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Abstract: Firstly, we present a more explicit formulation of the complete system D(N) of representa-
tives of Manin’s symbols over Q, which was initially given by Shimura. Then, we establish a bijection
between D(M)× D(N) and D(MN) for (M, N) = 1, which reveals a recursive structure between
Manin’s symbols of different levels. Based on Manin’s complete system Π(N) of representatives
of cusps on X0(N) and Cremona’s characterization of the equivalence between cusps, we estab-
lish a bijection between a subset C(N) of D(N) and Π(N), and then establish a bijection between
C(M)× C(N) and C(MN) for (M, N) = 1. We also provide a recursive structure for elliptical points
on X0(N). Based on these recursive structures, we obtain recursive algorithms for constructing Manin
symbols over Q, cusps, and elliptical points on X0(N). This may give rise to more efficient algorithms
for modular elliptic curves. As direct corollaries of these recursive structures, we present a recursive
version of the genus formula and prove constructively formulas of the numbers of D(N), cusps, and
elliptic points on X0(N).
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1. Introduction

In his seminal monograph [1] (Chapter 1, Proposition 1.43), G. Shimura defined a
complete set D(N) of representatives for the projective line P1(Z/NZ) over Z/NZ to be
all couples {c, d} of positive integers satisfying

(∗) (c, d) = 1, d|N, 1 6 c 6 N/d(or c in any set o f representatives f or Z modulo (N/d)),

where (c, d) denote the greatest common divisor of integers c and d.
Let [x] be the greatest integer less than or equal to x. For two integers a, b with b 6= 0,

define

[
a
b
]′ =


a
b
− 1 if b|a,

[
a
b
] otherwise,

then 1 6 a− b[
a
b
]′ 6 b. In this paper, we define

D(N) = {(c, d) : c, d ∈ Z, c, d > 1, c|N, (c, d) = 1 and

(c, d−
N
c
([

cd
N
]′ − n)) > 2 f or 0 6 n < [

cd
N
]′}.

(1)
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We then establish a bijection between D(M) × D(N) and D(MN) for (M, N) = 1 in
Section 2. This result gives a recursive algorithm to construct the projective line P1(Z/NZ)
over Z/NZ.

Let Π(N) = {[δ; a mod (δ, Nδ−1)] : a, δ ∈ Z, δ > 1, δ|N, 1 6 a 6 (δ, Nδ−1)}.
In [2] (Proposition 2.2), Manin proved that there exists a bijection between Π(N) and
the set of cusps on X0(N). Based on Manin’s result and Cremona’s characterization (See
Proposition 3), we identify Π(N) with

C(N) = {(c, d) : c, d ∈ Z, 1 6 c 6 N, c|N, (c, d) = 1 and

(c, d− (c, Nc−1)[
d

(c, Nc−1)
]′ +

Nn
c
) > 2 for 0 6 n <

c(c, Nc−1)

N
[

d
(c, Nc−1)

]′},
(2)

which is a subset of D(N). In Section 3, we establish a bijection between C(N1N2) and
C(N1)× C(N2) for (N1, N2) = 1. This result gives a recursive algorithm to construct the
complete set of representatives of Γ0(N)-inequivalent cusps.

Define

E2(N) = {(1, d) : (1, d) ∈ D(N), 1 + d2 ≡ 0 (mod N)},
E3(N) = {(1, d) : (1, d) ∈ D(N), 1− d + d2 ≡ 0 (mod N)}.

(3)

Then, there exist bijections between E2(N), E3(N) and complete sets of representatives of
Γ0(N)-inequivalent elliptic points of order 2 and 3, respectively. In Section 4, we establish
bijections between E2(N1N2) and E2(N1)× E2(N2), E3(N1N2) and E3(N1)× E3(N2), for
(N1, N2) = 1. These results give a recursive algorithm for constructing the complete set
E3(N) and E2(N)of Γ0(N)-inequivalent elliptic points of order 2, 3.

The elements in P1(Z/NZ) are called Manin symbols [3] (Section 2.2) and there
exists a bijection between the set of right cosets of Γ0(N) in SL(2,Z) and P1(Z/NZ) [2]
(Proposition 2.4). An important step in the modular elliptic algorithm is to construct a
complete set of representatives for the projective line P1(Z/NZ) and a complete set of
representatives of Γ0(N)-inequivalent cusps [3] (Chapter II). The recursive structure of
D(N), C(N), E2(N) and E3(N) may give rise to a more efficient modular elliptic algorithm.

As direct corollaries of these recursive structures, we present a recursive version of the
genus formula and elementary proofs of formulas of the numbers µ(N), v∞(N), v2(N) and
v3(N) of D(N), C(N), E2(N), E3(N). Note that Schoeneberg’s proof and Shimura’s proof
for formulas of µ(N), v∞(N), v2(N) and v3(N) use the theory of quadratic fields, see [4]
(Chapter IV, Section 8) and [1] (Chapter 1, Proposition 1.43). Their proofs may make these
formulas hard to approach when compared with our proofs.

2. The Recursive Structure of Manin Symbols over Q
We firstly give some necessary notations and facts, for details, see [3].

Definition 1.

(a) D2(N) = {(c, d) : c, d ∈ Z, (c, d, N) = 1};
(b) ∀(c1, d1), (c2, d2) ∈ D2(N), define (c1, d1) ∼ (c2, d2) if c1d2 ≡ d1c2(mod N),

then ∼ is an equivalence relation on D2(N);
(c) ∀(c, d) ∈ D2(N), define (c : d) = {(c′, d′) : (c′, d′) ∈ D2(N), (c′, d′) ∼ (c, d)};
(d) D(N) = D2(N)/ ∼= {(c : d) : (c, d) ∈ D0(N)};

(e) D1(N) = {(c, d) : c, d ∈ Z, c, d > 1, c|N, (c, d,
N
c
) = 1, cd 6 N};

(f) D(N) is defined in (1);
(g) µ(N), v∞(N), v2(N) and v3(N) are the numbers of elements in D(N), C(N), E2(N) and

E3(N), respectively.
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As pointed out by a referee, the index µ(N) of Γ0(N) in SL(2,Z) is called the Dedekind
psi function, usually denoted ψ(N), see [5,6]. Here, we follow Shimura’s notations in [1]
(Proposition 1.43).

Lemma 1. Let c, d, h ∈ Z, (c, d, h) = 1,c, d > 1 and d 6 h, then there exists an integer k such
that (c, d + hk) = 1 and 0 6 k < c.

Proof. If c = 1, take k = 0 then (c, d + hk) = 1. Thus, let c > 2 in the following. Let
c = pα1

1 · · · p
αs
s be the standard factorization of c. The proof is by induction on the numbers

of distinct prime divisors in c. Suppose that c = pα1
1 . Assume that (pα1

1 , d) > 2 and
(pα1

1 , d + h) > 2 then p1|d and p1|(d + h). Thus, p1|d and p1|h, this contradicts with
(c, d, h) = 1, and hence (c, d + hk) = 1 for some 0 6 k 6 1 < c.

Let c1 = pα1
1 · · · p

αs−1
s−1 . By the induction hypothesis, there exists an integer k1 such

that (c1, d + hk1) = 1 and 0 6 k1 < c1. Then, (c1, d + hk1 + hc1) = 1. Assume that
(pαs

s , d + hk1) > 2 and (pαs
s , d + hk1 + hc1) > 2 then ps|(d + hk1) and ps|(d + hk1 + hc1).

Thus, ps|hc1 and hence ps|h by (ps, c1) = 1. Therefore, ps|d. This contradicts with (c, d, h) =
1 and hence (c, d + hk1) = 1 or (c, d + hk1 + hc1) = 1. Take k = k1 ork = c1 + k1, then
(c, d + hk) = 1 for some 0 6 k1 6 k 6 c1 + k1 < 2c1 6 c. This completes the proof by the
induction principle.

Corollary 1. Let a, b, c ∈ Z, (a, b, c) = 1, then the equation ax + by + cyz = 1 has solutions
in Z.

Lemma 2. There exists a bijection between D(N) and D1(N).

Proof. Let (c, d) ∈ D(N). Define dn = d−
N
c
[
cd
N
]′ +

Nn
c

for all n ∈ Z. Then, 1 6 d0 6
N
c

and (c, d0,
N
c
) = 1 by (c, d) = 1. Thus (c, d0) ∈ D1(N). Define Φ : D(N) → D1(N) by

sending (c, d) to (c, d0).

Let (u, v) ∈ D(N) such that Φ(c, d) = Φ(u, v). Define vn = v−
N
u
[
uv
N
]′ +

Nn
u

for all

n ∈ Z. Then, c = u and d0 = v0. Thus, dn = vn for all n ∈ Z. Let e = [
cd
N
]′ and w = [

cv
N
]′.

Then, d = de and v = vw. Suppose that e < w then (c, de) = 1 by (c, d) = 1 but (c, de) > 2
by (c, v) ∈ D(N) and de = ve, a contradiction and thus e > w. e 6 w holds by a similar
proof and thus e = w and (c, d) = (u, v). Therefore, Φ is an injection from D(N) to D1(N).

Let (c, d0) ∈ D1(N). By Lemma 1, there exists an integer k such that (c, d0 +
Nk
c
) = 1

and 0 6 k 6 c− 1. Let 0 6 k0 6 k such that (c, d0 +
Nk0

c
) = 1 and (c, d0 +

Nn
c
) = 1 for all

0 6 n < k0. Define d = d0 +
Nk0

c
. Then, (c, d) ∈ D(N) and Φ((c, d)) = (c, d0). Therefore,

Φ is a surjection from D(N) to D1(N).

Lemma 3. There exists a bijection between D(N) and D(N), i.e., D(N) is a complete system of
the representatives of elements of D(N).

Proof. Define Φ : D(N)→ D(N) by the natural map, i.e., Φ((c, d)) = (c : d).
Let (c : d) ∈ D(N). Then, (c, d, N) = 1. Define c1 = (c, N), d0 to be the unique

solution of the congruence equation
c
c1

x ≡ d(mod
N
c1
) such that 1 6 d0 6

N
c1

. Then, there

exists an integer y such that
c
c1

d0 +
N
c1

y = d. Assume that there exists a prime p such
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that p|(c1, d0,
N
c1
). Then, p|d and p|(c, N), this contradicts with (c, d, N) = 1, and thus

(c1, d0,
N
c1
) = 1. Hence, (c1, d0) ∈ D1(N). Then, there exists the unique (c1, d1) ∈ D(N)

which corresponds to (c1, d0). Hence, (c1, d1) ∈ (c : d), i.e., Φ((c1, d1)) = (c : d).
Assume that(c1, d1), (c2, d2) ∈ D(N) such that Φ((c1, d1)) = Φ((c2, d2)). Then,

(c1 : d1) = (c2 : d2) and thus there exists an integerk such that c1d2 − c2d1 = Nk. Thus,
c1|c2d1 by c1|N and c2|c1d2 by c2|N. Hence, c1|c2 by (c1, d1) = 1 and c2|c1 by (c2, d2) = 1.

Therefore, c1 = c2 and d1 = d2 by d1 ≡ d2(mod
N
c1
) and the definition of D(N). Thus, Φ is

a bijection between D(N) and D(N). This completes the proof.

Theorem 1. Let M, N ∈ Z, M, N > 1, (M, N) = 1. Then, there exists a bijection between
D(M)× D(N) and D(MN).

Proof. Let (a, b) ∈ D(M) and (c, d) ∈ D(N). Assume that there exists a prime p such that

p|(ac, bN + dM−
MN
ac

[
ac(bN + dM)

MN
]′,

MN
ac

). Then, p|ac, p|
M
a

N
c

and

p|bN + dM−
MN
ac

[
ac(bN + dM)

MN
]′.

Then p|a, p|
M
a

or p|c, p|
N
c

by (M, N) = 1,a|M, c|N. If p|a, p|
M
a

then p|bN and thus p|N by

(a, b) = 1, which contradicts with (M, N) = 1. The case of p|c, p|
N
c

is tackled in a similar

way. Therefore (ac, bN + dM−
MN
ac

[
ac(bN + dM)

MN
]′,

MN
ac

) = 1 and

(ac, bN + dM−
MN
ac

[
ac(bN + dM)

MN
]′) ∈ D1(MN).

Define e = ac, f = bN + dM−
MN
ac

([
ac(bN + dM)

MN
]′ − k) for some k such that

(ac, bN + dM−
MN
ac

([
ac(bN + dM)

MN
]′ − n)) > 2

for all 0 6 n < k. Then (e, f ) ∈ D(MN). Define Φ : D(M)× D(N)→ D(MN) by sending
((a, b), (c, d)) to (e, f ).

Assume that Φ((a, b), (c, d)) = Φ((a1, b1), (c1, d1)) for some (a, b), (a1, b1) ∈ D(M)
and (c, d), (c1, d1) ∈ D(N). Then

(ac, bN + dM−
MN
ac

([
ac(bN + dM)

MN
]′ − k))

= (a1c1, b1N + d1M−
MN
a1c1

([
a1c1(b1N + d1M)

MN
]′ − k1)).

Thus, ac = a1c1 and

bN + dM−
MN
ac

([
ac(bN + dM)

MN
]′ − k)

= b1N + d1M−
MN
a1c1

([
a1c1(b1N + d1M)

MN
]′ − k1).
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Hence, a = a1, c = c1 by (M, N) = 1,a|M, a1|M, c|N, c1|N. Therefore,

bN + dM−
MN
ac

([
ac(bN + dM)

MN
]′ − k)

= b1N + d1M−
MN
ac

([
ac(b1N + d1M)

MN
]′ − k1).

Thus d ≡ d1(mod
N
c
) and b ≡ b1(mod

M
a
)by (M, N) = 1. Hence b = b1, d = d1. Then

((a, b), (c, d)) = ((a1, b1), (c1, d1)).

Let (e, f ) ∈ D(MN). Then e|MN, (e, f ) = 1 and (e, f −
MN

e
([

e f
MN

]′ − n)) > 2 for

0 6 n < [
e f

MN
]′. Let a = (e, M), c = (e, N), then e = ac, a|M and c|N. Let x0, y0, z0 be a

particular solution of the equation

Nx + My +
MN
ac

z = f (4)

then x =
M
a

X + x0, y =
N
c

Y + y0, z = −cX − aY + z0 are solutions of (4) for all integers

X, Y. Take b1 = x0 −
M
a
[
ax0

M
]′, d1 = y0 −

N
c
[
cy0

N
]′, then

Nb1 + Md1 +
MN
ac

(c[
ax0

M
]′ + a[

cy0

N
]′ + z0) = f , 1 6 b1 6

M
a

, 1 6 d1 6
N
c

.

Then, (a, b1,
M
a
) = 1 by a|M, (e, f ) = 1 and (c, d1,

N
c
) = 1 by c|N, (e, f ) = 1. Hence,

(a, b1) ∈ D1(M), (c, d1) ∈ D1(N). Let (a, b) ∈ D(M) and (c, d) ∈ D(N) which cor-

respond to (a, b1) and (c, d1), respectively. Then b = b1 +
M
a

k1 and d = d1 +
N
c

k2

for some k1, k2. Then Nb + Md +
MN
ac

(c[
ax0

M
]′ + a[

cy0

N
]′ − ck1 − ak2 + z0) = f . Then

(e, f ) = Φ((a, b), (c, d)).
Thus, Φ is a bijection between D(M)× D(N) and D(MN).

Proposition 1. Let p be a prime and l a positive integer. Then

(a) D(pl) = {(1, d) : 1 6 d 6 pl} ∪ {(pl , 1)}∪

{(pα, kp + d) : 1 6 α 6 l − 1, 1 6 d 6 p− 1, 0 6 k 6 pl−α−1 − 1};

(b) µ(pl) = pl(1 +
1
p
);

(c) µ(N) = N ∏p|N

(
1 +

(
1
p

))
.

Proof. (c) is immediately from (b) and Theorem 1.

D(MN) can be constructed using Algorithm 1.
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Algorithm 1: D(MN)

(1) Construct D(pl) by Proposition 1(a);
(2) Given D(M) and D(N) for (M, N) = 1, D(MN) is constructed as follows. For

all (a, b) ∈ D(M),(c, d) ∈ D(N), define e = ac,

f = bN + dM−
MN
ac

([
ac(bN + dM)

MN
]′ − k) for some k ∈ Z such that (e, f ) = 1

and (ac, bN + dM−
MN
ac

([
ac(bN + dM)

MN
]′ − n)) > 2 for all 0 6 n < k. Then,

(e, f ) ∈ D(MN) and all elements in D(MN) are constructed if all pairs in
D(M)× D(N) are processed.

3. The Recursive Structure of Cusps

In order to describe the cusps on X0(N), Ju. I. Manin in [2] introduced the set Π(N),
which consists of pairs of the form [δ; a mod (δ, Nδ−1)]. Here, δ runs through all positive
divisors of N, and the second coordinate of the pair runs through any invertible class
of residues modulo the greatest common divisor of δ and Nδ−1. If (δ, Nδ−1) = 1 we
sometimes put simply 1 in place of the second coordinate.

Proposition 2. Let δ|N, u, v ∈ Z; (u, vδ) = (v, Nδ−1) = 1. The map Q ∪ {i∞} → Π(N) of

the form
u
vδ
7→ [δ; uv mod (δ, Nδ−1)] gives an isomorphism of the set of cusps on X0(N) with

Π(N).

Proof. See Proposition 2.2 in [2].

In [3], (Proposition 2.2.3), J. E. Cremona gives the following characterization of cusps
of X0(N).

Proposition 3. For j = 1, 2 let αj = pj/qj be cusps written in the lowest terms. The following are
equivalent:

(a) α2 = M(α1) for some M ∈ Γ0(N);

(b) q2 ≡ uq1(mod N) and up2 ≡ p1(mod (q1, N)), with (u, N) = 1;

(c) s1q2 ≡ s2q1(mod (q1q2, N)), where sj satisfies pjsj ≡ 1(mod qj).

Definition 2.

(a) C1(N) = {(c, d) : c, d ∈ Z, 1 6 c 6 N, c|N, 1 6 d 6 (c, Nc−1), (c, d, Nc−1) = 1},
(b) C(N) is de f ined in (2).

Lemma 4. There exists a bijection between C1(N) and C(N).

Proof. It holds by C1(N) ⊆ D1(N) , C(N) ⊆ D(N) and Lemma 2.

Lemma 5. There exists a bijection between Γ0(N)\Q∪ {i∞} and C1(N).

Proof. Let γi =

(
ai bi
ci di

)
, γj =

(
aj bj
cj dj

)
∈ SL2(Z) such that (ci, di), (cj, dj) ∈ D(N)

for 1 6 i < j 6 µ(N) then SL2(Z) = Γ0(N)γ1 ∪ · · · ∪ Γ0(N)γµ(N) and Γ0(N)γi 6= Γ0(N)γj.

∀c, a ∈ Z, (c, a) = 1, c > 1, let
(

a b
c d

)
∈ SL2(Z) for some a, b. Then there exists

γ ∈ Γ0(N), 1 6 i 6 µ(N) such that
(

a b
c d

)
= γγi. Thus,

(
a b
c d

)
(∞) = γγi(∞),
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γ(
ai

ci
) =

a
c

and Γ0(N)
a
c
= Γ0(N)

ai

ci
. Then, Γ0(N)\Q ∪ {i∞} = {Γ0(N)

ai

ci
: 1 6 i 6 µ(N)}.

Define Φ : Γ0(N)\Q∪ {i∞} → C1(N) by

Γ0(N)
a
c
7→ (ci, di − (ci, c−1

i N)
[
di(ci, c−1

i N)−1
]′
), Γ0(N) · i∞ 7→ (N, 1).

By Proposition 3, Γ0(N)
ai

ci
= Γ0(N)

aj

cj
if cidj ≡ cjdi(mod (cicj, N)). Then, cidj = cjdi +

(cicj, N)h for some h ∈ Z. Thus, ci = cj by ci|N, cj|N, (ci, di) = 1 and (cj, dj) = 1. Hence,
cidj ≡ cjdi(mod (cicj, N)) if di ≡ dj(mod (ci, c−1

i N)). Therefore, Φ is a bijection between
Γ0(N)\Q∪ {i∞} and C1(N).

Lemma 6. There exists a bijection between Γ0(N)\Q∪ {i∞} and C(N).

Proof. It is immediately from Lemmas 4 and 5.

Lemma 7. Let (N1, N2) = 1. Then, there exists a bijection between C1(N1N2) and C1(N1)×
C1(N2).

Proof. Let (c, d) ∈ C1(N1N2) then c|N1N2, d 6 (c, N1N2c−1), (d, c, N1N2c−1) = 1. Let
c1 = (c, N1), c2 = (c, N2) then c = c1c2, (c1, c2) = 1 and (d, c1c2, N1c−1

1 N2c−1
2 ) = 1.

Thus, (d, (c1, N1c−1
1 )) = 1, (d, (c2, N2c−1

2 )) = 1 by (c, N1N2c−1) = (c1, N1c−1
1 )(c2, N2c−1

2 ).
Let d1 = d− (c1, N1c−1

1 )[d(c1, N1c−1
1 )−1]′ and d2 = d− (c2, N2c−1

2 )[d(c2, N2c−1
2 )−1]′ then

(d1, (c1, N1c−1
1 )) = 1 and (d2, c2, N2c−1

2 ) = 1. Thus, (c1, d1) ∈ C1(N1) and (c2, d2) ∈ C1(N2).
Define Φ : C1(N1N2)→ C1(N1)× C2(N2) by (c, d) 7→ ((c1, d1), (c2, d2)).

For any ((c1, d1), (c2, d2)) ∈ C1(N1)× C1(N2), let c = c1c2 there exists an integer d
such that d ≡ d1(mod(c1, N1c−1

1 )), d ≡ d2(mod(c2, N2c−1
2 )) and

1 6 d 6 (c1, N1c−1
1 )(c2, N2c−1

2 ) = (c, N1N2c−1)

by ((c1, N1c−1
1 ), (c2, N2c−1

2 )) = 1. Thus (c, d) ∈ C1(N1N2) and hence Φ is a surjective map.
Let Φ((c, d)) = Φ((c′, d′)). Then, ((c1, d1), (c2, d2)) = ((c′1, d′1), (c

′
2, d′2)), (c1, d1) =

(c′1, d′1) and (c2, d2) = (c′2, d′2). Thus, c1 = c′1, c2 = c′2, d1 = d′1 and d2 = d′2. Hence,
c = c1c2 = c′1c′2 = c′ and d = d′ by d ≡ d1(mod (c1, N1c−1

1 )), d ≡ d2(mod (c2, N2c−1
2 )),

d′ ≡ d′1(mod (c1, N1c−1
1 )) and d′ ≡ d′2(mod (c2, N2c−1

2 )). Therefore, Φ is an injective map.
Then Φ is a bijection between C1(N1N2) and C1(N1)× C1(N2).

Theorem 2. Let (N1, N2) = 1. Then, there exists a bijection between C(N1N2) and C(N1)×
C(N2).

Proof. It is immediately from Lemmas 4 and 7.

Proposition 4. Let p be a prime and l a positive integer. Then,

(a) C(pl) = {(1, 1), (pl , 1)}∪ {(pα, kp + d) : 1 6 α 6 l − 1, 1 6 d 6 p − 1, 0 6 k 6

pmin{α,l−α}−1 − 1};

(b) v∞(pl) =

{
(p + 1)p

l
2−1 i f 2|l,

2p
l−1

2 otherwise;
(c) v∞(N) = ∏p|N v∞(pl).

Proof. (c) is immediately from (b) and Theorem 2.

C(N) can be constructed using Algorithm 2.
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Algorithm 2: C(N)

(1) Construct C(pl) by Proposition 4(a);
(2) Let N = N1N2 for (N1, N2) = 1. Given C(N1) and C(N2). C(N) is constructed

as follows. For all (c1, d1) ∈ C(N1),(c2, d2) ∈ C(N2), define c = c1c2. Determinate
d0 such that d0 ≡ d1(mod (c1, N1c−1

1 )), d0 ≡ d2(mod (c2, N2c−1
2 )) and

1 6 d0 6 (c1, N1c−1
1 )(c2, N2c−1

2 ).

Determinate d = d0 +
Nk
c

such that (c, d) = 1 and

(c, d0 +
Nn
c
) > 2 for 0 6 n < k. Then, (c, d) ∈ C(N1N2) and all elements in

C(N1N2) are constructed if all pairs in C(N1)× C(N2) are processed.

4. The Recursive Structure of Elliptic Points of X0(N)

Let ρ =
− 1 +

√
3i

2
. E2(N) and E3(N) are defined in (3). Then,

{
−d + i
1 + d2 : (1, d) ∈ E2(N)} and { 1− 2d +

√
3i

2(1− d + d2)
: (1, d) ∈ E3(N)}

are complete sets of representatives of Γ0(N)-inequivalent elliptic points of order 2, 3,
respectively.

Theorem 3. Let N1, N2 ∈ Z, N1, N2 > 1 and (N1, N2) = 1. Then

(a) there exists a bijection between E3(N1)× E3(N2) and E3(N1N2);
(b) there exists a bijection between E2(N1)× E2(N2) and E2(N1N2).

Proof. (a) Let (1, d1) ∈ E3(N1) and (1, d2) ∈ E3(N2). Let d be the unique integer such that
d ≡ d1 (mod N1),d ≡ d2 (mod N2) and 1 6 d 6 N1N2 then d2 − d + 1 ≡ 0 (mod N1N2).

Hence, (1, d) ∈ E3(N1N2). Define

Φ : E3(N1)× E3(N2)→ E3(N1N2), ((1, d1), (1, d2)) 7→ (1, d).

Then, Φ is a bijection between E3(N1)× E3(N2) and E3(N1N2). The proof of (b) is similar
to that of (a) and omitted.

Proposition 5. Let p ∈ Z be a prime and l ∈ Z, l > 1. Then

v2(pl) =


0 i f p ≡ 3 (mod 4) or 4|pl ,
1 i f p = 2,
2 i f p ≡ 1 (mod 4).

Proof. Let (1, d) ∈ E2(pl) then d2 + 1 ≡ 0 (mod pl). Since the system of two equations
x2 + 1 ≡ 0 (mod p) and 2x ≡ 0 (mod p) has a common solution if p = 2, the number of
solutions of x2 + 1 ≡ 0 (mod pl) is equal to that of x2 + 1 ≡ 0 (mod p) if p 6= 2. The cases
of p = 2 or 4|pl are trivial and we then let p > 3 in the following. Then, x2 + 1 ≡ 0 (mod p)

has a solution if

(
− 1
p

)
= 1 if p ≡ 1 (mod 4) by

(
− 1
p

)
= (−1)

p−1
2 . In addition,

x2 + 1 ≡ 0 (mod p) has two and only two solutions if it is solvable. This completes
the proof.
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Proposition 6. Let p ∈ Z be a prime and l ∈ Z, l > 1. Then

v3(pl) =


0 i f p ≡ 2 (mod 3) or 9|pl ,
1 i f p = 3,
2 i f p ≡ 1 (mod 3).

Proof. Let (1, d) ∈ E3(pl) then d2 − d + 1 ≡ 0 (mod pl). Since the system of two equations
x2 − x + 1 ≡ 0 (mod p) and 2x − 1 ≡ 0 (mod p) has a common solution if p = 3, the
number of solutions of x2 − x + 1 ≡ 0 (mod pl) is equal to that of x2 − x + 1 ≡ 0 (mod p)
if p 6= 3. The cases of p = 2, 3 or 9|pl are trivial and we then let p > 5 in the following.
x2 − x + 1 ≡ 0 (mod p) has a solution if y2 + 3 ≡ 0 (mod p) has a solution by taking

x =
y + 1

2
and substituting p− y for y when y ≡ 0(mod2). Then, x2 − x + 1 ≡ 0 (mod p)

has a solution if

(
− 3
p

)
= 1 if p ≡ 1 (mod 3) by

(
− 3
p

)
=

(
3
p

)(
− 1
p

)
,

(
3
p

)
= (−1)

p−1
2

(
p
3

)
,

(
− 1
p

)
= (−1)

p−1
2

and

(
− 3
p

)
=

(
p
3

)
. In addition, x2 − x + 1 ≡ 0 (mod p) has two and only two solutions

if it is solvable. This completes the proof.

The following results are well-known, see Proposition 1.43 in [1]. However, our proof
is elementary and constructive.

Corollary 2. (1) v2(N) =


0 i f 4|N,

∏p|N

(
1 +

(
− 1
p

))
otherwise.

(2) v3(N) =


0 i f 4|N,

∏p|N

(
1 +

(
− 3
p

))
otherwise.

Proof. It is immediately from Theorem 4, Propositions 5 and 6.

Corollary 3. Let g(N) be the genus of the modular curve X0(N). Then, for any (N1, N2) = 1,

g(N1N2) = 1 +
µ(N1)µ(N2)

12
−

v2(N1)v2(N2)

4
−

v3(N1)v3(N2)

3
−

v∞(N1)v∞(N2)

2
.

Proof. It is immediately from Theorems 1–3 and the formula for the genus of X0(N)

g(N) = 1 +
µ(N)

12
−

v2(N)

4
−

v3(N)

3
−

v∞(N)

2
.

E3(N) can be constructed using Algorithm 3.
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Algorithm 3: E3(N)

(1) Construct E3(pl) by general method; (2) Let N = N1N2 for (N1, N2) = 1. Given
E3(N1) and E3(N2). E3(N) is constructed as follows. For all (1, d1) ∈ E3(N1),
(1, d2) ∈ E3(N2), Determinate d such that

d ≡ d1(mod N1), d ≡ d2(mod N2 ) and 1 6 d 6 N.

Then, (1, d) ∈ E3(N) and all elements in E3(N) are constructed if all pairs in
E3(N1)× E3(N2) are processed.

5. Concluding Remarks

In [7], Stein mentioned that another approach to list P1(Z/NZ) is to use that

P1(Z/NZ) ∼= ∏
p|N

P1(Z/pvpZ),

where vp = ordp(N), and that it is relatively easy to enumerate the elements of P1(Z/pnZ)
for a prime power pn. However, this approach had never been implemented by anyone as
far as I know. Thus, Algorithm 1 in this paper could be regarded as an explicit implementa-
tion of Stein’s ideas. All the algorithms described in this paper have been implemented in
Wolfram Language, for these Wolfram programs, see [8]. We plan to rewrite these programs
in the free open-source computer algebra system SAGE and incorporate them into Stein’s
program [9] or Walker’s program [10].
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