptability
than others, and adjust them to the parameters’ support. Furthermore, the independent
gamma priors are plain and unambiguous, potentially avoiding many complex inferential
concerns. Then, the joint prior PDF of α and µ, denoted by ρ(·), is

ρ(α, µ) ∝ αa1−1µa2−1 exp(−(αb1 + µb2)), (11)

where ai > 0 and bi > 0 for i = 1, 2, must be known. In the next subsections, we derive the
Bayes point and HPD interval estimators of α, µ, R(t), or h(t).

3.2. Bayes Estimators

From (5) and (11), the joint posterior PDF (say Q(·)) of α and µ becomes

Qq(ϑ|x) ∝
αn+a1−Dq−1µDq−a2−1

(α− 1)n(log(α))Dq
ξq(Tτ ; ϑ)e−

(
b1α+b2µ+∑

Dq
i=1 η(xi ,Ri ;ϑ)

)
, q = 1, 2, 3, (12)
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where its normalizing term, say Q∗q , is given by

Q∗q =
∫ ∞

0

∫ ∞

0

αn+a1−Dq−1µDq−a2−1

(α− 1)n(log(α))Dq
ξq(Tτ ; ϑ)e−

(
b1α+b2µ+∑

Dq
i=1 η(xi ,Ri ;ϑ)

)
, dαdµ.

Under the SEL, the Bayes estimate (say π̃(·)) of any parametric function of α and µ
(say π(·)) is known as the posterior mean of (12); for example,

π̃(α, µ) =
∫ ∞

0

∫ ∞

0
π(α, µ)Qq(ϑ|x) dαdµ. (13)

It is clear, from (13), that the Bayes estimate of α or µ cannot be extracted analytically
because the posterior expectation involves double integrals in both the numerator and
the denominator, and Bayes expressions of α and µ thus cannot be easily extracted. As a
result, the Bayes Markov chain Monte Carlo (MCMC) process is used to create samples
from which the offered Bayes estimates and HPD intervals can be obtained.

To start the MCMC technique, from (12), the full conditionals PDFs of α and µ are

Qα
q(α|x, µ) ∝

αn+a1−Dq−1

(α− 1)n(log(α))Dq
ξq(Tτ ; ϑ)e−

(
b1α+∑

Dq
i=1 η(xi ,Ri ;ϑ)

)
, (14)

and

Qµ
q (µ|x, α) ∝ µDq−a2−1ξq(Tτ ; ϑ)e−

(
b2µ+∑

Dq
i=1 η(xi ,Ri ;ϑ)

)
, (15)

respectively.
Since Eqns. (14) and (15) of α and µ, respectively, cannot be expressed analytically

with any statistical model. Thus, the Metropolis-Hastings (M-H) algorithm discussed by
Gelman et al. [26] and Lynch [27] is considered for this purpose. The following sampling
process of M-H is adopted:

Step 1: Set initial values α(0) = α̂ and µ(0) = µ̂.
Step 2: Set j = 1
Step 3: Obtain α∗ and µ∗ from N(α̂, v̂11) and N(µ̂, v̂22), respectively.

Step 4: Obtain φα =
πα

ρ ( α∗ |µ[j−1] ,x)

πα
ρ ( α[j−1]|µ[j−1] ,x)

and φµ =
π

µ
ρ ( µ∗ |α[j] ,x)

π
µ
ρ ( µ[j−1]|α[j] ,x) .

Step 5: Obtain u1 and u2 from uniform U(0, 1) distribution.
Step 6: If uα 6 min{1, φα} and uµ 6 min

{
1, φµ

}
set α[j] = α∗ and µ[j] = µ∗; else set

α[j] = α[j−1] and µ[j] = µ(j−1), respectively.
Step 7: Put j = j + 1.
Step 8: Redo Steps 3–7 for B times and obtain α[j] and µ[j] for j = 1, 2, . . . ,B.
Step 9: Obtain the RF (3) and HRF (4) using (α[j], µ[j]), j = 1, 2, . . . ,B, at t > 0, respectively

as

R[j](t) =
α[j]

α[j] − 1

(
1− α[j]

exp(−µ[j]t−1)−1
)

,

and

h[j](t) =
µ[j] log(α[j])t−2 exp

(
−µ[j]t−1

)
α[j]

exp(−µ[j]t−1)−1(
1− α[j]

exp(−µ[j]t−1)−1
) .

Step 10: Obtain the Bayes estimate π̃(·) of π(·), after eliminating the first B∗ samples as
burn-in, as

π̃(α, µ) =
1

B − B∗
B
∑

j=B∗+1
π[j](α, µ).
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Step 11: Obtain the HPD interval of π(·) via ordering π[j](α, µ) for j = B∗ + 1, . . . ,B.
Following Chen and Shao [28], the (1− ε)100% HPD interval of π(α, µ) is given by(

π(j∗), π(j∗+(1−ε)(B−B∗))
)

,

where j∗ = B∗ + 1, . . . ,B is specified such that

δ(j∗+[(1−ε)(B−B∗)]) − π(j∗) = min
16j6ε(B−B∗)

(π(j+[(1−ε)(B−B∗)]) − π[j]),

where the highest integer less (or equal) than to y is denoted by [y].

4. Monte Carlo Simulations

This section deals with comparing the behavior of the acquired frequentist and Bayes
estimators of α, µ, R(t) and h(t) obtained in the proceeding sections via extensive Monte
Carlo simulations. This goal is developed based on large 1000 GPHC-T-II samples generated
from two different groups of the alpha-PIE parameters, namely Set-1, Alpha-PIE(1.2, 0.2),
and Set-2, Alpha-PIE(1.5, 0.5). For distinct time t = 0.1, from Sets 1 and 2, the plausible
values of (R(t), h(t)) are (0.87509, 2.89008) and (0.99453, 0.27545), respectively. Several
choices of Ti, i = 1, 2 (thresholds), n (total test items), m (effective test items), and R
(progressive pattern) are also used, namely (T1, T2) = (0.1, 0.3) and (0.4,0.8), n = (50, 80).
For each n, the value of m is determined as failure percentages (FPs) such as m

n = (40,80)%.
To assess the removal mechanism in GPHC-T-II, for each group (n, m), three patterns of
(R1, R2, . . . , Rm) are considered:

Scheme-1 : R1 = n−m, Ri = 0 for i 6= 1,

Scheme-2 : R m
2
= n−m, Ri = 0 for i 6= m

2
,

Scheme-3 : Rm = n−m, Ri = 0 for i 6= m.

As soon as 1000 GPHC-T-II data are collected, all suggested point (or interval) esti-
mators created by maximum likelihood (or Bayes) inferential approaches of α, µ, R(t) and
h(t) are evaluated via R 4.2.2 programming software. Therefore, we recommend installing
two statistical packages in R, namely (i) ’maxLik’ package (by Henningsen and Toomet [19])
to calculate the maximum likelihood estimates along with their 95% ACI estimates, (ii)
’coda’ package (by Plummer et al. [29]) to evaluate the Bayes MCMC estimates for the
same unknown parameters, as well as corresponding HPD interval estimations. Taking the
classical estimates of α and µ as starting points, to compute the acquired Bayes point/in-
terval estimates of α, µ, R(t) or h(t), we replicated the MCMC sampler 12,000 times and
ignored the first 2000 times as burn-in. To demonstrate the performance of the Bayes
findings on different gamma priors, following Kundu [30], two sets of the hyperparameters
(ai, bi), i = 1, 2 are utilized, called

(a) For Set-1:

• Prior-1:(a1, a2) = (6, 1) and bi = 5 for i = 1, 2;
• Prior-2:(a1, a2) = (12, 2) and bi = 10 for i = 1, 2.

(b) For Set-2:

• Prior-1:(a1, a2) = (7.5, 2.5) and bi = 5 for i = 1, 2;
• Prior-2:(a1, a2) = (15, 5) and bi = 10 for i = 1, 2.

To examine the convergence status of the collected iterations of α, µ, R(t), and h(t)
developed from the Bayes MCMC algorithm, for Set-1 along with Prior-1, (T1, T2, n, m) =
(0.1, 0.3, 50, 20) and Scheme-1 as an example, the trace and autocorrelation plots are
provided in Figure 3. Obviously, it is evident that the Markovian graphs of α, µ, R(t)
and h(t) are satisfactorily mixed, and thus, the results of the acquired points (or interval)
become more significant.
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Figure 3. Autocorrelation (top) and trace (bottom) plots for MCMC draws of α, µ, R(t) and h(t).

However, for each test, the average point estimates (Av.Es) of α are given by

α̌ =
1

1000 ∑1000
i=1 α̌(i),

where α̌(i) denotes the calculated estimate of α at the ith sample.
The acquired point estimates of α are compared based on their root mean squared-

errors (RMSEs) and mean relative absolute biases (MRABs) as

RMSE(α̌) =

√
1

1000 ∑1000
i=1

(
α̌(i) − α

)2,

and
MRAB(α̌) =

1
1000 ∑1000

i=1
1
α

∣∣∣α̌(i) − α
∣∣∣,

respectively.
Further, the acquired interval estimates of α are compared with regard to their average

confidence lengths (ACLs) and coverage percentages (CPs) as

ACL(1−ε)%(α) =
1

1000 ∑1000
i=1

(
Uα̌(i) −Lα̌(i)

)
,

and
CP(1−ε)%(α) =

1
1000 ∑1000

i=1 1(L
α̌(i)

;U
α̌(i)

)(α),
respectively, where 1(·) is the indicator function, (L(·),U (·)) denote the (lower,upper)
bounds of (1− ε)% ACI (or HPD) interval of α. In a similar way, the Av.E, RMSE, BRAB,
ACL, and CP values of µ, R(t), or h(t) can be easily computed.

A heat map is a tool for graphically representing numerical data. Via R 4.2.2 software with
the heat-map programming tool, the calculated criteria (including RMSEs, MRABs, ACLs, and
CPs) of α, µ, R(t), and h(t) are represented in Figures 4–7, respectively. As supplementary
materials, all numerical values of α, µ, R(t), or h(t) are reported. To distinguish, for each plot in
Figures 4–7, the proposed approaches are displayed on the ‘x-axis’ line, whereas the censoring
settings are displayed on the ‘y-axis’. In addition, as notations, the Bayes estimates (for Prior-I
(say P1) as an example) are referred to as BE-P1, while the HPD interval is referred to as HPD-P1.
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Figure 4. Heat-map for the Monte Carlo outputs of α. (a) Set 1; (b) Set 2.
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Figure 5. Heat-map for the Monte Carlo outputs of µ. (a) Set 1; (b) Set 2.
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Figure 6. Heat-map for the Monte Carlo outputs of R(t). (a) Set 1; (b) Set 2.
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Figure 7. Heat-map for the Monte Carlo outputs of h(t). (a) Set 1; (b) Set 2.
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In terms of the smallest RMSE, MRAB, and ACL values as well as the largest CP
values, from Figures 4–7, the following comments are made:

• All acquired point and interval estimates of α, µ, R(t) or h(t) have good behavior; this
is a general note.

• As n(or FP%) increases, all results of all unknown parameters of life perform satisfac-
torily. A similar point is also true when the spacing between n and m is reduced.

• As Ti, i = 1, 2 grow, for both Sets 1 and 2, the RMSEs, MRABs, and ACLs of α, µ, R(t)
and h(t) narrowed down, while their CPs increase.

• As anticipated, due to the gamma information, the Bayes point (or HPD interval)
estimates of α, µ, R(t), or h(t) behave better compared to the others.

• All Bayesian computations performed based on Prior-2 provide more accurate results
than those obtained based on Prior-1. This finding is due to the fact that the associated
variance of Prior-2 is less than the associated variance of Prior-1.

• Comparing the suggested schemes 1, 2, and 3, for both Sets 1 and 2, it is seen that the
point (or interval) estimates of δ have good results when all survival items n−m are
removed at the first stage (i.e., Scheme-1) and of µ, R(t), and h(t) at the last stage (i.e.,
Scheme-3).

• In summary, it is advised to use MCMC samples to estimate the model parameters
and reliability features of the alpha-PIE lifetime model when Type-II generalized
progressively hybrid censored data are available.

5. Real Applications

To show the applicability of the suggested estimating methodologies and to illustrate
the ability to adapt the study objectives to real-world situations, this section demonstrates
two different applications from the engineering and chemistry fields. In each application,
we prove that the offered model furnishes a good fit compared to five other competitive
models in literature.

5.1. Electronic Tubes

An electron tube is a device that conducts electricity via electrons through a vacuum
or a gas within a sealed glass or metal container and has a variety of popular applications,
such as radio and television. For further applications of electron tubes, one may refer
to Rosebury [31]. This application provides an analysis of a data set, taken from the
engineering area, representing twenty lifetime values (in hundred hours) of electronic
tubes; see Table 3. This data set has been first reported by Dixit and Nooghabi [32] and
later discussed by Ibrahim et al. [33].

Table 3. Lifetimes of 20 electronic tubes.

0.1415 0.3484 0.3994 0.4174 0.5937 1.1045 1.7323 1.8348 2.3467 2.4651

2.6155 2.7425 3.1356 3.2259 3.4177 3.5551 3.5681 3.7287 9.2817 9.3208

First, before proceeding, to highlight the utility of the offered model as competitors
based on the complete data on electronic tubes, the alpha-PIE distribution is compared to
five other inverted distributions (for x > 0, α > 0 is a shape parameter and µ > 0 is a scale
parameter), namely: inverted exponential (IE(µ)) by Keller et al. [2]; inverted Lindley (IL(µ))
by Sharma et al. [34]; inverted Weibull (IW(α, µ)) by Keller et al. [35]; inverted gamma
(IG(α, µ)) by Glen [36]; and inverted Nadarajah–Haghighi (INH(α, µ)) by Tahir et al. [37].
The comparison of fits of the alpha-PIE (or simply, APIE) and other competitive models is
made using several statistics, called negative log-likelihood (N-L), Akaike (A), Bayesian (B),
consistent Akaike (C-A), Hannan-Quinn (H-Q), and Kolmogorov–Smirnov (K-S) statistic
with its p-value. These measures are evaluated through the maximum likelihood estimates
of α and µ. Using Table 3, the MLEs (along with associated standard-errors (St.Ers)) of α
and µ, as well as the fitted values of N-L, A, B, C-A, H-Q, and K-S(p-value) are obtained
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and reported in Table 4. This indicates that the Alpha-PIE distribution has the lowest values
of all given goodness-of-fit statistics, except that it has the highest p-value. This conclusion
implies that the Alpha-PIE lifetime model provides a best fit than other distributions.

Table 4. Outputs of the fitting alpha-PIE and its competitive models from electronic tube data.

Model MLE(St.Er) N-L A B C-A H-Q K-S (p-Value)

α µ

APIE 21.826 (55.135) 0.4149 (0.2867) 43.3798 90.7596 92.7511 91.4655 91.1484 0.1962 (0.375)
IE - 0.9052 (0.2024) 45.0282 92.0564 93.0522 92.2787 92.2508 0.2930 (0.051)
IL - 1.2990 (0.2240) 46.4118 94.8236 95.8194 95.0459 95.0180 0.3265 (0.0212)
IW 0.8531 (0.1361) 1.0019 (0.2383) 44.4847 92.9694 94.9609 93.6753 93.3581 0.2342 (0.1897)
IG 0.8692 (0.2390) 0.7869 (0.2871) 44.8932 93.7863 95.7778 94.4922 94.1751 0.2677 (0.0935)

INH 0.5622 (0.1660) 2.7258 (1.7357) 43.5167 91.0335 93.0249 91.7393 91.4222 0.2033 (0.3340)

Graphically, in Figure 8, the probability–probability (PP) plots of alpha-PIE and their
competitive distributions are displayed. Figure 8 supports the same numerical findings
listed in Table 4. Moreover, in Figure 9, three different plots are also considered, called
(i) fitted densities with relative histograms of given data; (ii) estimated/empirical reliability
functions of alpha-PIE, IE, IL, IW, IG, and INH distributions; and (iii) estimated/empirical
total time on test (TTT) transform plots.

Each sub-plot in Figure 9 shows that the Alpha-PIE distribution provides a good
fit compared to other competing models and indicates that the complete electronic tube
data have an upside-down bathtub-shaped failure rate. In Figure 9, except for the alpha-
PIE model, the fitted objects of other competitive models can be seen far away from the
empirical ones. This observation is due to the fact that the estimated p-values of all
compared models were lower than 0.5.

Additionally, to show the existence and uniqueness of α̂ and µ̂, the contour of the
log-likelihood function under complete electronic tube data with respect to various choices
of α and µ are also plotted and displayed in Figure 9, which provides evidence that the
MLEs of α̂ ∼= 21.826 and µ̂ ∼= 0.4149 exist and are unique; in addition, they are considered
starting points for forthcoming numerical evaluations.

To illustrate our acquired estimates of α, µ, R(t), and h(t) from the total data points of
electronic tubes, various artificial GPHC-T-II samples of size m = 10 are obtained based
on different choices of times Ti, i = 1, 2 and censoring plans Ri, i = 1, 2, . . . , m, namely,
Sch[1] : (110), Sch[2] : (24, 05, 2), and Sch[3] : (2, 05, 24); see Table 5. Here, for brevity,
the censoring plan (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) is referred to as (110). For each simulated sample
in Table 5, Table 6 represents the point estimates (along their St.Ers) and the interval
estimates (along their interval widths (IWs)) of α, µ, R(t), and h(t) at time t = 1. Since
we lack the prior information on α and µ from the electronic tubes data set, the improper
gamma priors (where ai = bi = 0, i = 1, 2) are used. Then, the Bayes estimates, along
with their HPD intervals, are developed by repeating the MCMC technique 50,000 times
and eliminating the first 10,000 times as burn-in. It can be seen, from Table 6, that the
approximate Bayes estimates of α, µ, R(t) and h(t) created from the MCMC sampler behave
better than others in terms of the lowest St.Er and IW values.

To emphasize the convergence of MCMC sequences of α, µ, R(t) and h(t), from each
sample S1 generated by Sch[i], i = 1, 2, 3 (as examples), Figure 10 displays the density and
trace diagrams from 40,000 MCMC draws of α, µ, R(t) and h(t). To distinguish THEM,
for each plot in Figure 10, the Bayes estimate (posterior mean) and two 95% HPD interval
bounds are represented by solid and dashed lines, respectively. It is clear, from Figure 10,
that the MCMC strategy converges well and that the recommended size of the burn-in
sample is adequate to ignore the impact of the starting points. The figure also demonstrates
that the drawn estimates of α and µ are fairly symmetrical. Figure 10 also shows that the
drawn estimates of R(t) and h(t) are negatively and positively skewed, respectively.
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Table 5. Artificial GPHC-T-II samples from electronic tube data.

Scheme Sample T1(d1) T2(d2) Generated Data R∗ T ∗∗

Sch[1] S1 3.8 (10) 4.5 (10) 0.1415, 0.3994, 0.4174, 0.5937, 1.1045, 1.8348, 2.4651, 2.7425, 3.2259, 3.4177 1 3.8
S2 2.5 (6) 3.8 (10) 0.1415, 0.4174, 0.5937, 1.7323, 2.3467, 2.4651, 2.6155, 3.2259, 3.5551, 3.5681 0 3.5681
S3 1.5 (4) 3.3 (9) 0.1415, 0.4174, 0.5937, 1.1045, 1.7323, 1.8348, 2.6155, 2.7425, 3.2259 2 3.3

Sch[2] S1 2.8 (10) 3.5 (10) 0.1415, 0.4174, 0.5937, 1.1045, 1.7323, 1.8348, 2.3467, 2.4651, 2.6155, 2.7425 2 2.8
S2 1.8 (5) 3.6 (10) 0.1415, 0.3484, 0.5937, 1.1045, 1.7323, 2.3467, 2.4651, 2.6155, 3.1356, 3.5551 0 3.5551
S3 1.4 (4) 3.6 (9) 0.1415, 0.3994, 0.4174, 1.1045, 1.8348, 2.3467, 2.4651, 3.4177, 3.5551 3 3.6

Sch[3] S1 2.8 (10) 3.2 (10) 0.1415, 0.3994, 0.4174, 0.5937, 1.1045, 1.7323, 1.8348, 2.3467, 2.6155, 2.7425 2 2.8
S2 1.2 (6) 3.4 (10) 0.1415, 0.3484, 0.3994, 0.4174, 0.5937, 1.1045, 1.7323, 1.8348, 2.6155, 3.2259 0 3.2259
S3 1.9 (6) 3.5 (9) 0.1415, 0.4174, 0.5937, 1.1045, 1.7323, 1.8348, 2.3467, 2.7425, 3.4177 3 3.5

Table 6. Bayesian and classical estimates of α, µ, R(t) and h(t) from electronic tube data.

Scheme Sample Par. MLE MCMC ACI HPD

Est. St.Er Est. St.Er Lower Upper IW Lower Upper IW

Sch[1] S1 α 28.054 19.395 27.953 0.1417 0.0000 66.067 66.067 27.760 28.149 0.3884
µ 0.4391 0.1520 0.3742 0.0971 0.1411 0.7370 0.5960 0.2349 0.5154 0.2805

R(0.5) 0.8892 0.0542 0.8500 0.0589 0.7831 0.9954 0.2123 0.7599 0.9247 0.1649
h(0.5) 0.4043 0.1578 0.5098 0.1566 0.0949 0.7137 0.6187 0.3098 0.7522 0.4424

S2 α 55.496 17.196 55.395 0.1431 21.792 89.200 67.408 55.193 55.588 0.3945
µ 0.5042 0.1509 0.4346 0.1038 0.2083 0.8000 0.5917 0.2847 0.5846 0.2999

R(0.5) 0.9389 0.0344 0.9138 0.0383 0.8716 0.9923 0.1207 0.8589 0.9617 0.1029
h(0.5) 0.2500 0.1179 0.3295 0.1197 0.0190 0.4810 0.4620 0.1770 0.5037 0.3267

S3 α 48.976 17.349 48.875 0.1419 14.973 82.979 68.005 48.682 49.073 0.3905
µ 0.4676 0.1425 0.3995 0.1007 0.1884 0.7468 0.5584 0.2612 0.5477 0.2865

R(0.5) 0.9248 0.0405 0.8942 0.0460 0.8454 0.9947 0.1493 0.8253 0.9521 0.1267
h(0.5) 0.2965 0.1324 0.3888 0.1367 0.0371 0.5559 0.5188 0.2138 0.5946 0.3808

Sch[2] S1 α 45.398 17.543 45.297 0.1430 11.015 79.782 68.767 45.095 45.488 0.3926
µ 0.3808 0.1221 0.3254 0.0877 0.1416 0.6200 0.4784 0.2005 0.4610 0.2605

R(0.5) 0.8887 0.0557 0.8483 0.0630 0.7796 0.9979 0.2184 0.7560 0.9328 0.1768
h(0.5) 0.4084 0.1657 0.5178 0.1689 0.0837 0.7332 0.6494 0.2937 0.7786 0.4849

S2 α 36.008 17.983 35.909 0.1399 0.7610 71.254 70.493 35.712 36.105 0.3924
µ 0.4145 0.1378 0.3519 0.0950 0.1445 0.6845 0.5400 0.2173 0.4902 0.2729

R(0.5) 0.8920 0.0551 0.8516 0.0613 0.7841 0.9989 0.2148 0.7588 0.9269 0.1681
h(0.5) 0.3969 0.1633 0.5069 0.1649 0.0768 0.7171 0.6402 0.2890 0.7462 0.4572

S3 α 30.437 18.638 30.333 0.1447 0.0000 66.966 66.966 30.125 30.523 0.3977
µ 0.4378 0.1532 0.3714 0.0989 0.1377 0.7380 0.6004 0.2271 0.5176 0.2905

R(0.5) 0.8930 0.0555 0.8531 0.0600 0.7842 0.9919 0.2077 0.7596 0.9274 0.1678
h(0.5) 0.3933 0.1638 0.5016 0.1608 0.0723 0.7144 0.6421 0.2955 0.7480 0.4525

Sch[3] S1 α 34.013 18.493 33.913 0.1396 0.0000 70.259 70.259 33.728 34.109 0.3815
µ 0.4838 0.1496 0.4185 0.0987 0.1906 0.7770 0.5865 0.2725 0.5621 0.2896

R(0.5) 0.9146 0.0423 0.8845 0.0459 0.8316 0.9975 0.1659 0.8152 0.9430 0.1278
h(0.5) 0.3281 0.1321 0.4151 0.1312 0.0691 0.5871 0.5179 0.2417 0.6126 0.3709

S2 α 17.027 11.353 16.926 0.1426 0.0000 39.279 39.279 16.7161 17.108 0.3920
µ 0.4427 0.1532 0.3787 0.0969 0.1425 0.7429 0.6004 0.2442 0.5259 0.2817

R(0.5) 0.8615 0.0616 0.8184 0.0649 0.7406 0.9823 0.2417 0.7235 0.9072 0.1838
h(0.5) 0.4831 0.1668 0.5907 0.1608 0.1562 0.8099 0.6537 0.3756 0.8365 0.4609

S3 α 49.677 12.061 49.578 0.1383 26.038 73.315 47.277 49.392 49.767 0.3754
µ 0.5061 0.1499 0.4349 0.1053 0.2124 0.7999 0.5876 0.2904 0.5913 0.3009

R(0.5) 0.9356 0.0356 0.9092 0.0400 0.8659 0.9967 0.1308 0.8499 0.9583 0.1084
h(0.5) 0.2608 0.1201 0.3435 0.1233 0.0254 0.4963 0.4709 0.1896 0.5270 0.3374

5.2. Vinyl Chloride

Vinyl chloride is an organochloride, flammable gas with a sickly sweet odor, which
is colorless at ambient temperature and is a recognized human carcinogen that burns
readily. In 1835, it was first discovered by Justus von Liebig and Henri Victor Regnault.
It is not produced naturally and must be produced industrially for its commercial uses,
for example, pipes, packaging materials, and coatings for wire and cable; see Ware [38].
In this application, from clean up-gradient monitoring wells, we shall consider a data set
consisting of thirty-four data points of vinyl chloride; see Table 7. This data set was given
by Bhaumik et al. [39] and later, Elshahhat and Elemary [40] as well as Alotaibi et al. [41]
also discussed it.
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Figure 8. The PP plots of the alpha-PIE and its competitive models from electronic tube data.
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Figure 9. Fitted PDFs (a); fitted RFs (b); scaled TTT (c); contour (d); plots from electronic tubes data.
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Table 7. Data point (in milligrams/liter) of vinyl chloride.
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Figure 10. Density (left) and trace (right) plots of α, µ, R(t) and h(t) from electronic tubes data.

To monitor the adaptability and flexibility of the alpha-PIE distribution, from the
complete vinyl chloride data, we compare its fits with several other competitive models
reported in Section 5.1. For this purpose, the MLEs (with their St.Ers) of α and µ, N-L, A, B,
C-A, H-Q, and K-S(p-value) of alpha-PIE and its competing distributions are calculated and
provided in Table 8. Furthermore, the corresponding PP plot of the alpha-PIE distribution
and its five competitive models are shown in Figure 11. In Figure 12, the fitted density
and reliability function of the alpha-PIE distribution and all studied models, as well as
the TTT transform plot, are displayed. Figures 11 and 12 indicate confirmed the same
results presented in Table 8. Moreover, Figure 12 shows that a decreasing failure rate is
appropriate for modeling vinyl chloride data. In addition, Figure 12 shows that the MLEs
α̂ ∼= 21.364 and µ̂ ∼= 0.2524 developed from the vinyl chloride data exist and are unique.
Therefore, in the forthcoming classical (or Bayesian) evaluations, these values are taken as
initial guesses.

To assess the efficacy of the suggested inferential techniques in the chemical area,
from the complete vinyl chloride data, several artificial GPHC-T-II samples (when m = 17
and different choices of Ti, i = 1, 2 and Ri, i = 1, 2, . . . , m namely: Sch[1]:(117),
Sch[2]:(28, 08, 1) and Sch[3]:(1, 08, 28)) are created and listed in Table 9. From each GPHC-
T-II sample reported Table 9, the maximum likelihood and Bayes MCMC estimates (along
with their St.Ers) and the asymptotic and HPD interval estimates (along with their IWs) of
α, µ, R(t) or h(t) (at t = 0.5) are computed and provided in Table 10.
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Table 8. Outputs of the fitting alpha-PIE and its competitive models from vinyl chloride data.

Model MLE(St.Er) N-L A B C-A H-Q K-S (p-Value)

α µ

APIE 21.364 (52.796) 0.2524 (0.1725) 57.2457 118.4915 121.5442 118.8786 119.5325 0.0952 (0.918)
IE - 0.5725 (0.0982) 59.1930 120.3860 121.9124 120.5110 120.9066 0.1470 (0.454)
IL - 0.8774 (0.1127) 61.8136 125.6272 127.1535 125.7522 126.1477 0.1908 (0.168)
IW 0.8805 (0.1093) 0.6539 (0.1347) 58.6266 121.2532 124.3059 121.6403 122.2942 0.1134 (0.774)
IG 0.9002 (0.1904) 0.5154 (0.1434) 59.0659 122.1319 125.1846 122.5190 123.1729 0.1310 (0.604)

INH 0.6089 (0.1518) 1.4368 (0.7440) 57.5539 119.1079 122.1606 119.4950 120.1490 0.1004 (0.883)
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Figure 11. The PP plots of the alpha-PIE and its competitive distributions from vinyl chloride data.
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Figure 12. Fitted PDFs (a); fitted RFs (b); scaled-TTT (c); contour (d) plots from vinyl chloride data.

By ignoring the first 10,000 iterations (burn-in) from the full MCMC 50,000 iterations,
the Bayes’ estimates are approximated when the hyperparameter values are selected to be
zero. Because we lacked additional historical information from the given data, which led
to little to no difference between the proposed classical and Bayesian estimates, Table 10
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stated that the offered estimates of α, µ, R(t) or h(t) behave similarly and seem to be close
to one another.

From each sample S1 obtained by Sch[i], i = 1, 2, 3 (as examples), to display the
convergence of 40,000 MCMC draws of α, µ, R(t) and h(t), the density and trace pots of
all unknown quantities are plotted and shown in Figure 13. This figure supports the same
numerical findings reported in Table 10 and indicates that all MCMC iterations of α, µ, R(t)
or h(t) converged satisfactorily. It also shows that the simulated MCMC estimates of α
and µ are almost symmetrical, while those of R(t) and h(t) are negatively and positively
skewed, respectively.

As a result, the reported discussions of real data sets representing 20 electron tubes
and 34 vinyl chloride tubes, show that the derived estimators perform well in practical
situations and proposed lifetime distribution is a suitable choice for modeling these data in
the presence of Type-II generalized progressive hybrid censored data.

Table 9. Artificial GPHC-T-II samples from vinyl chloride data.

Scheme Sample T1(d1) T2(d2) Generated Data R∗ T ∗∗

Sch[1] S1 4.2 (17) 4.8 (17) 0.1, 0.2, 0.4, 0.4, 0.5, 0.6, 0.8, 0.9, 0.9, 1.0, 1.1, 1.2, 1.3, 1.8, 2.3, 2.4, 4.0 1 4.2
S2 1.5 (12) 5.5 (17) 0.1, 0.2, 0.4, 0.4, 0.4, 0.5, 0.6, 0.6, 0.9, 1.0, 1.1, 1.2, 2.0, 2.0, 2.5, 2.7, 5.1 0 5.1
S3 1.1 (12) 1.3 (15) 0.1, 0.2, 0.4, 0.5, 0.5, 0.5, 0.6, 0.6, 0.8, 0.9, 0.9, 1.0, 1.1, 1.2, 1.2 4 1.3

Sch[2] S1 2.2 (11) 6.9 (17) 0.1, 0.2, 0.4, 0.5, 0.5, 0.6, 0.8, 0.9, 1.2, 1.3, 2.0, 2.3, 2.7, 4.0, 5.1, 5.3, 6.8 1 6.9
S2 1.7 (13) 5.4 (17) 0.1, 0.2, 0.5, 0.5, 0.6, 0.6, 0.8, 0.9, 0.9, 1.0, 1.1, 1.2, 1.2, 2.3, 2.4, 4.0, 5.3 0 5.3
S3 1.1 (12) 1.3 (14) 0.1, 0.2, 0.4, 0.4, 0.4, 0.5, 0.6, 0.6, 0.8, 0.9, 0.9, 1.0, 1.1, 1.2 4 1.3

Sch[3] S1 2.6 (17) 2.8 (17) 0.1, 0.2, 0.2, 0.4, 0.4, 0.4, 0.5, 0.5, 0.5, 0.6,0.9, 0.9, 1.2, 1.2, 1.3, 2.0, 2.5 2 2.6
S2 1.4 (13) 4.4 (17) 0.1, 0.2, 0.2, 0.4, 0.4, 0.4, 0.5, 0.5, 0.5, 0.6, 0.9, 1.1, 1.3, 1.8, 2.4, 2.9, 4.0 0 4.0
S3 0.8 (10) 1.4 (16) 0.1, 0.2, 0.2, 0.4, 0.4, 0.4, 0.5, 0.5, 0.5, 0.6, 0.9, 1.0, 1.1, 1.2, 1.2, 1.3 3 1.4

Table 10. Bayesian and classical estimates of α, µ, R(t) and h(t) from vinyl chloride data.

Scheme Sample Par. MLE MCMC ACI HPD

Est. St.Er Est. St.Er Lower Upper IW Lower Upper IW

Sch[1] S1 α 60.396 8.489 60.349 0.0832 43.757 77.034 33.278 60.218 60.485 0.2670
µ 0.2862 0.0652 0.2641 0.0496 0.1584 0.4140 0.2556 0.1775 0.3515 0.1741

R(0.5) 0.8466 0.0508 0.8216 0.0491 0.7471 0.9461 0.1990 0.7374 0.9003 0.1629
h(0.5) 0.5326 0.1395 0.5956 0.1259 0.2592 0.8060 0.5467 0.3965 0.8226 0.4262

S2 α 41.368 12.570 41.320 0.0844 16.730 66.006 49.275 41.188 41.459 0.2718
µ 0.3018 0.0729 0.2777 0.0521 0.1589 0.4447 0.2859 0.1888 0.3673 0.1785

R(0.5) 0.8351 0.0532 0.8089 0.0502 0.7309 0.9393 0.2084 0.7238 0.8858 0.1620
h(0.5) 0.5582 0.1415 0.6224 0.1253 0.2809 0.8354 0.5545 0.4174 0.8301 0.4127

S3 α 183.76 6.8550 183.74 0.0554 170.33 197.20 26.871 183.64 183.83 0.1951
µ 0.1897 0.0421 0.1798 0.0321 0.1072 0.2721 0.1649 0.1232 0.2413 0.1181

R(0.5) 0.8116 0.0581 0.7907 0.0521 0.6976 0.9255 0.2279 0.6979 0.8776 0.1797
h(0.5) 0.6467 0.1513 0.6950 0.1274 0.3501 0.9433 0.5932 0.4717 0.9238 0.4521

Sch[2] S1 α 50.611 17.847 50.562 0.0856 15.632 85.589 69.957 50.427 50.701 0.2738
µ 0.3078 0.0780 0.2810 0.0548 0.1549 0.4607 0.3058 0.1894 0.3741 0.1847

R(0.5) 0.8522 0.0523 0.8250 0.0501 0.7497 0.9547 0.2050 0.7412 0.9015 0.1602
h(0.5) 0.5146 0.1444 0.5837 0.1291 0.2315 0.7977 0.5662 0.3762 0.7973 0.4211

S2 α 104.59 11.9356 104.55 0.0705 81.194 127.98 46.787 104.43 104.67 0.2364
µ 0.2352 0.0547 0.2195 0.0408 0.1280 0.3423 0.2143 0.1482 0.2958 0.1476

R(0.5) 0.8333 0.0557 0.8096 0.0511 0.7241 0.9424 0.2184 0.7153 0.8896 0.1743
h(0.5) 0.5785 0.1506 0.6362 0.1289 0.2834 0.8736 0.5902 0.4276 0.8757 0.4481

S3 α 671.16 11.8650 670.21 663.50 647.91 694.42 46.510 664.45 675.78 11.3371
µ 0.1277 0.0286 0.1815 0.0584 0.0717 0.1837 0.1120 0.1410 0.2273 0.0863

R(0.5) 0.7706 0.0665 0.8597 0.0938 0.6402 0.9010 0.2608 0.8009 0.9101 0.1092
h(0.5) 0.7718 0.1604 0.5334 0.2528 0.4573 1.0862 0.6289 0.3851 0.7014 0.3163

Sch[3] S1 α 21.738 9.609 21.689 0.0864 2.9050 40.572 37.667 21.554 21.828 0.2732
µ 0.3115 0.0788 0.2876 0.0515 0.1571 0.4659 0.3088 0.2005 0.3794 0.1789

R(0.5) 0.7968 0.0572 0.7700 0.0517 0.6848 0.9088 0.2241 0.6825 0.8535 0.1710
h(0.5) 0.6493 0.1400 0.7105 0.1200 0.3749 0.9237 0.5488 0.5081 0.9130 0.4049

S2 α 20.378 9.7182 20.330 0.0849 1.3309 39.425 38.095 20.196 20.470 0.2736
µ 0.3529 0.0909 0.3248 0.0571 0.1749 0.5310 0.3562 0.2262 0.4203 0.1940

R(0.5) 0.8230 0.0535 0.7972 0.0479 0.7182 0.9279 0.2097 0.7147 0.8689 0.1542
h(0.5) 0.5834 0.1361 0.6450 0.1154 0.3166 0.8502 0.5336 0.4638 0.8403 0.3765

S3 α 24.284 9.3539 24.234 0.0863 5.9510 42.618 36.667 24.103 24.374 0.2706
µ 0.2922 0.0720 0.2699 0.0495 0.1511 0.4332 0.2821 0.1868 0.3597 0.1728

R(0.5) 0.7887 0.0584 0.7614 0.0538 0.6743 0.9031 0.2288 0.6685 0.8474 0.1788
h(0.5) 0.6698 0.1418 0.7316 0.1239 0.3919 0.9478 0.5559 0.5268 0.9450 0.4182
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Figure 13. Density (left) and Trace (right) plots of α, µ, R(t) and h(t) from vinyl chloride data.

6. Optimal Progressive Designs

In regard to the context of reliability, the experimenter can decide to select the most
effective censoring strategy from a group of all available progressive designs in order to offer
as much information as possible about the parameter(s) under investigation. Independently,
this issue was first addressed by Balakrishnan and Aggarwala [42] and Ng et al. [43].
The ideal censoring fashion R = (R1, R2, . . . , Rm) such as ∑m

j=1 Rj = n−m, can be proposed,
and the plausible choices of n, m and Ti, i = 1, 2 are predetermined in advance depending
on unit capacity, experimentation facilities, and budgetary constraints. In the literature,
several criteria, however, have been introduced, and numerous results on the optimum
censoring systems have been investigated; for examples, see Pradhan and Kundu [44];
Sen et al. [45]; Elshahhat and Rastogi [46]; Ashour et al. [47]; and Elshahhat and Abu El
Azm [48]. In Table 11, a list of commonly used metrics to help us choose the best censoring
strategy is presented.

Table 11. Optimality criteria for the best censoring pattern.

Criterion Aim

O1 Maximize trace(I(ϑ̂))
O2 Minimize trace(I−1(ϑ̂))
O3 Minimize det(I−1(ϑ̂))
O4 Minimize v̂(log(T̂$))

It should be noted that the objective of the studied criteriaQi, i = 2, 3, 4 is to minimize
the trace, determinant, and variance of the logarithmic MLE of the $th quantile of the
estimated variance–covariance I−1(·) matrix, while the objective of criterion Q1 is to
maximize the observed Fisher information Fii, i = 1, 2 elements.
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Obviously, the best censoring pattern must correspond to the largest value of Q1 and
the smallest value ofQi for i = 2, 3, 4. Specifically, from (2), the logarithmic of the alpha-PIE
lifetime distribution T$ is given by

log(T̂$) = log
(
−µ
[
log{log−1(α) log[$(α− 1) + 1]}

]−1
)∣∣∣∣

(α̂,µ̂)
, 0 < $ < 1. (16)

Again, utilizing the delta method, the approximated variance of log(T̂$) is given by

v̂(log(T̂$)) = ΣT
log(T$)

I−1(ϑ) Σlog(T$)

∣∣∣
(α̂,µ̂)

,

where

ΣT
log(T̂$)

=

[
∂

∂α
log(T$),

∂

∂µ
log(T$)

]∣∣∣∣
(α̂,µ̂)

.

6.1. Optimum from Electronic Tubes

This subsection aims to determine the best progressive censoring based on the gener-
ated samples, which are created from the electronic tube data, reported in Table 5. However,
from Tables 5, 6 and 11, the optimum criteria are evaluated; see Table 12.

Table 12. Optimum progressive plans from electronic tubes data.

Sample Scheme O1 O2 O3 O4

$→ 0.3 0.6 0.9

S1 Sch[1] 57.813 376.19 6.5069 0.1030 0.6945 18.150
Sch[2] 73.399 307.77 4.1931 0.1051 0.7019 18.223
Sch[3] 54.285 342.02 6.3005 0.1221 0.8200 21.367

S2 Sch[1] 46.118 295.74 6.4126 0.1860 1.2338 31.917
Sch[2] 58.574 323.42 5.3421 0.1128 0.7568 19.711
Sch[3] 60.542 128.92 2.2010 0.0756 0.5160 13.586

S3 Sch[1] 52.612 301.00 5.7118 0.1527 1.0162 26.337
Sch[2] 46.011 347.39 6.6029 0.1183 0.7969 20.809
Sch[3] 52.697 145.48 3.1619 0.1759 1.1714 30.362

Table 12 supports the same recommended censoring schemes considered in Section 4
and shows that

• According to Oi, i = 1, 2, 3, the design of Sch[2] (in Sample S1) and the design of
Sch[3] (in Samples S2 and S3) are the optimum censoring plans compared to others.

• According to O4, the design of Sch[1] (in Sample S1), the design of Sch[3] (in Sample
S2) and the design of Sch[2] (in Sample S3) are the optimum censoring plans compared
to others.

6.2. Optimum from Vinyl Chloride

In this subsection, from the vinyl chloride data, we shall propose an optimal pro-
gressive censored plan based on the generated samples reported in Table 9. However,
from Tables 9–11, the optimum criteria are evaluated and presented in Table 13.

Table 13 shows that

• According to O1, the design of Sch[1] (in Sample S1) and the design of Sch[2] (in
Samples Si, i = 2, 3) are the optimum censoring plans compared to others.

• According toOi, i = 2, 3, the design of Sch[1] (in Samples Si, i = 1, 3) are the optimum
censoring plans compared to others.

• According to Oi, i = 2, 3, the designs Sch[3] and Sch[2] (in Sample S2), respectively,
are the optimum censoring plans compared to others.

• According to O4, the design of Sch[3] (in Samples Si, i = 1, 2) and the design of Sch[2]
(in Samples S3) are the optimum censoring plans compared to others.
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Finally, it is clear that the optimum progressive censoring plans suggested in this
section support the same findings reported in Section 4.

Table 13. Optimum progressive plans from vinyl chloride data.

Sample Scheme O1 O2 O3 O4

$→ 0.3 0.6 0.9

S1 Sch[1] 240.82 72.074 0.2993 0.0371 0.2458 6.3534
Sch[2] 185.93 318.51 1.7130 0.0439 0.2923 7.5784
Sch[3] 211.50 92.340 0.4366 0.0241 0.1642 4.3147

S2 Sch[2] 211.13 158.02 0.7485 0.0348 0.2328 6.0573
Sch[2] 338.57 142.46 0.4208 0.0343 0.2240 5.7400
Sch[3] 162.58 94.451 0.5810 0.0303 0.2061 5.4156

S3 Sch[3] 566.15 46.993 0.0830 0.0262 0.1686 4.2879
Sch[2] 1224.9 140.78 0.1149 0.0196 0.1227 3.0752
Sch[3] 240.05 87.500 0.3645 0.0227 0.1540 4.0421

7. Concluding Remarks

This work considers the problem of statistical inference of new alpha power-inverted
exponential parameters of life using generalized Type-II progressively hybrid censored
data. Classically, the maximum likelihood and asymptotic confidence interval estimates
of the model parameters and any related time function have been derived using Newton–
Raphson optimization process via the ”maxLik” language. The joint posterior density has
been derived in a nonlinear form because the formula of the likelihood function has a
complex expression. Independent gamma priors, to derive the Bayes and HPD interval
estimates, are considered. Metropolis–Hastings sampler via the ”coda” language is also
recommended to simulate the MCMC samples of the same unknown parameters. Extensive
simulation experiments, based on various options of n, m, R, and Ti, i = 1, 2, have been
conducted to judge the behavior of the offered estimates. These studies show that the
MCMC methodology performs quite well compared to the maximum likelihood approach.
An optimum progressive censoring has also been presented using several optimality
criterion measurements. Two scenarios based on real-world data sets from the engineering
and chemical sectors are examined to highlight the superiority of the proposed model and
how the provided estimates can be performed in practice. These applications show that
the derived estimators perform well in practical situations and that the proposed lifetime
distribution is a good choice compared to several models in the literature, namely, the
inverted exponential, inverted Lindley, inverted Weibull, inverted gamma, and inverted
Nadarajah–Haghighi distributions. We also believe that the findings and methodology
presented here will be useful to reliability technicians, statisticians, and/or other scientists.
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Appendix A

Differentiating (7) with regard to α and µ, Fisher’s items Fij, i, j = 1, 2 are

F11 =−∑Dq

i=1(Ri[((α− 1)(1− α−1(αexp(−(µx−1
i )) − 1)))−1(αe−µx−1

i −2e−µx−1
i [e−µx−1

i − 1]− (α− 1){(αexp(−(µx−1
i )) − 1)e−µx−1

i

− α−1(αexp(−(µx−1
i )) − 1)})− ((α− 1)(1− α−1(αexp(−(µx−1

i )) − 1)))2(1− αexp(−(µx−1
i ))e−µx−1

i {(αexp(−(µx−1
i )) − 1)e−µx−1

i

− α−1(αexp(−(µx−1
i )) − 1)})] + ∑Dq

i=1(((α
exp(−(µx−1

i ))−1α−1 − α)−1 log(α) + αexp(−(µx−1
i ))−2 + αexp(−(µx−1

i ))−2[e−µx−1
i − 1]

× log(α))e−µx−1
i − αexp(−(µx−1

i ))((α− 1)α−1 − α)−1 log(α) + α−2))[αexp(−(µx−1
i )) log(α)]−1 − ((αexp(−(µx−1

i )) − 1)e−µx−1
i

× log(α) + αexp(−(µx−1
i ))α−1 − α)−1 log(α))(αexp(−(µx−1

i ))−1 + (αexp(−(µx−1
i )) − 1)e−µx−1

i log(α))[αexp(−(µx−1
i )) log(α)]−2)

− R∗dτ+1((α(exp(−(µT−1
τ ))− 2)e−µT−1

τ (e−µT−1
τ − 1)− (α− 1){αexp(−(µT−1

τ ))−1e−µT−1
τ − α−1(αexp(−(µT−1

τ )) − 1)})

× [(α− 1)(1− α−1(αexp(−(µT−1
τ )) − 1))]−1 − (1− αexp(−(µT−1

τ ))−1e−µT−1
τ {αexp(−(µT−1

τ ))−1e−µT−1
τ

− α−1(αexp(−(µT−1
τ )) − 1)}[(α− 1)(1− α−1(αexp(−(µT−1

τ )) − 1))]−2),

F22 =−∑Dq

i=1[((xiµαexp(−µx−1
i ))−1(αexp(−µx−1

i ) + αexp(−µx−1
i )(1− µx−1

i )− µx−1
i e−µx−1

i log(α)αexp(−µx−1
i )(1 + αexp(−µx−1

i )))

× log(α)e−µx−1
i + αexp(−µx−1

i )) + (αexp(−µx−1
i ) − µαexp(−µx−1

i )e−µx−1
i x−1

i log(α))(αexp(−µx−1
i )(1− µx−1

i )− µαexp(−µx−1
i )

× x−1
i e−µx−1

i log(α))(µαexp(−µx−1
i ))−2]−∑Dq

i=1[Ri(α
exp(−µx−1

i )(1 + αexp(−µx−1
i )e−µx−1

i log(α))[x2
i (1− (α− 1)−1

× (αexp(−µx−1
i ) − 1))(α− 1)]−1 + α(2e−µx−1

i )e−µx−1
i log(α)(xi(1− (α− 1)−1(αexp(−µx−1

i ) − 1))(α− 1))−2)e−µx−1
i log(α)]

− R∗dτ+1eµT−1
τ log(α)[αexp(−(µT−1

τ ))(1 + αexp(−(µT−1
τ )) exp(−(µT−1

τ )) log(α))(T2
τ (1− (α− 1)−1(αexp(−(µT−1

τ )) − 1))

× (α− 1))−1 + α2eµT−1
τ eµT−1

τ log(α)(Tτ(1− (α− 1)−1(αexp(−(µT−1
τ )) − 1))(α− 1))−2],

and

F12 =−∑Dq

i=1[Ri((((α− 1)−1 − e−µx−1
i )αexp(−µx−1

i ) log(α)− αexp(−µx−1
i )−1)[(α− 1)(1− (α− 1)−1(αexp(−µx−1
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i ) − 1))]−2)
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i ] + ∑Dq

i=1((α
exp(−µx−1

i )(αexp(−µx−1
i )−1e−µx−1

i log(α) + αexp(−µx−1
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