



# Article The Recursive Structures of Manin Symbols over $\mathbb{Q}$ , Cusps and Elliptic Points on $X_0(N)$

Sanmin Wang 回

Faculty of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; wangsanmin@zstu.edu.cn

**Abstract:** Firstly, we present a more explicit formulation of the complete system D(N) of representatives of Manin's symbols over  $\mathbb{Q}$ , which was initially given by Shimura. Then, we establish a bijection between  $D(M) \times D(N)$  and D(MN) for (M, N) = 1, which reveals a recursive structure between Manin's symbols of different levels. Based on Manin's complete system  $\Pi(N)$  of representatives of cusps on  $X_0(N)$  and Cremona's characterization of the equivalence between cusps, we establish a bijection between a subset C(N) of D(N) and  $\Pi(N)$ , and then establish a bijection between  $C(M) \times C(N)$  and C(MN) for (M, N) = 1. We also provide a recursive structure for elliptical points on  $X_0(N)$ . Based on these recursive structures, we obtain recursive algorithms for constructing Manin symbols over  $\mathbb{Q}$ , cusps, and elliptical points on  $X_0(N)$ . This may give rise to more efficient algorithms for modular elliptic curves. As direct corollaries of these recursive structures, we present a recursive version of the genus formula and prove constructively formulas of the numbers of D(N), cusps, and elliptic points on  $X_0(N)$ .

**Keywords:** modular curve; elliptic curve; recursive structure; Manin's symbols over  $\mathbb{Q}$ ; cusps; elliptic points; algorithmic number theory

MSC: 11A05; 11F06; 20H05; 20J05

## 1. Introduction

In his seminal monograph [1] (Chapter 1, Proposition 1.43), G. Shimura defined a complete set D(N) of representatives for the projective line  $\mathbb{P}^1(\mathbb{Z}/N\mathbb{Z})$  over  $\mathbb{Z}/N\mathbb{Z}$  to be all couples  $\{c, d\}$  of positive integers satisfying

(\*)  $(c,d) = 1, d | N, 1 \le c \le N/d (or c in any set of representatives for \mathbb{Z} modulo <math>(N/d))$ ,

where (c, d) denote the greatest common divisor of integers c and d.

Let [x] be the greatest integer less than or equal to x. For two integers a, b with  $b \neq 0$ , define

$$\begin{bmatrix} \frac{a}{b} \end{bmatrix}' = \begin{cases} \frac{a}{b} - 1 & \text{if } b | a, \\ \begin{bmatrix} a\\ \overline{b} \end{bmatrix} & \text{otherwise} \end{cases}$$

then  $1 \leq a - b[\frac{a}{b}]' \leq b$ . In this paper, we define

$$D(N) = \{(c,d) : c,d \in \mathbb{Z}, c,d \ge 1, c | N, (c,d) = 1 \text{ and}$$

$$(c,d - \frac{N}{c}([\frac{cd}{N}]' - n)) \ge 2 \text{ for } 0 \le n < [\frac{cd}{N}]' \}.$$

$$(1)$$



**Citation:** Wang, S. The Recursive Structures of Manin Symbols over  $\mathbb{Q}$ , Cusps and Elliptic Points on  $X_0(N)$ . *Axioms* **2023**, *12*, 597. https:// doi.org/10.3390/axioms12060597

Academic Editors: Emil Saucan and David Xianfeng Gu

Received: 13 May 2023 Revised: 12 June 2023 Accepted: 14 June 2023 Published: 16 June 2023



**Copyright:** © 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). We then establish a bijection between  $D(M) \times D(N)$  and D(MN) for (M, N) = 1 in Section 2. This result gives a recursive algorithm to construct the projective line  $\mathbb{P}^1(\mathbb{Z}/N\mathbb{Z})$  over  $\mathbb{Z}/N\mathbb{Z}$ .

Let  $\Pi(N) = \{ [\delta; a \mod (\delta, N\delta^{-1})] : a, \delta \in \mathbb{Z}, \delta \ge 1, \delta | N, 1 \le a \le (\delta, N\delta^{-1}) \}$ . In [2] (Proposition 2.2), Manin proved that there exists a bijection between  $\Pi(N)$  and the set of cusps on  $X_0(N)$ . Based on Manin's result and Cremona's characterization (See Proposition 3), we identify  $\Pi(N)$  with

$$C(N) = \{(c,d) : c,d \in \mathbb{Z}, 1 \le c \le N, c | N, (c,d) = 1 \text{ and} \\ (c,d-(c,Nc^{-1})[\frac{d}{(c,Nc^{-1})}]' + \frac{Nn}{c}) \ge 2 \text{ for } 0 \le n < \frac{c(c,Nc^{-1})}{N}[\frac{d}{(c,Nc^{-1})}]'\},$$
(2)

which is a subset of D(N). In Section 3, we establish a bijection between  $C(N_1N_2)$  and  $C(N_1) \times C(N_2)$  for  $(N_1, N_2) = 1$ . This result gives a recursive algorithm to construct the complete set of representatives of  $\Gamma_0(N)$ -inequivalent cusps.

Define

$$E_2(N) = \{ (1,d) : (1,d) \in D(N), 1 + d^2 \equiv 0 \pmod{N} \},$$
  

$$E_3(N) = \{ (1,d) : (1,d) \in D(N), 1 - d + d^2 \equiv 0 \pmod{N} \}.$$
(3)

Then, there exist bijections between  $E_2(N)$ ,  $E_3(N)$  and complete sets of representatives of  $\Gamma_0(N)$ -inequivalent elliptic points of order 2 and 3, respectively. In Section 4, we establish bijections between  $E_2(N_1N_2)$  and  $E_2(N_1) \times E_2(N_2)$ ,  $E_3(N_1N_2)$  and  $E_3(N_1) \times E_3(N_2)$ , for  $(N_1, N_2) = 1$ . These results give a recursive algorithm for constructing the complete set  $E_3(N)$  and  $E_2(N)$  of  $\Gamma_0(N)$ -inequivalent elliptic points of order 2, 3.

The elements in  $\mathbb{P}^1(\mathbb{Z}/N\mathbb{Z})$  are called Manin symbols [3] (Section 2.2) and there exists a bijection between the set of right cosets of  $\Gamma_0(N)$  in SL(2,  $\mathbb{Z}$ ) and  $\mathbb{P}^1(\mathbb{Z}/N\mathbb{Z})$  [2] (Proposition 2.4). An important step in the modular elliptic algorithm is to construct a complete set of representatives for the projective line  $\mathbb{P}^1(\mathbb{Z}/N\mathbb{Z})$  and a complete set of representatives of  $\Gamma_0(N)$ -inequivalent cusps [3] (Chapter II). The recursive structure of D(N), C(N),  $E_2(N)$  and  $E_3(N)$  may give rise to a more efficient modular elliptic algorithm.

As direct corollaries of these recursive structures, we present a recursive version of the genus formula and elementary proofs of formulas of the numbers  $\mu(N)$ ,  $v_{\infty}(N)$ ,  $v_2(N)$  and  $v_3(N)$  of D(N), C(N),  $E_2(N)$ ,  $E_3(N)$ . Note that Schoeneberg's proof and Shimura's proof for formulas of  $\mu(N)$ ,  $v_{\infty}(N)$ ,  $v_2(N)$  and  $v_3(N)$  use the theory of quadratic fields, see [4] (Chapter IV, Section 8) and [1] (Chapter 1, Proposition 1.43). Their proofs may make these formulas hard to approach when compared with our proofs.

### 2. The Recursive Structure of Manin Symbols over $\mathbb{Q}$

We firstly give some necessary notations and facts, for details, see [3].

#### **Definition 1.**

- (a)  $D_2(N) = \{(c,d): c, d \in \mathbb{Z}, (c,d,N) = 1\};$
- (b)  $\forall (c_1, d_1), (c_2, d_2) \in D_2(N), \text{ define } (c_1, d_1) \sim (c_2, d_2) \text{ if } c_1 d_2 \equiv d_1 c_2 \pmod{N}, \text{ then } \sim \text{ is an equivalence relation on } D_2(N);$
- (c)  $\forall (c,d) \in D_2(N), define (c:d) = \{(c',d'): (c',d') \in D_2(N), (c',d') \sim (c,d)\};$
- (d)  $\mathcal{D}(N) = D_2(N) / \sim = \{(c:d): (c,d) \in D_0(N)\};$
- (e)  $D_1(N) = \{(c,d): c, d \in \mathbb{Z}, c, d \ge 1, c | N, (c,d, \frac{N}{c}) = 1, cd \le N\};$
- (f) D(N) is defined in (1);
- (g)  $\mu(N), v_{\infty}(N), v_{2}(N)$  and  $v_{3}(N)$  are the numbers of elements in  $D(N), C(N), E_{2}(N)$  and  $E_{3}(N)$ , respectively.

As pointed out by a referee, the index  $\mu(N)$  of  $\Gamma_0(N)$  in SL(2,  $\mathbb{Z}$ ) is called the Dedekind psi function, usually denoted  $\psi(N)$ , see [5,6]. Here, we follow Shimura's notations in [1] (Proposition 1.43).

**Lemma 1.** Let  $c, d, h \in \mathbb{Z}$ ,  $(c, d, h) = 1, c, d \ge 1$  and  $d \le h$ , then there exists an integer k such that (c, d + hk) = 1 and  $0 \le k < c$ .

**Proof.** If c = 1, take k = 0 then (c, d + hk) = 1. Thus, let  $c \ge 2$  in the following. Let  $c = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$  be the standard factorization of c. The proof is by induction on the numbers of distinct prime divisors in c. Suppose that  $c = p_1^{\alpha_1}$ . Assume that  $(p_1^{\alpha_1}, d) \ge 2$  and  $(p_1^{\alpha_1}, d + h) \ge 2$  then  $p_1|d$  and  $p_1|(d + h)$ . Thus,  $p_1|d$  and  $p_1|h$ , this contradicts with (c, d, h) = 1, and hence (c, d + hk) = 1 for some  $0 \le k \le 1 < c$ .

Let  $c_1 = p_1^{\alpha_1} \cdots p_{s-1}^{\alpha_{s-1}}$ . By the induction hypothesis, there exists an integer  $k_1$  such that  $(c_1, d + hk_1) = 1$  and  $0 \le k_1 < c_1$ . Then,  $(c_1, d + hk_1 + hc_1) = 1$ . Assume that  $(p_s^{\alpha_s}, d + hk_1) \ge 2$  and  $(p_s^{\alpha_s}, d + hk_1 + hc_1) \ge 2$  then  $p_s|(d + hk_1)$  and  $p_s|(d + hk_1 + hc_1)$ . Thus,  $p_s|hc_1$  and hence  $p_s|h$  by  $(p_s, c_1) = 1$ . Therefore,  $p_s|d$ . This contradicts with (c, d, h) = 1 and hence  $(c, d + hk_1) = 1$  or  $(c, d + hk_1 + hc_1) = 1$ . Take  $k = k_1$  or  $k = c_1 + k_1$ , then (c, d + hk) = 1 for some  $0 \le k_1 \le k \le c_1 + k_1 < 2c_1 \le c$ . This completes the proof by the induction principle.  $\Box$ 

**Corollary 1.** Let  $a, b, c \in \mathbb{Z}$ , (a, b, c) = 1, then the equation ax + by + cyz = 1 has solutions in  $\mathbb{Z}$ .

**Lemma 2.** There exists a bijection between D(N) and  $D_1(N)$ .

**Proof.** Let  $(c,d) \in D(N)$ . Define  $d_n = d - \frac{N}{c} [\frac{cd}{N}]' + \frac{Nn}{c}$  for all  $n \in \mathbb{Z}$ . Then,  $1 \leq d_0 \leq \frac{N}{c}$  and  $(c,d_0,\frac{N}{c}) = 1$  by (c,d) = 1. Thus  $(c,d_0) \in D_1(N)$ . Define  $\Phi : D(N) \to D_1(N)$  by sending (c,d) to  $(c,d_0)$ .

Let  $(u, v) \in D(N)$  such that  $\Phi(c, d) = \Phi(u, v)$ . Define  $v_n = v - \frac{N}{u} [\frac{uv}{N}]' + \frac{Nn}{u}$  for all  $n \in \mathbb{Z}$ . Then, c = u and  $d_0 = v_0$ . Thus,  $d_n = v_n$  for all  $n \in \mathbb{Z}$ . Let  $e = [\frac{cd}{N}]'$  and  $w = [\frac{cv}{N}]'$ . Then,  $d = d_e$  and  $v = v_w$ . Suppose that e < w then  $(c, d_e) = 1$  by (c, d) = 1 but  $(c, d_e) \ge 2$  by  $(c, v) \in D(N)$  and  $d_e = v_e$ , a contradiction and thus  $e \ge w$ .  $e \le w$  holds by a similar proof and thus e = w and (c, d) = (u, v). Therefore,  $\Phi$  is an injection from D(N) to  $D_1(N)$ .

Let  $(c, d_0) \in D_1(N)$ . By Lemma 1, there exists an integer k such that  $(c, d_0 + \frac{Nk}{c}) = 1$ and  $0 \le k \le c - 1$ . Let  $0 \le k_0 \le k$  such that  $(c, d_0 + \frac{Nk_0}{c}) = 1$  and  $(c, d_0 + \frac{Nn}{c}) = 1$  for all  $0 \le n < k_0$ . Define  $d = d_0 + \frac{Nk_0}{c}$ . Then,  $(c, d) \in D(N)$  and  $\Phi((c, d)) = (c, d_0)$ . Therefore,  $\Phi$  is a surjection from D(N) to  $D_1(N)$ .  $\Box$ 

**Lemma 3.** There exists a bijection between  $\mathcal{D}(N)$  and D(N), *i.e.*, D(N) is a complete system of the representatives of elements of  $\mathcal{D}(N)$ .

**Proof.** Define  $\Phi : D(N) \to D(N)$  by the natural map, i.e.,  $\Phi((c,d)) = (c:d)$ .

Let  $(c : d) \in \mathcal{D}(N)$ . Then, (c, d, N) = 1. Define  $c_1 = (c, N)$ ,  $d_0$  to be the unique solution of the congruence equation  $\frac{c}{c_1}x \equiv d \pmod{\frac{N}{c_1}}$  such that  $1 \leq d_0 \leq \frac{N}{c_1}$ . Then, there exists an integer y such that  $\frac{c}{c_1}d_0 + \frac{N}{c_1}y = d$ . Assume that there exists a prime p such

that  $p|(c_1, d_0, \frac{N}{c_1})$ . Then, p|d and p|(c, N), this contradicts with (c, d, N) = 1, and thus  $(c_1, d_0, \frac{N}{c_1}) = 1$ . Hence,  $(c_1, d_0) \in D_1(N)$ . Then, there exists the unique  $(c_1, d_1) \in D(N)$  which corresponds to  $(c_1, d_0)$ . Hence,  $(c_1, d_1) \in (c : d)$ , i.e.,  $\Phi((c_1, d_1)) = (c : d)$ .

Assume that  $(c_1, d_1), (c_2, d_2) \in D(N)$  such that  $\Phi((c_1, d_1)) = \Phi((c_2, d_2))$ . Then,  $(c_1 : d_1) = (c_2 : d_2)$  and thus there exists an integerk such that  $c_1d_2 - c_2d_1 = Nk$ . Thus,  $c_1|c_2d_1$  by  $c_1|N$  and  $c_2|c_1d_2$  by  $c_2|N$ . Hence,  $c_1|c_2$  by  $(c_1, d_1) = 1$  and  $c_2|c_1$  by  $(c_2, d_2) = 1$ . Therefore,  $c_1 = c_2$  and  $d_1 = d_2$  by  $d_1 \equiv d_2 \pmod{\frac{N}{c_1}}$  and the definition of D(N). Thus,  $\Phi$  is a bijection between  $\mathcal{D}(N)$  and D(N). This completes the proof.  $\Box$ 

**Theorem 1.** Let  $M, N \in \mathbb{Z}, M, N \ge 1$ , (M, N) = 1. Then, there exists a bijection between  $D(M) \times D(N)$  and D(MN).

**Proof.** Let  $(a, b) \in D(M)$  and  $(c, d) \in D(N)$ . Assume that there exists a prime *p* such that  $p|(ac, bN + dM - \frac{MN}{ac}[\frac{ac(bN + dM)}{MN}]', \frac{MN}{ac})$ . Then,  $p|ac, p|\frac{MN}{a}\frac{N}{c}$  and  $p|bN + dM - \frac{MN}{ac}[\frac{ac(bN + dM)}{MN}]'$ .

Then  $p|a, p|\frac{M}{a}$  or  $p|c, p|\frac{N}{c}$  by (M, N) = 1, a|M, c|N. If  $p|a, p|\frac{M}{a}$  then p|bN and thus p|N by

(a, b) = 1, which contradicts with (M, N) = 1. The case of  $p|c, p|\frac{N}{c}$  is tackled in a similar way. Therefore  $(ac, bN + dM - \frac{MN}{ac}[\frac{ac(bN + dM)}{MN}]', \frac{MN}{ac}) = 1$  and

$$(ac, bN + dM - \frac{MN}{ac} [\frac{ac(bN + dM)}{MN}]') \in D_1(MN).$$

Define e = ac,  $f = bN + dM - \frac{MN}{ac}([\frac{ac(bN + dM)}{MN}]' - k)$  for some k such that

$$(ac, bN + dM - \frac{MN}{ac}([\frac{ac(bN + dM)}{MN}]' - n)) \ge 2$$

for all  $0 \le n < k$ . Then  $(e, f) \in D(MN)$ . Define  $\Phi : D(M) \times D(N) \to D(MN)$  by sending ((a, b), (c, d)) to (e, f).

Assume that  $\Phi((a, b), (c, d)) = \Phi((a_1, b_1), (c_1, d_1))$  for some  $(a, b), (a_1, b_1) \in D(M)$ and  $(c, d), (c_1, d_1) \in D(N)$ . Then

$$(ac, bN + dM - \frac{MN}{ac} ([\frac{ac(bN + dM)}{MN}]' - k))$$
$$= (a_1c_1, b_1N + d_1M - \frac{MN}{a_1c_1} ([\frac{a_1c_1(b_1N + d_1M)}{MN}]' - k_1)).$$

Thus,  $ac = a_1c_1$  and

$$bN + dM - \frac{MN}{ac} \left( \left[ \frac{ac(bN + dM)}{MN} \right]' - k \right)$$
  
=  $b_1N + d_1M - \frac{MN}{a_1c_1} \left( \left[ \frac{a_1c_1(b_1N + d_1M)}{MN} \right]' - k_1 \right).$ 

Hence,  $a = a_1$ ,  $c = c_1$  by (M, N) = 1,  $a|M, a_1|M, c|N, c_1|N$ . Therefore,

$$bN + dM - \frac{MN}{ac} \left( \left[ \frac{ac(bN + dM)}{MN} \right]' - k \right)$$
  
=  $b_1 N + d_1 M - \frac{MN}{ac} \left( \left[ \frac{ac(b_1 N + d_1 M)}{MN} \right]' - k_1 \right).$ 

Thus  $d \equiv d_1 \pmod{\frac{N}{c}}$  and  $b \equiv b_1 \pmod{\frac{M}{a}}$  by (M, N) = 1. Hence  $b = b_1, d = d_1$ . Then  $((a,b),(c,d)) = ((a_1,b_1),(c_1,d_1)).$ 

Let  $(e, f) \in D(MN)$ . Then e|MN, (e, f) = 1 and  $(e, f - \frac{MN}{e}([\frac{ef}{MN}]' - n)) \ge 2$  for

 $0 \le n < [\frac{ef}{MN}]'$ . Let a = (e, M), c = (e, N), then e = ac, a|M and c|N. Let  $x_0, y_0, z_0$  be a particular solution of the equation

$$Nx + My + \frac{MN}{ac}z = f \tag{4}$$

then  $x = \frac{M}{a}X + x_0$ ,  $y = \frac{N}{c}Y + y_0$ ,  $z = -cX - aY + z_0$  are solutions of (4) for all integers X, Y. Take  $b_1 = x_0 - \frac{M}{a} [\frac{ax_0}{M}]', d_1 = y_0 - \frac{N}{c} [\frac{cy_0}{N}]'$ , then

$$Nb_{1} + Md_{1} + \frac{MN}{ac}(c[\frac{ax_{0}}{M}]' + a[\frac{cy_{0}}{N}]' + z_{0}) = f, 1 \leq b_{1} \leq \frac{M}{a}, 1 \leq d_{1} \leq \frac{N}{c}.$$

Then,  $(a, b_1, \frac{M}{a}) = 1$  by a|M, (e, f) = 1 and  $(c, d_1, \frac{N}{c}) = 1$  by c|N, (e, f) = 1. Hence,  $(a, b_1) \in D_1(M), (c, d_1) \in D_1(N)$ . Let  $(a, b) \in D(M)$  and  $(c, d) \in D(N)$  which correspond to  $(a, b_1)$  and  $(c, d_1)$ , respectively. Then  $b = b_1 + \frac{M}{a}k_1$  and  $d = d_1 + \frac{N}{c}k_2$ for some  $k_1, k_2$ . Then  $Nb + Md + \frac{MN}{ac}(c[\frac{ax_0}{M}]' + a[\frac{cy_0}{N}]' - ck_1 - ak_2 + z_0) = f$ . Then  $(e, f) = \Phi((a, b), (c, d)).$ Thus,  $\Phi$  is a bijection between  $D(M) \times D(N)$  and D(MN).  $\Box$ 

**Proposition 1.** Let *p* be a prime and *l* a positive integer. Then

$$(a) \ D(p^{l}) = \{(1,d) : 1 \le d \le p^{l}\} \cup \{(p^{l},1)\} \cup \{(p^{\alpha},kp+d) : 1 \le \alpha \le l-1, 1 \le d \le p-1, 0 \le k \le p^{l-\alpha-1}-1\};$$
$$(b) \ \mu(p^{l}) = p^{l}(1+\frac{1}{p});$$
$$(c) \ \mu(N) = N \prod_{p|N} \left(1 + \left(\frac{1}{p}\right)\right).$$

**Proof.** (c) is immediately from (b) and Theorem 1.  $\Box$ 

D(MN) can be constructed using Algorithm 1.

Algorithm 1: D(MN)

(1) Construct  $D(p^l)$  by Proposition 1(a); (2) Given D(M) and D(N) for (M, N) = 1, D(MN) is constructed as follows. For all  $(a, b) \in D(M)$ ,  $(c, d) \in D(N)$ , define e = ac,  $f = bN + dM - \frac{MN}{ac}([\frac{ac(bN + dM)}{MN}]' - k)$  for some  $k \in \mathbb{Z}$  such that (e, f) = 1and  $(ac, bN + dM - \frac{MN}{ac}([\frac{ac(bN + dM)}{MN}]' - n)) \ge 2$  for all  $0 \le n < k$ . Then,  $(e, f) \in D(MN)$  and all elements in D(MN) are constructed if all pairs in  $D(M) \times D(N)$  are processed.

#### 3. The Recursive Structure of Cusps

In order to describe the cusps on  $X_0(N)$ , Ju. I. Manin in [2] introduced the set  $\Pi(N)$ , which consists of pairs of the form  $[\delta; a \mod (\delta, N\delta^{-1})]$ . Here,  $\delta$  runs through all positive divisors of N, and the second coordinate of the pair runs through any invertible class of residues modulo the greatest common divisor of  $\delta$  and  $N\delta^{-1}$ . If  $(\delta, N\delta^{-1}) = 1$  we sometimes put simply 1 in place of the second coordinate.

**Proposition 2.** Let  $\delta | N, u, v \in \mathbb{Z}$ ;  $(u, v\delta) = (v, N\delta^{-1}) = 1$ . The map  $\mathbb{Q} \cup \{i\infty\} \to \Pi(N)$  of the form  $\frac{u}{v\delta} \mapsto [\delta; uv \mod (\delta, N\delta^{-1})]$  gives an isomorphism of the set of cusps on  $X_0(N)$  with  $\Pi(N)$ .

**Proof.** See Proposition 2.2 in [2].  $\Box$ 

In [3], (Proposition 2.2.3), J. E. Cremona gives the following characterization of cusps of  $X_0(N)$ .

**Proposition 3.** For j = 1, 2 let  $\alpha_j = p_j/q_j$  be cusps written in the lowest terms. The following are equivalent:

- (a)  $\alpha_2 = M(\alpha_1)$  for some  $M \in \Gamma_0(N)$ ;
- (b)  $q_2 \equiv uq_1 \pmod{N}$  and  $up_2 \equiv p_1 \pmod{(q_1, N)}$ , with (u, N) = 1;
- (c)  $s_1q_2 \equiv s_2q_1 \pmod{(q_1q_2, N)}$ , where  $s_i$  satisfies  $p_is_i \equiv 1 \pmod{q_i}$ .

#### **Definition 2.**

(a)  $C_1(N) = \{(c,d) : c, d \in \mathbb{Z}, 1 \le c \le N, c | N, 1 \le d \le (c, Nc^{-1}), (c, d, Nc^{-1}) = 1\},\$ (b) C(N) is defined in (2).

**Lemma 4.** There exists a bijection between  $C_1(N)$  and C(N).

**Proof.** It holds by  $C_1(N) \subseteq D_1(N)$ ,  $C(N) \subseteq D(N)$  and Lemma 2.  $\Box$ 

**Lemma 5.** There exists a bijection between  $\Gamma_0(N) \setminus \mathbb{Q} \cup \{i\infty\}$  and  $C_1(N)$ .

**Proof.** Let  $\gamma_i = \begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix}$ ,  $\gamma_j = \begin{pmatrix} a_j & b_j \\ c_j & d_j \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})$  such that  $(c_i, d_i), (c_j, d_j) \in D(N)$ for  $1 \leq i < j \leq \mu(N)$  then  $\operatorname{SL}_2(\mathbb{Z}) = \Gamma_0(N)\gamma_1 \cup \cdots \cup \Gamma_0(N)\gamma_{\mu(N)}$  and  $\Gamma_0(N)\gamma_i \neq \Gamma_0(N)\gamma_j$ .  $\forall c, a \in \mathbb{Z}, (c, a) = 1, c \geq 1$ , let  $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})$  for some a, b. Then there exists  $\gamma \in \Gamma_0(N), 1 \leq i \leq \mu(N)$  such that  $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \gamma\gamma_i$ . Thus,  $\begin{pmatrix} a & b \\ c & d \end{pmatrix} (\infty) = \gamma\gamma_i(\infty)$ ,  $\gamma(\frac{a_i}{c_i}) = \frac{a}{c} \text{ and } \Gamma_0(N) \frac{a}{c} = \Gamma_0(N) \frac{a_i}{c_i}. \text{ Then, } \Gamma_0(N) \setminus \mathbb{Q} \cup \{i\infty\} = \{\Gamma_0(N) \frac{a_i}{c_i} : 1 \leq i \leq \mu(N)\}.$ Define  $\Phi : \Gamma_0(N) \setminus \mathbb{Q} \cup \{i\infty\} \to C_1(N)$  by

$$\Gamma_0(N)\frac{a}{c}\mapsto (c_i, d_i - (c_i, c_i^{-1}N)\left[d_i(c_i, c_i^{-1}N)^{-1}\right]'), \Gamma_0(N)\cdot i\infty\mapsto (N, 1).$$

By Proposition 3,  $\Gamma_0(N)\frac{a_i}{c_i} = \Gamma_0(N)\frac{a_j}{c_j}$  if  $c_id_j \equiv c_jd_i \pmod{(c_ic_j, N)}$ . Then,  $c_id_j = c_jd_i + (c_ic_j, N)h$  for some  $h \in \mathbb{Z}$ . Thus,  $c_i = c_j$  by  $c_i|N, c_j|N, (c_i, d_i) = 1$  and  $(c_j, d_j) = 1$ . Hence,  $c_id_j \equiv c_jd_i \pmod{(c_ic_j, N)}$  if  $d_i \equiv d_j \pmod{(c_i, c_i^{-1}N)}$ . Therefore,  $\Phi$  is a bijection between  $\Gamma_0(N) \setminus \mathbb{Q} \cup \{i\infty\}$  and  $C_1(N)$ .  $\Box$ 

**Lemma 6.** There exists a bijection between  $\Gamma_0(N) \setminus \mathbb{Q} \cup \{i\infty\}$  and C(N).

**Proof.** It is immediately from Lemmas 4 and 5.  $\Box$ 

**Lemma 7.** Let  $(N_1, N_2) = 1$ . Then, there exists a bijection between  $C_1(N_1N_2)$  and  $C_1(N_1) \times C_1(N_2)$ .

**Proof.** Let  $(c, d) \in C_1(N_1N_2)$  then  $c|N_1N_2, d \leq (c, N_1N_2c^{-1}), (d, c, N_1N_2c^{-1}) = 1$ . Let  $c_1 = (c, N_1), c_2 = (c, N_2)$  then  $c = c_1c_2, (c_1, c_2) = 1$  and  $(d, c_1c_2, N_1c_1^{-1}N_2c_2^{-1}) = 1$ . Thus,  $(d, (c_1, N_1c_1^{-1})) = 1, (d, (c_2, N_2c_2^{-1})) = 1$  by  $(c, N_1N_2c^{-1}) = (c_1, N_1c_1^{-1})(c_2, N_2c_2^{-1})$ . Let  $d_1 = d - (c_1, N_1c_1^{-1})[d(c_1, N_1c_1^{-1})^{-1}]'$  and  $d_2 = d - (c_2, N_2c_2^{-1})[d(c_2, N_2c_2^{-1})^{-1}]'$  then  $(d_1, (c_1, N_1c_1^{-1})) = 1$  and  $(d_2, c_2, N_2c_2^{-1}) = 1$ . Thus,  $(c_1, d_1) \in C_1(N_1)$  and  $(c_2, d_2) \in C_1(N_2)$ . Define  $\Phi : C_1(N_1N_2) \to C_1(N_1) \times C_2(N_2)$  by  $(c, d) \mapsto ((c_1, d_1), (c_2, d_2))$ .

For any  $((c_1, d_1), (c_2, d_2)) \in C_1(N_1) \times C_1(N_2)$ , let  $c = c_1c_2$  there exists an integer d such that  $d \equiv d_1(\text{mod}(c_1, N_1c_1^{-1})), d \equiv d_2(\text{mod}(c_2, N_2c_2^{-1}))$  and

$$1 \leq d \leq (c_1, N_1 c_1^{-1})(c_2, N_2 c_2^{-1}) = (c, N_1 N_2 c^{-1})$$

by  $((c_1, N_1c_1^{-1}), (c_2, N_2c_2^{-1})) = 1$ . Thus  $(c, d) \in C_1(N_1N_2)$  and hence  $\Phi$  is a surjective map. Let  $\Phi((c, d)) = \Phi((c', d'))$ . Then,  $((c_1, d_1), (c_2, d_2)) = ((c'_1, d'_1), (c'_2, d'_2)), (c_1, d_1) = (c'_1, d'_1)$  and  $(c_2, d_2) = (c'_2, d'_2)$ . Thus,  $c_1 = c'_1, c_2 = c'_2, d_1 = d'_1$  and  $d_2 = d'_2$ . Hence,  $c = c_1c_2 = c'_1c'_2 = c'$  and d = d' by  $d \equiv d_1 \pmod{(c_1, N_1c_1^{-1})}, d \equiv d_2 \pmod{(c_2, N_2c_2^{-1})}, d' \equiv d'_1 \pmod{(c_1, N_1c_1^{-1})}$  and  $d' \equiv d'_2 \pmod{(c_2, N_2c_2^{-1})}$ . Therefore,  $\Phi$  is an injective map. Then  $\Phi$  is a bijection between  $C_1(N_1N_2)$  and  $C_1(N_1) \times C_1(N_2)$ .  $\Box$ 

**Theorem 2.** Let  $(N_1, N_2) = 1$ . Then, there exists a bijection between  $C(N_1N_2)$  and  $C(N_1) \times C(N_2)$ .

**Proof.** It is immediately from Lemmas 4 and 7.  $\Box$ 

**Proposition 4.** Let *p* be a prime and *l* a positive integer. Then,

- (a)  $C(p^l) = \{(1,1), (p^l,1)\} \cup \{(p^{\alpha}, kp+d) : 1 \le \alpha \le l-1, 1 \le d \le p-1, 0 \le k \le p^{\min\{\alpha, l-\alpha\}-1}-1\};$
- (b)  $v_{\infty}(p^{l}) = \begin{cases} (p+1)p^{\frac{l}{2}-1} & if \ 2|l, \\ 2p^{\frac{l-1}{2}} & otherwise; \end{cases}$

(c) 
$$v_{\infty}(N) = \prod_{p|N} v_{\infty}(p^l).$$

**Proof.** (c) is immediately from (b) and Theorem 2.  $\Box$ 

C(N) can be constructed using Algorithm 2.

Algorithm 2: C(N)

(1) Construct  $C(p^l)$  by Proposition 4(a);

(2) Let  $N = N_1 N_2$  for  $(N_1, N_2) = 1$ . Given  $C(N_1)$  and  $C(N_2)$ . C(N) is constructed as follows. For all  $(c_1, d_1) \in C(N_1), (c_2, d_2) \in C(N_2)$ , define  $c = c_1 c_2$ . Determinate  $d_0$  such that  $d_0 \equiv d_1 \pmod{(c_1, N_1 c_1^{-1})}, d_0 \equiv d_2 \pmod{(c_2, N_2 c_2^{-1})}$  and

$$1 \leq d_0 \leq (c_1, N_1 c_1^{-1})(c_2, N_2 c_2^{-1}).$$

Determinate  $d = d_0 + \frac{Nk}{c}$  such that (c, d) = 1 and  $(c, d_0 + \frac{Nn}{c}) \ge 2$  for  $0 \le n < k$ . Then,  $(c, d) \in C(N_1N_2)$  and all elements in  $C(N_1N_2)$  are constructed if all pairs in  $C(N_1) \times C(N_2)$  are processed.

## 4. The Recursive Structure of Elliptic Points of $X_0(N)$

Let 
$$\rho = \frac{-1 + \sqrt{3}i}{2}$$
.  $E_2(N)$  and  $E_3(N)$  are defined in (3). Then,  
 $\{\frac{-d+i}{1+d^2} : (1,d) \in E_2(N)\}$  and  $\{\frac{1-2d+\sqrt{3}i}{2(1-d+d^2)} : (1,d) \in E_3(N)\}$ 

are complete sets of representatives of  $\Gamma_0(N)$ -inequivalent elliptic points of order 2, 3, respectively.

**Theorem 3.** *Let*  $N_1, N_2 \in \mathbb{Z}, N_1, N_2 \ge 1$  *and*  $(N_1, N_2) = 1$ *. Then* 

(a) there exists a bijection between  $E_3(N_1) \times E_3(N_2)$  and  $E_3(N_1N_2)$ ;

(b) there exists a bijection between  $E_2(N_1) \times E_2(N_2)$  and  $E_2(N_1N_2)$ .

**Proof.** (a) Let  $(1, d_1) \in E_3(N_1)$  and  $(1, d_2) \in E_3(N_2)$ . Let *d* be the unique integer such that  $d \equiv d_1 \pmod{N_1}, d \equiv d_2 \pmod{N_2}$  and  $1 \leq d \leq N_1N_2$  then  $d^2 - d + 1 \equiv 0 \pmod{N_1N_2}$ . Hence,  $(1, d) \in E_3(N_1N_2)$ . Define

$$\Phi: E_3(N_1) \times E_3(N_2) \to E_3(N_1N_2), ((1,d_1), (1,d_2)) \mapsto (1,d)$$

Then,  $\Phi$  is a bijection between  $E_3(N_1) \times E_3(N_2)$  and  $E_3(N_1N_2)$ . The proof of (b) is similar to that of (a) and omitted.  $\Box$ 

**Proposition 5.** *Let*  $p \in \mathbb{Z}$  *be a prime and*  $l \in \mathbb{Z}$ *,*  $l \ge 1$ *. Then* 

$$v_2(p^l) = \begin{cases} 0 & if \ p \equiv 3 \pmod{4} \text{ or } 4|p^l, \\ 1 & if \ p = 2, \\ 2 & if \ p \equiv 1 \pmod{4}. \end{cases}$$

**Proof.** Let  $(1, d) \in E_2(p^l)$  then  $d^2 + 1 \equiv 0 \pmod{p^l}$ . Since the system of two equations  $x^2 + 1 \equiv 0 \pmod{p}$  and  $2x \equiv 0 \pmod{p}$  has a common solution if p = 2, the number of solutions of  $x^2 + 1 \equiv 0 \pmod{p^l}$  is equal to that of  $x^2 + 1 \equiv 0 \pmod{p}$  if  $p \neq 2$ . The cases of p = 2 or  $4|p^l$  are trivial and we then let  $p \ge 3$  in the following. Then,  $x^2 + 1 \equiv 0 \pmod{p}$  has a solution if  $\left(\frac{-1}{p}\right) = 1$  if  $p \equiv 1 \pmod{4}$  by  $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$ . In addition,  $x^2 + 1 \equiv 0 \pmod{p}$  has two and only two solutions if it is solvable. This completes the proof.  $\Box$ 

**Proposition 6.** Let  $p \in \mathbb{Z}$  be a prime and  $l \in \mathbb{Z}$ ,  $l \ge 1$ . Then

$$v_3(p^l) = \begin{cases} 0 & if \ p \equiv 2 \pmod{3} \text{ or } 9|p^l \\ 1 & if \ p \equiv 3, \\ 2 & if \ p \equiv 1 \pmod{3}. \end{cases}$$

**Proof.** Let  $(1, d) \in E_3(p^l)$  then  $d^2 - d + 1 \equiv 0 \pmod{p^l}$ . Since the system of two equations  $x^2 - x + 1 \equiv 0 \pmod{p}$  and  $2x - 1 \equiv 0 \pmod{p}$  has a common solution if p = 3, the number of solutions of  $x^2 - x + 1 \equiv 0 \pmod{p^l}$  is equal to that of  $x^2 - x + 1 \equiv 0 \pmod{p}$  if  $p \neq 3$ . The cases of p = 2, 3 or  $9|p^l$  are trivial and we then let  $p \ge 5$  in the following.  $x^2 - x + 1 \equiv 0 \pmod{p}$  has a solution if  $y^2 + 3 \equiv 0 \pmod{p}$  has a solution by taking  $x = \frac{y+1}{2}$  and substituting p - y for y when  $y \equiv 0 \pmod{2}$ . Then,  $x^2 - x + 1 \equiv 0 \pmod{p}$ has a solution if  $\left(\frac{-3}{p}\right) = 1$  if  $p \equiv 1 \pmod{3}$  by  $\left(\frac{-3}{p}\right) = \left(\frac{3}{p}\right)\left(\frac{-1}{p}\right), \left(\frac{3}{p}\right) = (-1)^{\frac{p-1}{2}}\left(\frac{p}{3}\right), \left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$ and  $\left(\frac{-3}{p}\right) = \left(\frac{p}{3}\right)$ . In addition,  $x^2 - x + 1 \equiv 0 \pmod{p}$  has two and only two solutions

if it is solvable. This completes the proof.  $\Box$ 

The following results are well-known, see Proposition 1.43 in [1]. However, our proof is elementary and constructive.

Corollary 2. (1) 
$$v_2(N) = \begin{cases} 0 & \text{if } 4|N, \\ \Pi_{p|N} \left(1 + \left(\frac{-1}{p}\right)\right) & \text{otherwise.} \end{cases}$$
  
(2)  $v_3(N) = \begin{cases} 0 & \text{if } 4|N, \\ \Pi_{p|N} \left(1 + \left(\frac{-3}{p}\right)\right) & \text{otherwise.} \end{cases}$ 

**Proof.** It is immediately from Theorem 4, Propositions 5 and 6.  $\Box$ 

**Corollary 3.** Let g(N) be the genus of the modular curve  $X_0(N)$ . Then, for any  $(N_1, N_2) = 1$ ,

$$g(N_1N_2) = 1 + \frac{\mu(N_1)\mu(N_2)}{12} - \frac{v_2(N_1)v_2(N_2)}{4} - \frac{v_3(N_1)v_3(N_2)}{3} - \frac{v_\infty(N_1)v_\infty(N_2)}{2}.$$

**Proof.** It is immediately from Theorems 1–3 and the formula for the genus of  $X_0(N)$ 

$$g(N) = 1 + \frac{\mu(N)}{12} - \frac{v_2(N)}{4} - \frac{v_3(N)}{3} - \frac{v_\infty(N)}{2}.$$

 $E_3(N)$  can be constructed using Algorithm 3.

Algorithm 3:  $E_3(N)$ 

(1) Construct  $E_3(p^l)$  by general method; (2) Let  $N = N_1N_2$  for  $(N_1, N_2) = 1$ . Given  $E_3(N_1)$  and  $E_3(N_2)$ .  $E_3(N)$  is constructed as follows. For all  $(1, d_1) \in E_3(N_1)$ ,  $(1, d_2) \in E_3(N_2)$ , Determinate d such that

 $d \equiv d_1 \pmod{N_1}, d \equiv d_2 \pmod{N_2}$  and  $1 \leq d \leq N$ .

Then,  $(1, d) \in E_3(N)$  and all elements in  $E_3(N)$  are constructed if all pairs in  $E_3(N_1) \times E_3(N_2)$  are processed.

#### 5. Concluding Remarks

In [7], Stein mentioned that another approach to list  $\mathbb{P}^1(\mathbb{Z}/N\mathbb{Z})$  is to use that

$$\mathbb{P}^{1}(\mathbb{Z}/N\mathbb{Z}) \cong \prod_{p|N} \mathbb{P}^{1}(\mathbb{Z}/p^{v_{p}}\mathbb{Z}),$$

where  $v_p = \operatorname{ord}_p(N)$ , and that it is relatively easy to enumerate the elements of  $\mathbb{P}^1(\mathbb{Z}/p^n\mathbb{Z})$  for a prime power  $p^n$ . However, this approach had never been implemented by anyone as far as I know. Thus, Algorithm 1 in this paper could be regarded as an explicit implementation of Stein's ideas. All the algorithms described in this paper have been implemented in Wolfram Language, for these Wolfram programs, see [8]. We plan to rewrite these programs in the free open-source computer algebra system SAGE and incorporate them into Stein's program [9] or Walker's program [10].

Funding: This research received no external funding.

Data Availability Statement: Not available.

Conflicts of Interest: The author declares no conflict of interest.

#### References

- Shimura, G. Introduction to the Arithmetic Theory of Automorphic Functions; Princeton University Press: Princeton, NJ, USA, 1971; pp. 99–103.
- 2. Manin, J. Parabolic points and zeta functions of modular curves. Math.-Ussr-Izv. 1972, 36, 19–66. [CrossRef]
- 3. Cremona, J.E. Algorithms For Modular Elliptic Curves; Cambridge University Press: Cambridge, UK, 1997; pp. 99–103.
- Schoeneberg, B. Elliptic Modular Functions: An Introduction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 203, pp. 99–103.
- 5. Dedekind, R. Schreiben an Herrn Borchardt über die Theorie der elliptischen Modul-Functionen. J. Reine Angew. Math. 1877, 83, 265–292.
- Weber, H. Elliptische Functionen Und Algebraische Zahlen; Braunschweig, F. Vieweg und Sohn: Braunschweig, German, 1891; pp. 244–245.
- Stein, W.A. Modular Forms, a Computational Approach; American Mathematical Soc.: Providence, RI, USA, 2007; Volume 79, pp. 144–146.
- Wang, S. Functions for Constructing Recursively Manin Symbols over Q, Cusps and Elliptic Points on X<sub>0</sub>(N). 2023. Available online: https://www.wolframcloud.com/obj/1e719d22-316b-4fe1-abf1-82cc0594526a (accessed on 12 June 2023).
- Stein, W.; The Sage Group. Modular Symbols. 2023. Available online: https://doc.sagemath.org/pdf/en/reference/modsym/ modsym.pdf (accessed on 12 June 2023).
- 10. Walker, J. Lists of Manin Symbols over Q, Elements of P<sup>1</sup>(ℤ/Nℤ). 2023. Available online: https://doc.sagemath.org/html/en/ reference/modsym/sage/modular/modsym/p1list.html (accessed on 12 June 2023).

**Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.