Article

The Recursive Structures of Manin Symbols over \mathbb{Q}, Cusps and Elliptic Points on $X_{0}(N)$

Sanmin Wang (1)

Faculty of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; wangsanmin@zstu.edu.cn

Abstract

Firstly, we present a more explicit formulation of the complete system $D(N)$ of representatives of Manin's symbols over \mathbb{Q}, which was initially given by Shimura. Then, we establish a bijection between $D(M) \times D(N)$ and $D(M N)$ for $(M, N)=1$, which reveals a recursive structure between Manin's symbols of different levels. Based on Manin's complete system $\Pi(N)$ of representatives of cusps on $X_{0}(N)$ and Cremona's characterization of the equivalence between cusps, we establish a bijection between a subset $C(N)$ of $D(N)$ and $\Pi(N)$, and then establish a bijection between $C(M) \times C(N)$ and $C(M N)$ for $(M, N)=1$. We also provide a recursive structure for elliptical points on $X_{0}(N)$. Based on these recursive structures, we obtain recursive algorithms for constructing Manin symbols over \mathbb{Q}, cusps, and elliptical points on $X_{0}(N)$. This may give rise to more efficient algorithms for modular elliptic curves. As direct corollaries of these recursive structures, we present a recursive version of the genus formula and prove constructively formulas of the numbers of $D(N)$, cusps, and elliptic points on $X_{0}(N)$.

Keywords: modular curve; elliptic curve; recursive structure; Manin's symbols over \mathbb{Q}; cusps; elliptic points; algorithmic number theory

MSC: 11A05; 11F06; 20H05; 20J05

check for updates

Citation: Wang, S. The Recursive Structures of Manin Symbols over \mathbb{Q}, Cusps and Elliptic Points on $X_{0}(N)$.
Axioms 2023, 12, 597. https://
doi.org/10.3390/axioms12060597
Academic Editors: Emil Saucan and David Xianfeng Gu

Received: 13 May 2023
Revised: 12 June 2023
Accepted: 14 June 2023
Published: 16 June 2023

Copyright: © 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

In his seminal monograph [1] (Chapter 1, Proposition 1.43), G. Shimura defined a complete set $D(N)$ of representatives for the projective line $\mathbb{P}^{1}(\mathbb{Z} / N \mathbb{Z})$ over $\mathbb{Z} / N \mathbb{Z}$ to be all couples $\{c, d\}$ of positive integers satisfying
$(*)(c, d)=1, d \mid N, 1 \leqslant c \leqslant N / d($ or c in any set of representatives for \mathbb{Z} modulo $(N / d))$,
where (c, d) denote the greatest common divisor of integers c and d.
Let $[x]$ be the greatest integer less than or equal to x. For two integers a, b with $b \neq 0$, define

$$
\left[\frac{a}{b}\right]^{\prime}= \begin{cases}\frac{a}{b}-1 & \text { if } b \mid a \\ {\left[\frac{a}{b}\right]} & \text { otherwise }\end{cases}
$$

then $1 \leqslant a-b\left[\frac{a}{b}\right]^{\prime} \leqslant b$. In this paper, we define

$$
\begin{align*}
D(N)=\{ & (c, d): c, d \in \mathbb{Z}, c, d \geqslant 1, c \mid N,(c, d)=1 \text { and } \\
& \left.\left(c, d-\frac{N}{c}\left(\left[\frac{c d}{N}\right]^{\prime}-n\right)\right) \geqslant 2 \text { for } 0 \leqslant n<\left[\frac{c d}{N}\right]^{\prime}\right\} . \tag{1}
\end{align*}
$$

We then establish a bijection between $D(M) \times D(N)$ and $D(M N)$ for $(M, N)=1$ in Section 2. This result gives a recursive algorithm to construct the projective line $\mathbb{P}^{1}(\mathbb{Z} / N \mathbb{Z})$ over $\mathbb{Z} / N \mathbb{Z}$.

Let $\Pi(N)=\left\{\left[\delta ; a \bmod \left(\delta, N \delta^{-1}\right)\right]: a, \delta \in \mathbb{Z}, \delta \geqslant 1, \delta \mid N, 1 \leqslant a \leqslant\left(\delta, N \delta^{-1}\right)\right\}$. In [2] (Proposition 2.2), Manin proved that there exists a bijection between $\Pi(N)$ and the set of cusps on $X_{0}(N)$. Based on Manin's result and Cremona's characterization (See Proposition 3), we identify $\Pi(N)$ with

$$
\begin{align*}
& C(N)=\{(c, d): c, d \in \mathbb{Z}, 1 \leqslant c \leqslant N, c \mid N,(c, d)=1 \text { and } \\
& \left.\quad\left(c, d-\left(c, N c^{-1}\right)\left[\frac{d}{\left(c, N c^{-1}\right)}\right]^{\prime}+\frac{N n}{c}\right) \geqslant 2 \text { for } 0 \leqslant n<\frac{c\left(c, N c^{-1}\right)}{N}\left[\frac{d}{\left(c, N c^{-1}\right)}\right]^{\prime}\right\}, \tag{2}
\end{align*}
$$

which is a subset of $D(N)$. In Section 3, we establish a bijection between $C\left(N_{1} N_{2}\right)$ and $C\left(N_{1}\right) \times C\left(N_{2}\right)$ for $\left(N_{1}, N_{2}\right)=1$. This result gives a recursive algorithm to construct the complete set of representatives of $\Gamma_{0}(N)$-inequivalent cusps.

Define

$$
\begin{align*}
& E_{2}(N)=\left\{(1, d):(1, d) \in D(N), 1+d^{2} \equiv 0(\bmod N)\right\} \\
& E_{3}(N)=\left\{(1, d):(1, d) \in D(N), 1-d+d^{2} \equiv 0(\bmod N)\right\} \tag{3}
\end{align*}
$$

Then, there exist bijections between $E_{2}(N), E_{3}(N)$ and complete sets of representatives of $\Gamma_{0}(N)$-inequivalent elliptic points of order 2 and 3, respectively. In Section 4, we establish bijections between $E_{2}\left(N_{1} N_{2}\right)$ and $E_{2}\left(N_{1}\right) \times E_{2}\left(N_{2}\right), E_{3}\left(N_{1} N_{2}\right)$ and $E_{3}\left(N_{1}\right) \times E_{3}\left(N_{2}\right)$, for $\left(N_{1}, N_{2}\right)=1$. These results give a recursive algorithm for constructing the complete set $E_{3}(N)$ and $E_{2}(N)$ of $\Gamma_{0}(N)$-inequivalent elliptic points of order 2,3 .

The elements in $\mathbb{P}^{1}(\mathbb{Z} / N \mathbb{Z})$ are called Manin symbols [3] (Section 2.2) and there exists a bijection between the set of right cosets of $\Gamma_{0}(N)$ in $\operatorname{SL}(2, \mathbb{Z})$ and $\mathbb{P}^{1}(\mathbb{Z} / N \mathbb{Z})$ [2] (Proposition 2.4). An important step in the modular elliptic algorithm is to construct a complete set of representatives for the projective line $\mathbb{P}^{1}(\mathbb{Z} / N \mathbb{Z})$ and a complete set of representatives of $\Gamma_{0}(N)$-inequivalent cusps [3] (Chapter II). The recursive structure of $D(N), C(N), E_{2}(N)$ and $E_{3}(N)$ may give rise to a more efficient modular elliptic algorithm.

As direct corollaries of these recursive structures, we present a recursive version of the genus formula and elementary proofs of formulas of the numbers $\mu(N), v_{\infty}(N), v_{2}(N)$ and $v_{3}(N)$ of $D(N), C(N), E_{2}(N), E_{3}(N)$. Note that Schoeneberg's proof and Shimura's proof for formulas of $\mu(N), v_{\infty}(N), v_{2}(N)$ and $v_{3}(N)$ use the theory of quadratic fields, see [4] (Chapter IV, Section 8) and [1] (Chapter 1, Proposition 1.43). Their proofs may make these formulas hard to approach when compared with our proofs.

2. The Recursive Structure of Manin Symbols over \mathbb{Q}

We firstly give some necessary notations and facts, for details, see [3].

Definition 1.

(a) $D_{2}(N)=\{(c, d): c, d \in \mathbb{Z},(c, d, N)=1\} ;$
(b) $\quad \forall\left(c_{1}, d_{1}\right),\left(c_{2}, d_{2}\right) \in D_{2}(N)$, define $\left(c_{1}, d_{1}\right) \sim\left(c_{2}, d_{2}\right)$ if $c_{1} d_{2} \equiv d_{1} c_{2}(\bmod N)$, then \sim is an equivalence relation on $D_{2}(N)$;
(c) $\quad \forall(c, d) \in D_{2}(N)$, define $(c: d)=\left\{\left(c^{\prime}, d^{\prime}\right):\left(c^{\prime}, d^{\prime}\right) \in D_{2}(N),\left(c^{\prime}, d^{\prime}\right) \sim(c, d)\right\}$;
(d) $\mathcal{D}(N)=D_{2}(N) / \sim=\left\{(c: d):(c, d) \in D_{0}(N)\right\} ;$
(e) $D_{1}(N)=\left\{(c, d): c, d \in \mathbb{Z}, c, d \geqslant 1, c \mid N,\left(c, d, \frac{N}{c}\right)=1, c d \leqslant N\right\} ;$
(f) $\quad D(N)$ is defined in (1);
(g) $\quad \mu(N), v_{\infty}(N), v_{2}(N)$ and $v_{3}(N)$ are the numbers of elements in $D(N), C(N), E_{2}(N)$ and $E_{3}(N)$, respectively

As pointed out by a referee, the index $\mu(N)$ of $\Gamma_{0}(N)$ in $\operatorname{SL}(2, \mathbb{Z})$ is called the Dedekind psi function, usually denoted $\psi(N)$, see [5,6]. Here, we follow Shimura's notations in [1] (Proposition 1.43).

Lemma 1. Let $c, d, h \in \mathbb{Z},(c, d, h)=1, c, d \geqslant 1$ and $d \leqslant h$, then there exists an integer k such that $(c, d+h k)=1$ and $0 \leqslant k<c$.

Proof. If $c=1$, take $k=0$ then $(c, d+h k)=1$. Thus, let $c \geqslant 2$ in the following. Let $c=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}$ be the standard factorization of c. The proof is by induction on the numbers of distinct prime divisors in c. Suppose that $c=p_{1}^{\alpha_{1}}$. Assume that $\left(p_{1}^{\alpha_{1}}, d\right) \geqslant 2$ and $\left(p_{1}^{\alpha_{1}}, d+h\right) \geqslant 2$ then $p_{1} \mid d$ and $p_{1} \mid(d+h)$. Thus, $p_{1} \mid d$ and $p_{1} \mid h$, this contradicts with $(c, d, h)=1$, and hence $(c, d+h k)=1$ for some $0 \leqslant k \leqslant 1<c$.

Let $c_{1}=p_{1}^{\alpha_{1}} \cdots p_{s-1}^{\alpha_{s-1}}$. By the induction hypothesis, there exists an integer k_{1} such that $\left(c_{1}, d+h k_{1}\right)=1$ and $0 \leqslant k_{1}<c_{1}$. Then, $\left(c_{1}, d+h k_{1}+h c_{1}\right)=1$. Assume that $\left(p_{s}^{\alpha_{s}}, d+h k_{1}\right) \geqslant 2$ and $\left(p_{s}^{\alpha_{s}}, d+h k_{1}+h c_{1}\right) \geqslant 2$ then $p_{s} \mid\left(d+h k_{1}\right)$ and $p_{s} \mid\left(d+h k_{1}+h c_{1}\right)$. Thus, $p_{s} \mid h c_{1}$ and hence $p_{s} \mid h$ by $\left(p_{s}, c_{1}\right)=1$. Therefore, $p_{s} \mid d$. This contradicts with $(c, d, h)=$ 1 and hence $\left(c, d+h k_{1}\right)=1$ or $\left(c, d+h k_{1}+h c_{1}\right)=1$. Take $k=k_{1}$ ork $=c_{1}+k_{1}$, then $(c, d+h k)=1$ for some $0 \leqslant k_{1} \leqslant k \leqslant c_{1}+k_{1}<2 c_{1} \leqslant c$. This completes the proof by the induction principle.

Corollary 1. Let $a, b, c \in \mathbb{Z},(a, b, c)=1$, then the equation $a x+b y+c y z=1$ has solutions in \mathbb{Z}.

Lemma 2. There exists a bijection between $D(N)$ and $D_{1}(N)$.
Proof. Let $(c, d) \in D(N)$. Define $d_{n}=d-\frac{N}{c}\left[\frac{c d}{N}\right]^{\prime}+\frac{N n}{c}$ for all $n \in \mathbb{Z}$. Then, $1 \leqslant d_{0} \leqslant \frac{N}{c}$ and $\left(c, d_{0}, \frac{N}{c}\right)=1$ by $(c, d)=1$. Thus $\left(c, d_{0}\right) \in D_{1}(N)$. Define $\Phi: D(N) \rightarrow D_{1}(N)$ by sending (c, d) to $\left(c, d_{0}\right)$.

Let $(u, v) \in D(N)$ such that $\Phi(c, d)=\Phi(u, v)$. Define $v_{n}=v-\frac{N}{u}\left[\frac{u v}{N}\right]^{\prime}+\frac{N n}{u}$ for all $n \in \mathbb{Z}$. Then, $c=u$ and $d_{0}=v_{0}$. Thus, $d_{n}=v_{n}$ for all $n \in \mathbb{Z}$. Let $e=\left[\frac{c d}{N}\right]^{\prime}$ and $w=\left[\frac{c v}{N}\right]^{\prime}$. Then, $d=d_{e}$ and $v=v_{w}$. Suppose that $e<w$ then $\left(c, d_{e}\right)=1$ by $(c, d)=1$ but $\left(c, d_{e}\right) \geqslant 2$ by $(c, v) \in D(N)$ and $d_{e}=v_{e}$, a contradiction and thus $e \geqslant w . e \leqslant w$ holds by a similar proof and thus $e=w$ and $(c, d)=(u, v)$. Therefore, Φ is an injection from $D(N)$ to $D_{1}(N)$.

Let $\left(c, d_{0}\right) \in D_{1}(N)$. By Lemma 1 , there exists an integer k such that $\left(c, d_{0}+\frac{N k}{c}\right)=1$ and $0 \leqslant k \leqslant c-1$. Let $0 \leqslant k_{0} \leqslant k$ such that $\left(c, d_{0}+\frac{N k_{0}}{c}\right)=1$ and $\left(c, d_{0}+\frac{N n}{c}\right)=1$ for all $0 \leqslant n<k_{0}$. Define $d=d_{0}+\frac{N k_{0}}{c}$. Then, $(c, d) \in D(N)$ and $\Phi((c, d))=\left(c, d_{0}\right)$. Therefore, Φ is a surjection from $D(N)$ to $D_{1}(N)$.

Lemma 3. There exists a bijection between $\mathcal{D}(N)$ and $D(N)$, i.e., $D(N)$ is a complete system of the representatives of elements of $\mathcal{D}(N)$.

Proof. Define $\Phi: D(N) \rightarrow \mathcal{D}(N)$ by the natural map, i.e., $\Phi((c, d))=(c: d)$.
Let $(c: d) \in \mathcal{D}(N)$. Then, $(c, d, N)=1$. Define $c_{1}=(c, N), d_{0}$ to be the unique solution of the congruence equation $\frac{c}{c_{1}} x \equiv d\left(\bmod \frac{N}{c_{1}}\right)$ such that $1 \leqslant d_{0} \leqslant \frac{N}{c_{1}}$. Then, there exists an integer y such that $\frac{c}{c_{1}} d_{0}+\frac{N}{c_{1}} y=d$. Assume that there exists a prime p such
that $p \left\lvert\,\left(c_{1}, d_{0}, \frac{N}{c_{1}}\right)\right.$. Then, $p \mid d$ and $p \mid(c, N)$, this contradicts with $(c, d, N)=1$, and thus $\left(c_{1}, d_{0}, \frac{N}{c_{1}}\right)=1$. Hence, $\left(c_{1}, d_{0}\right) \in D_{1}(N)$. Then, there exists the unique $\left(c_{1}, d_{1}\right) \in D(N)$ which corresponds to $\left(c_{1}, d_{0}\right)$. Hence, $\left(c_{1}, d_{1}\right) \in(c: d)$, i.e., $\Phi\left(\left(c_{1}, d_{1}\right)\right)=(c: d)$.

Assume that $\left(c_{1}, d_{1}\right),\left(c_{2}, d_{2}\right) \in D(N)$ such that $\Phi\left(\left(c_{1}, d_{1}\right)\right)=\Phi\left(\left(c_{2}, d_{2}\right)\right)$. Then, $\left(c_{1}: d_{1}\right)=\left(c_{2}: d_{2}\right)$ and thus there exists an integerk such that $c_{1} d_{2}-c_{2} d_{1}=N k$. Thus, $c_{1} \mid c_{2} d_{1}$ by $c_{1} \mid N$ and $c_{2} \mid c_{1} d_{2}$ by $c_{2} \mid N$. Hence, $c_{1} \mid c_{2}$ by $\left(c_{1}, d_{1}\right)=1$ and $c_{2} \mid c_{1}$ by $\left(c_{2}, d_{2}\right)=1$. Therefore, $c_{1}=c_{2}$ and $d_{1}=d_{2}$ by $d_{1} \equiv d_{2}\left(\bmod \frac{N}{c_{1}}\right)$ and the definition of $D(N)$. Thus, Φ is a bijection between $\mathcal{D}(N)$ and $D(N)$. This completes the proof.

Theorem 1. Let $M, N \in \mathbb{Z}, M, N \geqslant 1,(M, N)=1$. Then, there exists a bijection between $D(M) \times D(N)$ and $D(M N)$.

Proof. Let $(a, b) \in D(M)$ and $(c, d) \in D(N)$. Assume that there exists a prime p such that $p \left\lvert\,\left(a c, b N+d M-\frac{M N}{a c}\left[\frac{a c(b N+d M)}{M N}\right]^{\prime}, \frac{M N}{a c}\right)\right.$. Then, $p|a c, p| \frac{M N}{a} \frac{N}{c}$ and

$$
p \left\lvert\, b N+d M-\frac{M N}{a c}\left[\frac{a c(b N+d M)}{M N}\right]^{\prime} .\right.
$$

Then $p|a, p| \frac{M}{a}$ or $p|c, p| \frac{N}{c}$ by $(M, N)=1, a|M, c| N$. If $p|a, p| \frac{M}{a}$ then $p \mid b N$ and thus $p \mid N$ by $(a, b)=1$, which contradicts with $(M, N)=1$. The case of $p|c, p| \frac{N}{c}$ is tackled in a similar way. Therefore $\left(a c, b N+d M-\frac{M N}{a c}\left[\frac{a c(b N+d M)}{M N}\right]^{\prime}, \frac{M N}{a c}\right)=1$ and

$$
\left(a c, b N+d M-\frac{M N}{a c}\left[\frac{a c(b N+d M)}{M N}\right]^{\prime}\right) \in D_{1}(M N) .
$$

Define $e=a c, f=b N+d M-\frac{M N}{a c}\left(\left[\frac{a c(b N+d M)}{M N}\right]^{\prime}-k\right)$ for some k such that

$$
\left(a c, b N+d M-\frac{M N}{a c}\left(\left[\frac{a c(b N+d M)}{M N}\right]^{\prime}-n\right)\right) \geqslant 2
$$

for all $0 \leqslant n<k$. Then $(e, f) \in D(M N)$. Define $\Phi: D(M) \times D(N) \rightarrow D(M N)$ by sending $((a, b),(c, d))$ to (e, f).

Assume that $\Phi((a, b),(c, d))=\Phi\left(\left(a_{1}, b_{1}\right),\left(c_{1}, d_{1}\right)\right)$ for some $(a, b),\left(a_{1}, b_{1}\right) \in D(M)$ and $(c, d),\left(c_{1}, d_{1}\right) \in D(N)$. Then

$$
\begin{aligned}
& \left(a c, b N+d M-\frac{M N}{a c}\left(\left[\frac{a c(b N+d M)}{M N}\right]^{\prime}-k\right)\right) \\
= & \left(a_{1} c_{1}, b_{1} N+d_{1} M-\frac{M N}{a_{1} c_{1}}\left(\left[\frac{a_{1} c_{1}\left(b_{1} N+d_{1} M\right)}{M N}\right]^{\prime}-k_{1}\right)\right) .
\end{aligned}
$$

Thus, $a c=a_{1} c_{1}$ and

$$
\begin{aligned}
& b N+d M-\frac{M N}{a c}\left(\left[\frac{a c(b N+d M)}{M N}\right]^{\prime}-k\right) \\
= & b_{1} N+d_{1} M-\frac{M N}{a_{1} c_{1}}\left(\left[\frac{a_{1} c_{1}\left(b_{1} N+d_{1} M\right)}{M N}\right]^{\prime}-k_{1}\right) .
\end{aligned}
$$

Hence, $a=a_{1}, c=c_{1}$ by $(M, N)=1, a\left|M, a_{1}\right| M, c\left|N, c_{1}\right| N$. Therefore,

$$
\begin{aligned}
& b N+d M-\frac{M N}{a c}\left(\left[\frac{a c(b N+d M)}{M N}\right]^{\prime}-k\right) \\
= & b_{1} N+d_{1} M-\frac{M N}{a c}\left(\left[\frac{a c\left(b_{1} N+d_{1} M\right)}{M N}\right]^{\prime}-k_{1}\right) .
\end{aligned}
$$

Thus $d \equiv d_{1}\left(\bmod \frac{N}{c}\right)$ and $b \equiv b_{1}\left(\bmod \frac{M}{a}\right)$ by $(M, N)=1$. Hence $b=b_{1}, d=d_{1}$. Then $((a, b),(c, d))=\left(\left(a_{1}, b_{1}\right),\left(c_{1}, d_{1}\right)\right)$.

Let $(e, f) \in D(M N)$. Then $e \mid M N,(e, f)=1$ and $\left(e, f-\frac{M N}{e}\left(\left[\frac{e f}{M N}\right]^{\prime}-n\right)\right) \geqslant 2$ for $0 \leqslant n<\left[\frac{e f}{M N}\right]^{\prime}$. Let $a=(e, M), c=(e, N)$, then $e=a c, a \mid M$ and $c \mid N$. Let x_{0}, y_{0}, z_{0} be a particular solution of the equation

$$
\begin{equation*}
N x+M y+\frac{M N}{a c} z=f \tag{4}
\end{equation*}
$$

then $x=\frac{M}{a} X+x_{0}, y=\frac{N}{c} Y+y_{0}, z=-c X-a Y+z_{0}$ are solutions of (4) for all integers X, Y. Take $b_{1}=x_{0}-\frac{M}{a}\left[\frac{a x_{0}}{M}\right]^{\prime}, d_{1}=y_{0}-\frac{N}{c}\left[\frac{c y_{0}}{N}\right]^{\prime}$, then

$$
N b_{1}+M d_{1}+\frac{M N}{a c}\left(c\left[\frac{a x_{0}}{M}\right]^{\prime}+a\left[\frac{c y_{0}}{N}\right]^{\prime}+z_{0}\right)=f, 1 \leqslant b_{1} \leqslant \frac{M}{a}, 1 \leqslant d_{1} \leqslant \frac{N}{c} .
$$

Then, $\left(a, b_{1}, \frac{M}{a}\right)=1$ by $a \mid M,(e, f)=1$ and $\left(c, d_{1}, \frac{N}{c}\right)=1$ by $c \mid N,(e, f)=1$. Hence, $\left(a, b_{1}\right) \in D_{1}(M),\left(c, d_{1}\right) \in D_{1}(N)$. Let $(a, b) \in D(M)$ and $(c, d) \in D(N)$ which correspond to $\left(a, b_{1}\right)$ and $\left(c, d_{1}\right)$, respectively. Then $b=b_{1}+\frac{M}{a} k_{1}$ and $d=d_{1}+\frac{N}{c} k_{2}$ for some k_{1}, k_{2}. Then $N b+M d+\frac{M N}{a c}\left(c\left[\frac{a x_{0}}{M}\right]^{\prime}+a\left[\frac{c y_{0}}{N}\right]^{\prime}-c k_{1}-a k_{2}+z_{0}\right)=f$. Then $(e, f)=\Phi((a, b),(c, d))$.

Thus, Φ is a bijection between $D(M) \times D(N)$ and $D(M N)$.
Proposition 1. Let p be a prime and la positive integer. Then

$$
\begin{aligned}
\text { (a) } D\left(p^{l}\right) & =\left\{(1, d): 1 \leqslant d \leqslant p^{l}\right\} \cup\left\{\left(p^{l}, 1\right)\right\} \cup \\
\left\{\left(p^{\alpha}, k p+d\right): 1 \leqslant \alpha\right. & \left.\leqslant l-1,1 \leqslant d \leqslant p-1,0 \leqslant k \leqslant p^{l-\alpha-1}-1\right\} ; \\
\text { (b) } \mu\left(p^{l}\right) & =p^{l}\left(1+\frac{1}{p}\right) ; \\
\text { (c) } \mu(N) & =N \prod_{p \mid N}\left(1+\left(\frac{1}{p}\right)\right) .
\end{aligned}
$$

Proof. (c) is immediately from (b) and Theorem 1.
$D(M N)$ can be constructed using Algorithm 1.

```
Algorithm 1: \(D(M N)\)
    (1) Construct \(D\left(p^{l}\right)\) by Proposition 1(a);
    (2) Given \(D(M)\) and \(D(N)\) for \((M, N)=1, D(M N)\) is constructed as follows. For
        all \((a, b) \in D(M),(c, d) \in D(N)\), define \(e=a c\),
        \(f=b N+d M-\frac{M N}{a c}\left(\left[\frac{a c(b N+d M)}{M N}\right]^{\prime}-k\right)\) for some \(k \in \mathbb{Z}\) such that \((e, f)=1\)
        and \(\left(a c, b N+d M-\frac{M N}{a c}\left(\left[\frac{a c(b N+d M)}{M N}\right]^{\prime}-n\right)\right) \geqslant 2\) for all \(0 \leqslant n<k\). Then,
        \((e, f) \in D(M N)\) and all elements in \(D(M N)\) are constructed if all pairs in
        \(D(M) \times D(N)\) are processed.
```


3. The Recursive Structure of Cusps

In order to describe the cusps on $X_{0}(N), J u$. I. Manin in [2] introduced the set $\Pi(N)$, which consists of pairs of the form $\left[\delta ; a \bmod \left(\delta, N \delta^{-1}\right)\right]$. Here, δ runs through all positive divisors of N, and the second coordinate of the pair runs through any invertible class of residues modulo the greatest common divisor of δ and $N \delta^{-1}$. If $\left(\delta, N \delta^{-1}\right)=1$ we sometimes put simply 1 in place of the second coordinate.

Proposition 2. Let $\delta \mid N, u, v \in \mathbb{Z} ;(u, v \delta)=\left(v, N \delta^{-1}\right)=1$. The map $\mathbb{Q} \cup\{i \infty\} \rightarrow \Pi(N)$ of the form $\frac{u}{v \delta} \mapsto\left[\delta\right.$;uv $\left.\bmod \left(\delta, N \delta^{-1}\right)\right]$ gives an isomorphism of the set of cusps on $X_{0}(N)$ with $\Pi(N)$.

Proof. See Proposition 2.2 in [2].
In [3], (Proposition 2.2.3), J. E. Cremona gives the following characterization of cusps of $X_{0}(N)$.

Proposition 3. For $j=1,2$ let $\alpha_{j}=p_{j} / q_{j}$ be cusps written in the lowest terms. The following are equivalent:
(a) $\quad \alpha_{2}=M\left(\alpha_{1}\right)$ for some $M \in \Gamma_{0}(N)$;
(b) $\quad q_{2} \equiv u q_{1}(\bmod N)$ and $u p_{2} \equiv p_{1}\left(\bmod \left(q_{1}, N\right)\right)$, with $(u, N)=1$;
(c) $s_{1} q_{2} \equiv s_{2} q_{1}\left(\bmod \left(q_{1} q_{2}, N\right)\right)$, where s_{j} satisfies $p_{j} s_{j} \equiv 1\left(\bmod q_{j}\right)$.

Definition 2.

(a) $C_{1}(N)=\left\{(c, d): c, d \in \mathbb{Z}, 1 \leqslant c \leqslant N, c \mid N, 1 \leqslant d \leqslant\left(c, N c^{-1}\right),\left(c, d, N c^{-1}\right)=1\right\}$,
(b) $\quad C(N)$ is defined in (2).

Lemma 4. There exists a bijection between $C_{1}(N)$ and $C(N)$.
Proof. It holds by $C_{1}(N) \subseteq D_{1}(N), C(N) \subseteq D(N)$ and Lemma 2 .
Lemma 5. There exists a bijection between $\Gamma_{0}(N) \backslash \mathbb{Q} \cup\{i \infty\}$ and $C_{1}(N)$.
Proof. Let $\gamma_{i}=\left(\begin{array}{cc}a_{i} & b_{i} \\ c_{i} & d_{i}\end{array}\right), \gamma_{j}=\left(\begin{array}{cc}a_{j} & b_{j} \\ c_{j} & d_{j}\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $\left(c_{i}, d_{i}\right),\left(c_{j}, d_{j}\right) \in D(N)$ for $1 \leqslant i<j \leqslant \mu(N)$ then $\operatorname{SL}_{2}(\mathbb{Z})=\Gamma_{0}(N) \gamma_{1} \cup \cdots \cup \Gamma_{0}(N) \gamma_{\mu(N)}$ and $\Gamma_{0}(N) \gamma_{i} \neq \Gamma_{0}(N) \gamma_{j}$. $\forall c, a \in \mathbb{Z},(c, a)=1, c \geqslant 1$, let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ for some a, b. Then there exists $\gamma \in \Gamma_{0}(N), 1 \leqslant i \leqslant \mu(N)$ such that $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\gamma \gamma_{i}$. Thus, $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)(\infty)=\gamma \gamma_{i}(\infty)$,
$\gamma\left(\frac{a_{i}}{c_{i}}\right)=\frac{a}{c}$ and $\Gamma_{0}(N) \frac{a}{c}=\Gamma_{0}(N) \frac{a_{i}}{c_{i}}$. Then, $\Gamma_{0}(N) \backslash \mathbb{Q} \cup\{i \infty\}=\left\{\Gamma_{0}(N) \frac{a_{i}}{c_{i}}: 1 \leqslant i \leqslant \mu(N)\right\}$. Define $\Phi: \Gamma_{0}(N) \backslash \mathbb{Q} \cup\{i \infty\} \rightarrow C_{1}(N)$ by

$$
\Gamma_{0}(N) \frac{a}{c} \mapsto\left(c_{i}, d_{i}-\left(c_{i}, c_{i}^{-1} N\right)\left[d_{i}\left(c_{i}, c_{i}^{-1} N\right)^{-1}\right]^{\prime}\right), \Gamma_{0}(N) \cdot i \infty \mapsto(N, 1)
$$

By Proposition 3, $\Gamma_{0}(N) \frac{a_{i}}{c_{i}}=\Gamma_{0}(N) \frac{a_{j}}{c_{j}}$ if $c_{i} d_{j} \equiv c_{j} d_{i}\left(\bmod \left(c_{i} c_{j}, N\right)\right)$. Then, $c_{i} d_{j}=c_{j} d_{i}+$ $\left(c_{i} c_{j}, N\right) h$ for some $h \in \mathbb{Z}$. Thus, $c_{i}=c_{j}$ by $c_{i}\left|N, c_{j}\right| N,\left(c_{i}, d_{i}\right)=1$ and $\left(c_{j}, d_{j}\right)=1$. Hence, $c_{i} d_{j} \equiv c_{j} d_{i}\left(\bmod \left(c_{i} c_{j}, N\right)\right)$ if $d_{i} \equiv d_{j}\left(\bmod \left(c_{i}, c_{i}^{-1} N\right)\right)$. Therefore, Φ is a bijection between $\Gamma_{0}(N) \backslash \mathbb{Q} \cup\{i \infty\}$ and $C_{1}(N)$.

Lemma 6. There exists a bijection between $\Gamma_{0}(N) \backslash \mathbb{Q} \cup\{i \infty\}$ and $C(N)$.
Proof. It is immediately from Lemmas 4 and 5.
Lemma 7. Let $\left(N_{1}, N_{2}\right)=1$. Then, there exists a bijection between $C_{1}\left(N_{1} N_{2}\right)$ and $C_{1}\left(N_{1}\right) \times$ $C_{1}\left(N_{2}\right)$.

Proof. Let $(c, d) \in C_{1}\left(N_{1} N_{2}\right)$ then $c \mid N_{1} N_{2}, d \leqslant\left(c, N_{1} N_{2} c^{-1}\right),\left(d, c, N_{1} N_{2} c^{-1}\right)=1$. Let $c_{1}=\left(c, N_{1}\right), c_{2}=\left(c, N_{2}\right)$ then $c=c_{1} c_{2},\left(c_{1}, c_{2}\right)=1$ and $\left(d, c_{1} c_{2}, N_{1} c_{1}^{-1} N_{2} c_{2}^{-1}\right)=1$. Thus, $\left(d,\left(c_{1}, N_{1} c_{1}^{-1}\right)\right)=1,\left(d,\left(c_{2}, N_{2} c_{2}^{-1}\right)\right)=1$ by $\left(c, N_{1} N_{2} c^{-1}\right)=\left(c_{1}, N_{1} c_{1}^{-1}\right)\left(c_{2}, N_{2} c_{2}^{-1}\right)$. Let $d_{1}=d-\left(c_{1}, N_{1} c_{1}^{-1}\right)\left[d\left(c_{1}, N_{1} c_{1}^{-1}\right)^{-1}\right]^{\prime}$ and $d_{2}=d-\left(c_{2}, N_{2} c_{2}^{-1}\right)\left[d\left(c_{2}, N_{2} c_{2}^{-1}\right)^{-1}\right]^{\prime}$ then $\left(d_{1},\left(c_{1}, N_{1} c_{1}^{-1}\right)\right)=1$ and $\left(d_{2}, c_{2}, N_{2} c_{2}^{-1}\right)=1$. Thus, $\left(c_{1}, d_{1}\right) \in C_{1}\left(N_{1}\right)$ and $\left(c_{2}, d_{2}\right) \in C_{1}\left(N_{2}\right)$. Define $\Phi: C_{1}\left(N_{1} N_{2}\right) \rightarrow C_{1}\left(N_{1}\right) \times C_{2}\left(N_{2}\right)$ by $(c, d) \mapsto\left(\left(c_{1}, d_{1}\right),\left(c_{2}, d_{2}\right)\right)$.

For any $\left(\left(c_{1}, d_{1}\right),\left(c_{2}, d_{2}\right)\right) \in C_{1}\left(N_{1}\right) \times C_{1}\left(N_{2}\right)$, let $c=c_{1} c_{2}$ there exists an integer d such that $d \equiv d_{1}\left(\bmod \left(c_{1}, N_{1} c_{1}^{-1}\right)\right), d \equiv d_{2}\left(\bmod \left(c_{2}, N_{2} c_{2}^{-1}\right)\right)$ and

$$
1 \leqslant d \leqslant\left(c_{1}, N_{1} c_{1}^{-1}\right)\left(c_{2}, N_{2} c_{2}^{-1}\right)=\left(c, N_{1} N_{2} c^{-1}\right)
$$

by $\left(\left(c_{1}, N_{1} c_{1}^{-1}\right),\left(c_{2}, N_{2} c_{2}^{-1}\right)\right)=1$. Thus $(c, d) \in C_{1}\left(N_{1} N_{2}\right)$ and hence Φ is a surjective map.
Let $\Phi((c, d))=\Phi\left(\left(c^{\prime}, d^{\prime}\right)\right)$. Then, $\left(\left(c_{1}, d_{1}\right),\left(c_{2}, d_{2}\right)\right)=\left(\left(c_{1}^{\prime}, d_{1}^{\prime}\right),\left(c_{2}^{\prime}, d_{2}^{\prime}\right)\right),\left(c_{1}, d_{1}\right)=$ $\left(c_{1}^{\prime}, d_{1}^{\prime}\right)$ and $\left(c_{2}, d_{2}\right)=\left(c_{2}^{\prime}, d_{2}^{\prime}\right)$. Thus, $c_{1}=c_{1}^{\prime}, c_{2}=c_{2}^{\prime}, d_{1}=d_{1}^{\prime}$ and $d_{2}=d_{2}^{\prime}$. Hence, $c=c_{1} c_{2}=c_{1}^{\prime} c_{2}^{\prime}=c^{\prime}$ and $d=d^{\prime}$ by $d \equiv d_{1}\left(\bmod \left(c_{1}, N_{1} c_{1}^{-1}\right)\right), d \equiv d_{2}\left(\bmod \left(c_{2}, N_{2} c_{2}^{-1}\right)\right)$, $d^{\prime} \equiv d_{1}^{\prime}\left(\bmod \left(c_{1}, N_{1} c_{1}^{-1}\right)\right)$ and $d^{\prime} \equiv d_{2}^{\prime}\left(\bmod \left(c_{2}, N_{2} c_{2}^{-1}\right)\right)$. Therefore, Φ is an injective map. Then Φ is a bijection between $C_{1}\left(N_{1} N_{2}\right)$ and $C_{1}\left(N_{1}\right) \times C_{1}\left(N_{2}\right)$.

Theorem 2. Let $\left(N_{1}, N_{2}\right)=1$. Then, there exists a bijection between $C\left(N_{1} N_{2}\right)$ and $C\left(N_{1}\right) \times$ $C\left(N_{2}\right)$.

Proof. It is immediately from Lemmas 4 and 7.
Proposition 4. Let p be a prime and l a positive integer. Then,
(a) $C\left(p^{l}\right)=\left\{(1,1),\left(p^{l}, 1\right)\right\} \cup\left\{\left(p^{\alpha}, k p+d\right): 1 \leqslant \alpha \leqslant l-1,1 \leqslant d \leqslant p-1,0 \leqslant k \leqslant\right.$ $\left.p^{\min \{\alpha, l-\alpha\}-1}-1\right\}$;
(b) $\quad v_{\infty}\left(p^{l}\right)= \begin{cases}(p+1) p^{\frac{l}{2}-1} & \text { if } 2 \mid l, \\ 2 p^{\frac{l-1}{2}} & \text { otherwise; }\end{cases}$
(c) $\quad v_{\infty}(N)=\prod_{p \mid N} v_{\infty}\left(p^{l}\right)$.

Proof. (c) is immediately from (b) and Theorem 2.
$C(N)$ can be constructed using Algorithm 2.

Algorithm 2: $C(N)$

(1) Construct $C\left(p^{l}\right)$ by Proposition 4(a);
(2) Let $N=N_{1} N_{2}$ for $\left(N_{1}, N_{2}\right)=1$. Given $C\left(N_{1}\right)$ and $C\left(N_{2}\right) . C(N)$ is constructed as follows. For all $\left(c_{1}, d_{1}\right) \in C\left(N_{1}\right),\left(c_{2}, d_{2}\right) \in C\left(N_{2}\right)$, define $c=c_{1} c_{2}$. Determinate d_{0} such that $d_{0} \equiv d_{1}\left(\bmod \left(c_{1}, N_{1} c_{1}^{-1}\right)\right), d_{0} \equiv d_{2}\left(\bmod \left(c_{2}, N_{2} c_{2}^{-1}\right)\right)$ and

$$
1 \leqslant d_{0} \leqslant\left(c_{1}, N_{1} c_{1}^{-1}\right)\left(c_{2}, N_{2} c_{2}^{-1}\right)
$$

Determinate $d=d_{0}+\frac{N k}{c}$ such that $(c, d)=1$ and $\left(c, d_{0}+\frac{N n}{c}\right) \geqslant 2$ for $0 \leqslant n<k$. Then, $(c, d) \in C\left(N_{1} N_{2}\right)$ and all elements in $C\left(N_{1} N_{2}\right)$ are constructed if all pairs in $C\left(N_{1}\right) \times C\left(N_{2}\right)$ are processed.

4. The Recursive Structure of Elliptic Points of $X_{0}(N)$

Let $\rho=\frac{-1+\sqrt{3} i}{2} . E_{2}(N)$ and $E_{3}(N)$ are defined in (3). Then,

$$
\left\{\frac{-d+i}{1+d^{2}}:(1, d) \in E_{2}(N)\right\} \text { and }\left\{\frac{1-2 d+\sqrt{3} i}{2\left(1-d+d^{2}\right)}:(1, d) \in E_{3}(N)\right\}
$$

are complete sets of representatives of $\Gamma_{0}(N)$-inequivalent elliptic points of order 2,3, respectively.

Theorem 3. Let $N_{1}, N_{2} \in \mathbb{Z}, N_{1}, N_{2} \geqslant 1$ and $\left(N_{1}, N_{2}\right)=1$. Then
(a) there exists a bijection between $E_{3}\left(N_{1}\right) \times E_{3}\left(N_{2}\right)$ and $E_{3}\left(N_{1} N_{2}\right)$;
(b) there exists a bijection between $E_{2}\left(N_{1}\right) \times E_{2}\left(N_{2}\right)$ and $E_{2}\left(N_{1} N_{2}\right)$.

Proof. (a) Let $\left(1, d_{1}\right) \in E_{3}\left(N_{1}\right)$ and $\left(1, d_{2}\right) \in E_{3}\left(N_{2}\right)$. Let d be the unique integer such that $d \equiv d_{1}\left(\bmod N_{1}\right), d \equiv d_{2}\left(\bmod N_{2}\right)$ and $1 \leqslant d \leqslant N_{1} N_{2}$ then $d^{2}-d+1 \equiv 0\left(\bmod N_{1} N_{2}\right)$.

Hence, $(1, d) \in E_{3}\left(N_{1} N_{2}\right)$. Define

$$
\Phi: E_{3}\left(N_{1}\right) \times E_{3}\left(N_{2}\right) \rightarrow E_{3}\left(N_{1} N_{2}\right),\left(\left(1, d_{1}\right),\left(1, d_{2}\right)\right) \mapsto(1, d) .
$$

Then, Φ is a bijection between $E_{3}\left(N_{1}\right) \times E_{3}\left(N_{2}\right)$ and $E_{3}\left(N_{1} N_{2}\right)$. The proof of (b) is similar to that of (a) and omitted.

Proposition 5. Let $p \in \mathbb{Z}$ be a prime and $l \in \mathbb{Z}, l \geqslant 1$. Then

$$
v_{2}\left(p^{l}\right)= \begin{cases}0 & \text { if } p \equiv 3(\bmod 4) \text { or } 4 \mid p^{l} \\ 1 & \text { if } p=2, \\ 2 & \text { if } p \equiv 1(\bmod 4) .\end{cases}
$$

Proof. Let $(1, d) \in E_{2}\left(p^{l}\right)$ then $d^{2}+1 \equiv 0\left(\bmod p^{l}\right)$. Since the system of two equations $x^{2}+1 \equiv 0(\bmod p)$ and $2 x \equiv 0(\bmod p)$ has a common solution if $p=2$, the number of solutions of $x^{2}+1 \equiv 0\left(\bmod p^{l}\right)$ is equal to that of $x^{2}+1 \equiv 0(\bmod p)$ if $p \neq 2$. The cases of $p=2$ or $4 \mid p^{l}$ are trivial and we then let $p \geqslant 3$ in the following. Then, $x^{2}+1 \equiv 0(\bmod p)$ has a solution if $\left(\frac{-1}{p}\right)=1$ if $p \equiv 1(\bmod 4)$ by $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}$. In addition, $x^{2}+1 \equiv 0(\bmod p)$ has two and only two solutions if it is solvable. This completes the proof.

Proposition 6. Let $p \in \mathbb{Z}$ be a prime and $l \in \mathbb{Z}, l \geqslant 1$. Then

$$
v_{3}\left(p^{l}\right)= \begin{cases}0 & \text { if } p \equiv 2(\bmod 3) \text { or } 9 \mid p^{l} \\ 1 & \text { if } p=3, \\ 2 & \text { if } p \equiv 1(\bmod 3) .\end{cases}
$$

Proof. Let $(1, d) \in E_{3}\left(p^{l}\right)$ then $d^{2}-d+1 \equiv 0\left(\bmod p^{l}\right)$. Since the system of two equations $x^{2}-x+1 \equiv 0(\bmod p)$ and $2 x-1 \equiv 0(\bmod p)$ has a common solution if $p=3$, the number of solutions of $x^{2}-x+1 \equiv 0\left(\bmod p^{l}\right)$ is equal to that of $x^{2}-x+1 \equiv 0(\bmod p)$ if $p \neq 3$. The cases of $p=2,3$ or $9 \mid p^{l}$ are trivial and we then let $p \geqslant 5$ in the following. $x^{2}-x+1 \equiv 0(\bmod p)$ has a solution if $y^{2}+3 \equiv 0(\bmod p)$ has a solution by taking $x=\frac{y+1}{2}$ and substituting $p-y$ for y when $y \equiv 0(\bmod 2)$. Then, $x^{2}-x+1 \equiv 0(\bmod p)$ has a solution if $\left(\frac{-3}{p}\right)=1$ if $p \equiv 1(\bmod 3)$ by

$$
\left(\frac{-3}{p}\right)=\left(\frac{3}{p}\right)\left(\frac{-1}{p}\right),\left(\frac{3}{p}\right)=(-1)^{\frac{p-1}{2}}\left(\frac{p}{3}\right),\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}
$$

and $\left(\frac{-3}{p}\right)=\left(\frac{p}{3}\right)$. In addition, $x^{2}-x+1 \equiv 0(\bmod p)$ has two and only two solutions if it is solvable. This completes the proof.

The following results are well-known, see Proposition 1.43 in [1]. However, our proof is elementary and constructive.

Corollary 2. (1) $\quad v_{2}(N)= \begin{cases}0 & \text { if } 4 \mid N, \\ \prod_{p \mid N}\left(1+\left(\frac{-1}{p}\right)\right) & \text { otherwise. }\end{cases}$
(2) $\quad v_{3}(N)= \begin{cases}0 & \text { if } 4 \mid N, \\ \prod_{p \mid N}\left(1+\left(\frac{-3}{p}\right)\right) & \text { otherwise. }\end{cases}$

Proof. It is immediately from Theorem 4, Propositions 5 and 6.
Corollary 3. Let $g(N)$ be the genus of the modular curve $X_{0}(N)$. Then, for any $\left(N_{1}, N_{2}\right)=1$,

$$
g\left(N_{1} N_{2}\right)=1+\frac{\mu\left(N_{1}\right) \mu\left(N_{2}\right)}{12}-\frac{v_{2}\left(N_{1}\right) v_{2}\left(N_{2}\right)}{4}-\frac{v_{3}\left(N_{1}\right) v_{3}\left(N_{2}\right)}{3}-\frac{v_{\infty}\left(N_{1}\right) v_{\infty}\left(N_{2}\right)}{2} .
$$

Proof. It is immediately from Theorems 1-3 and the formula for the genus of $X_{0}(N)$

$$
g(N)=1+\frac{\mu(N)}{12}-\frac{v_{2}(N)}{4}-\frac{v_{3}(N)}{3}-\frac{v_{\infty}(N)}{2}
$$

$E_{3}(N)$ can be constructed using Algorithm 3.

Algorithm 3: $E_{3}(N)$

(1) Construct $E_{3}\left(p^{l}\right)$ by general method; (2) Let $N=N_{1} N_{2}$ for $\left(N_{1}, N_{2}\right)=1$. Given $E_{3}\left(N_{1}\right)$ and $E_{3}\left(N_{2}\right) . E_{3}(N)$ is constructed as follows. For all $\left(1, d_{1}\right) \in E_{3}\left(N_{1}\right)$, $\left(1, d_{2}\right) \in E_{3}\left(N_{2}\right)$, Determinate d such that

$$
d \equiv d_{1}\left(\bmod N_{1}\right), d \equiv d_{2}\left(\bmod N_{2}\right) \text { and } 1 \leqslant d \leqslant N
$$

Then, $(1, d) \in E_{3}(N)$ and all elements in $E_{3}(N)$ are constructed if all pairs in $E_{3}\left(N_{1}\right) \times E_{3}\left(N_{2}\right)$ are processed.

5. Concluding Remarks

In [7], Stein mentioned that another approach to list $\mathbb{P}^{1}(\mathbb{Z} / N \mathbb{Z})$ is to use that

$$
\mathbb{P}^{1}(\mathbb{Z} / N \mathbb{Z}) \cong \prod_{p \mid N} \mathbb{P}^{1}\left(\mathbb{Z} / p^{v_{p}} \mathbb{Z}\right)
$$

where $v_{p}=\operatorname{ord}_{p}(N)$, and that it is relatively easy to enumerate the elements of $\mathbb{P}^{1}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$ for a prime power p^{n}. However, this approach had never been implemented by anyone as far as I know. Thus, Algorithm 1 in this paper could be regarded as an explicit implementation of Stein's ideas. All the algorithms described in this paper have been implemented in Wolfram Language, for these Wolfram programs, see [8]. We plan to rewrite these programs in the free open-source computer algebra system SAGE and incorporate them into Stein's program [9] or Walker's program [10].

Funding: This research received no external funding.
Data Availability Statement: Not available.
Conflicts of Interest: The author declares no conflict of interest.

References

1. Shimura, G. Introduction to the Arithmetic Theory of Automorphic Functions; Princeton University Press: Princeton, NJ, USA, 1971; pp. 99-103.
2. Manin, J. Parabolic points and zeta functions of modular curves. Math.-Ussr-Izv. 1972, 36, 19-66. [CrossRef]
3. Cremona, J.E. Algorithms For Modular Elliptic Curves; Cambridge University Press: Cambridge, UK, 1997; pp. 99-103.
4. Schoeneberg, B. Elliptic Modular Functions: An Introduction; Springer Science \& Business Media: Berlin/Heidelberg, Germany, 2012; Volume 203, pp. 99-103.
5. Dedekind, R. Schreiben an Herrn Borchardt über die Theorie der elliptischen Modul-Functionen. J. Reine Angew. Math. 1877, 83, 265-292.
6. Weber, H. Elliptische Functionen Und Algebraische Zahlen; Braunschweig, F. Vieweg und Sohn: Braunschweig, German, 1891; pp. 244-245.
7. Stein, W.A. Modular Forms, a Computational Approach; American Mathematical Soc.: Providence, RI, USA, 2007; Volume 79, pp. 144-146.
8. Wang, S. Functions for Constructing Recursively Manin Symbols over \mathbb{Q}, Cusps and Elliptic Points on $X_{0}(N)$. 2023. Available online: https: / /www.wolframcloud.com/obj/1e719d22-316b-4fe1-abf1-82cc0594526a (accessed on 12 June 2023).
9. Stein, W.; The Sage Group. Modular Symbols. 2023. Available online: https://doc.sagemath.org/pdf/en/reference/modsym/ modsym.pdf (accessed on 12 June 2023).
10. Walker, J. Lists of Manin Symbols over \mathbb{Q}, Elements of $\mathbb{P}^{1}(\mathbb{Z} / N \mathbb{Z})$. 2023. Available online: https:/ /doc.sagemath.org/html/en/ reference/modsym/sage/modular/modsym/p1list.html (accessed on 12 June 2023).

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

