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Abstract: We prove Lp estimates of a class of generalized Marcinkiewicz integral operators with
mixed homogeneity on product domains. By using these estimates along with an extrapolation
argument, we obtain the boundedness of our operators under very weak conditions on the kernel
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1. Introduction

Throughout this article, let s ≥ 2 (s = κ or η) and Ss−1 be the unit sphere in the
Euclidean space Rs which is equipped with the normalized Lebesgue surface measure
dσs(·) ≡ dσ.

For fixed βs,k ≥ 1 (k ∈ {1, 2, · · · , s}), we define the mapping Θ : R+ ×Rs → R by

Θ(τs, v) =
s
∑

k=1
v2

k τ
−2βs,k
s with v = (v1, v2, . . . , vs) ∈ Rs. For a fixed v ∈ Rs, the unique

solution to the equation Θ(τs, v) = 1 is denoted by τs ≡ τs(v). The metric space (Rs, τs) is
known by the mixed homogeneity space associated to {βs,k}s

k=1. Let Dτs be the diagonal
s× s matrix

Dτs =


τ

βs,1
s 0

. . .

0 τ
βs,s
s

.

The following transformation presents the change of variables concerning the space
(Rs, τs):

v1 = τ
βs,1
s cos x1 · · · cos xs−2 cos xs−1,

v2 = τ
βs,2
s cos x1 · · · cos xs−2 sin xs−1,

...

vs−1 = τ
βs,s−1
s cos x1 sin x2,

vs = τ
βs,s
s sin x1.

Hence, dv = τ
βs−1
s Js(v′)dτsdσ(v′), where

βs =
s

∑
k=1

βs,k, Js(v′) =
s

∑
k=1

βs,k(v′k)
2, v′ = D

τ−1
s

v ∈ Ss−1,
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and τ
βs−1
s Js(v′) is the Jacobian of the transformation.

Fabes and Riviére showed in [1] that Js ∈ C∞(Ss−1) and that there is a constant
A ≥ 1 satisfying

1 ≤ Js(v′) ≤ A.

For ρ1 = a1 + ia2, ρ2 = b1 + ib2 (a1, a2, b1, b2 ∈ R with a1, b1 > 0), we assume that

Kf,h(υ, ω) =
f(υ, ω)h(τκ(υ), τη(ω))

(τκ(υ))βκ−ρ1(τη(ω))βη−ρ2
,

where h is a measurable function defined on R+ ×R+ and f is a measurable function de-
fined onRκ×Rη which is integrable over Sκ−1×Sη−1 and satisfies the following properties:

f(Dτκ υ, Dτη ω) = f(υ, ω), ∀τκ , τη > 0 (1)

and ∫
Sκ−1

f(υ, .)Jκ(υ)dσ(υ) =
∫
Sη−1

f(., ω)Jη(ω)dσ(ω) = 0. (2)

For g ∈ S(Rκ ×Rη), we define the generalized parabolic Marcinkiewicz integral G(µ)f,h
on product domains by

G(µ)f,h(g)(x, y) =
(∫∫

R+×R+

|Ts,r(g)(x, y)|µ dsdr
sr

)1/µ

,

where

Ts,r(g)(x, y) =
1

sρ1 rρ2

∫
τκ(υ)≤s

∫
τη(ω)≤r

g(x− υ, y−ω)Kf,h(υ, ω)dυdω

and 1 < µ < ∞.

We notice that if βκ,1 = βκ,2 = · · · = βκ,κ = 1 and βη,1 = βη,2 = · · · = βη,η = 1, then
we have βκ = κ, τκ(v) = |v|, βη = η, τη(ω) = |ω|, and (Rκ ×Rη , τκ , τη) = (Rκ ×Rη , | ·
|, | · |). In this case, we denote the operator G(µ)f,h byM(µ)

f,h. In addition, when µ = 2, h ≡ 1

and ρ1 = 1 = ρ2, we denoteM(µ)
f,h byMf which is the classical Marcinkiewicz integral on

product domains. The investigation of the boundedness ofMf began in [2] in which the
author proved the L2 boundedness ofMf under the condition f ∈ L(log L)2(Sκ−1×Sη−1).
Subsequently, the investigation of the Lp boundedness ofMf was considered by many
authors (see for instance [3–9]).

On the other hand, the investigation of the Lp boundedness of the operator G(µ)f,h

was considered by many authors. For example, Al-Salman introduced G(µ)f,h in [10] in

which he proved that G(2)f,1 is bounded on Lp(Rκ × Rη) for all p ∈ (1, ∞) provided
that f ∈ L(log L)(Sκ−1 × Sη−1). Later on, the authors of [11] improved the results pre-
sented in [10]. In fact, they proved the Lp boundedness of G(2)f,h for all |1/2− 1/p| <
min{1/2, 1/`′} whenever f in B(0,0)

q (Sκ−1 × Sη−1) with q > 1 or f in L(log L)(Sκ−1 ×
Sη−1) , and h ∈ ∆`(R+ ×R+) with ` > 1. Here, ∆`(R+ ×R+) (for ` > 1) refers to the set
of all measurable functions h such that

‖h‖∆`(R+×R+)
= sup

k,j∈Z

(∫ 2j+1

2j

∫ 2k+1

2k

∣∣h(τκ , τη)
∣∣` dτκdτη

τκτη

)1/`

< ∞.
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Let us now recall the definition of Triebel–Lizorkin spaces on product domains. Let
1 < µ, p < ∞ and −→c = (c1, c2) ∈ R × R. The homogeneous Triebel–Lizorkin space
.
F
−→c ,µ
p (Rκ ×Rη) is defined to be the set of all tempered distributions g on Rκ ×Rη satisfying

‖g‖ .
F
−→c ,µ
p (Rκ×Rη)

=

∥∥∥∥∥∥
(

∑
j,k∈Z

2kc1µ2jc2µ
∣∣(ψk,κ ⊗ ψj,η) ∗ g

∣∣µ)1/µ
∥∥∥∥∥∥

Lp(Rκ×Rη)

< ∞,

where for s ∈ {κ, η} and x ∈ Rs, ψ̂j,s(x) = 2−jsDs(2−jx) and Ds ∈ C∞
0 (Rs) is radial function

satisfies the following:

(1) Ds ∈ [0, 1],

(2) supp (Ds) ⊂
{

x ∈ Rs : |x| ∈ [ 1
2 , 2]

}
,

(3) Ds(x) ≥ A > 0 if |x| ∈ [ 3
5 , 5

3 ] for some constant A,
(4) ∑

j∈Z
Ds(2−jx) = 1 with x 6= 0.

The authors of [12] proved that the space
.
F
−→c ,µ
p (Rκ ×Rη) satisfies the following prop-

erties:

(i) For p ∈ (1, ∞), we have
.
F

0,
−→
2

p (Rκ ×Rη) = Lp(Rκ ×Rη),

(ii) If µ1 ≤ µ2, then
.
F
−→c ,µ1
p (Rκ ×Rη) ⊆

.
F
−→c ,µ2
p (Rκ ×Rη),

(iii)
.
F
−−→c ,µ′

p′ (Rκ ×Rη) =

(
.
F
−→c ,µ
p (Rκ ×Rη)

)∗
, where p′ is the exponent conjugate to p,

(iv) The Schwartz space S(Rκ ×Rη) is dense in
.
F
−→c ,µ
p (Rκ ×Rη).

Recently, the authors of [13] employed the extrapolation argument of Yano [14]
to prove that whenever Ω lies in the space L(log L)2/µ(Sκ−1 × Sη−1) or in the space

B
(0, 2

µ−1)
q (Sκ−1 × Sη−1), then for all p ∈ (1, ∞),∥∥∥M(µ)

f,1(g)
∥∥∥

Lp(Rκ×Rη)
≤ Ap‖g‖ .

F
−→
0 ,µ
p (Rκ×Rη)

, (3)

where B(0,α)
q (Sκ−1 × Sη−1) (α > −1, q > 1) refers to a special class of block spaces intro-

duced in [15]. Very recently, the result in [13] was improved in [16] in which the authors

proved that if f ∈ L(log L)2/µ(Sκ−1 × Sη−1) ∪ B
(0, 2

µ−1)
q (Sκ−1 × Sη−1) with q > 1 and

h ∈ ∆`(R+ ×R+), thenM(µ)
f,h is bounded on Lp(Rκ ×Rη) for p ∈ (`′, ∞) with µ ≥ `′ and

for p ∈ (1, µ) with µ ≤ `′ if 2 < ` < ∞; and also for `′ < p < ∞ with µ ≥ `′ and for
p ∈ ( µ`′

µ+`′−1 , µ′`
µ′−` ) with µ ≤ `′ if 1 < ` ≤ 2.

In the view of the results in [11] regarding the boundedness of the parabolic Marcinkiewicz
operator G(2)f,h and the results in [16] regarding the boundedness of the generalized parametric

Marcinkiewicz operator M(µ)
f,h, we have the following natural question: Is the integral

operator G(µ)f,h bounded under the same conditions on h and f as that was assumed in [16]?
In this article, we shall answer the above question in the affirmative. In fact, we prove

the following:

Theorem 1. Let f ∈ Lq(Sκ−1 × Sη−1) for some q ∈ (1, 2] and h ∈ ∆`(R+ × R+) for some
` ∈ (1, 2] . There then exists a real number Ap > 0 such that∥∥∥G(µ)f,h(g)

∥∥∥
Lp(Rκ×Rη)

≤ Ap,f,h((q− 1)(`− 1))−2/µ‖g‖ .
F
−→
0 ,µ
p (Rκ×Rη)
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for p ∈ ( µ`′

µ+`′−1 , µ′`
µ′−` ) if µ ≤ `′, and for `′ < p < ∞ if µ ≥ `′; where Ap,f,h = Ap‖f‖Lq(Sκ−1×Sη−1)

‖h‖∆`(R+×R+)
and Ap is independent of f, h, q, `

Theorem 2. Let f ∈ Lq(Sκ−1 × Sη−1) with q ∈ (1, 2] and h ∈ ∆`(R+ × R+) for some
` ∈ (2, ∞). Then

∥∥∥G(µ)f,h(g)
∥∥∥

Lp(Rκ×Rη)
≤ Ap,f,h

(
`

q− 1

)2/µ

‖g‖ .
F
−→
0 ,µ
p (Rκ×Rη)

for all p ∈ (`′, ∞) if µ ≥ `′ and for all p ∈ (1, µ) if µ ≤ `′.

Now by using the estimates in Theorems 1 and 2 and following the same method as
employed in [17] along with the extrapolation argument as in [14,18,19], we obtain the
following results.

Theorem 3. Assume that h is given as in Theorem 1.

(i) If f ∈ B
(0, 2

µ−1)
q (Sκ−1 × Sη−1) with q > 1, then the inequality∥∥∥G(µ)f,h(g)

∥∥∥
Lp(Rκ×Rη)

≤ Ap

(
‖f‖

B
(0, 2

µ−1)
q (Sκ−1×Sη−1)

+ 1

)
‖h‖∆`(R+×R+)

‖g‖ .
F
−→
0 ,µ
p (Rκ×Rη)

holds for `′ < p < ∞ if µ ≥ `′, and for p ∈ ( µ`′

µ+`′−1 , µ′`
µ′−` ) if µ ≤ `′.

(ii) If f ∈ L(log L)2/µ(Sκ−1 × Sη−1), then the inequality∥∥∥G(µ)f,h(g)
∥∥∥

Lp(Rκ×Rη)
≤ Ap

(
‖f‖L(logL)2/µ(Sκ−1×Sη−1) + 1

)
‖h‖∆`(R+×R+)

‖g‖ .
F
−→
0 ,µ
p (Rκ×Rη)

holds for `′ < p < ∞ if µ ≥ `′, and for p ∈ ( µ`′

µ+`′−1 , µ′`
µ′−` ) if µ ≤ `′.

Theorem 4. Suppose that f ∈ L(log L)2/µ(Sκ−1× Sη−1)∪ B
(0, 2

µ−1)
q (Sκ−1× Sη−1) with q > 1

and h ∈ ∆`(R+ × R+) with 2 < ` < ∞. The integral operator G(µ)f,h is then bounded on
Lp(Rκ ×Rη) for p ∈ (`′, ∞) if µ ≥ `′, and for p ∈ (1, µ) if µ ≤ `′.

Remark 1.

(i) For any 0 < γ ≤ 1, m > 0 and q > 1, the following inclusions hold and are proper:

C1(Sκ−1 × Sη−1) ⊂ Lipγ(Sκ−1 × Sη−1) ⊂ Lq(Sκ−1 × Sη−1) ⊂ L(log L)m(Sκ−1 × Sη−1),

⋃
r>1

Lr(Sκ−1 × Sη−1) ⊂ B(0,τ)
q (Sκ−1 × Sη−1) ⊂ L1(Sκ−1 × Sη−1) f or any τ > −1,

L(log L)m1(Sκ−1 × Sη−1) ⊂ L(log L)m2(Sκ−1 × Sη−1) f or 0 < m2 < m1,

B(0,τ1)
q (Sκ−1 × Sη−1) ⊂ B(0,τ2)

q (Sκ−1 × Sη−1) f or − 1 < τ2 < τ1.

(ii) For the special cases h ≡ 1 and µ = 2, the authors of [7] showed that M(2)
f,1 is bounded

on Lp(Rκ × Rη) for all p ∈ (1, ∞) under the condition Ω ∈ L(log L)(Sκ−1 × Sη−1).
In addition, they found that this condition is the weakest possible condition so that the
boundedness ofM(2)

f,1 holds. On the other hand, the Lp (1 < p < ∞) boundedness ofM(2)
f,1

was proved in [8] if Ω ∈ B(0,0)
q (Sκ−1 × Sη−1) with q > 1. Furthermore, the optimality of

the condition Ω ∈ B(0,0)
q (Sκ−1 × Sη−1) is established. Therefore, our conditions on f in both
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Theorems 3 and 4 are known to be the best possible in their respective classes in the cases
µ = 2 and h ≡ 1.

(iii) In Theorem 4, when we consider the special case h ≡ 1, we get that G(µ)f,1 is bounded on

Lp(Rκ × Rη) for all p ∈ (1, ∞) if f ∈ L(log L)2/µ(Sκ−1 × Sη−1) ∪ B
(0, 2

µ−1)
q (Sκ−1 ×

Sη−1). Hence, The results in Theorem 4 are improvement as well as generalization to the
results in [10,13].

(iv) When µ = `′ with 2 < ` < ∞, Theorem 4 gives the boundedness of G(µ)f,h for all p ∈ (1, ∞),
which obviously gives the full range of p.

(v) For the case µ = 2 and ` ∈ (1, 2], the range of p in Theorem 3 is better than the range

obtained in Theorem 1.2 in [11] in which the authors proved the Lp boundedness of G(2)f,h only

for p ∈ ( 2`′
`′−2 , 2`

2−` ). Therefore, our results improve the main results in [11].
(vi) For the special case s ∈ {κ, η} with βs,1 = βs,2 = · · · = βs,s = 1, µ = 2 and h ≡ 1,

we extend the results in [4] in which the authors proved the Lp boundedness of G(µ)f,h for
p ∈ (1, ∞) under stronger condition Lq(Sκ−1 × Sη−1).

(vii) For the special case s ∈ {κ, η} with βs,1 = βs,2 = · · · = βs,s = 1, our results are the same as
that obtained in [16]. Thus, the results in [16] are special cases of our results.

Throughout the rest of the paper, the letter A represents a positive constant which
is independent of the essential variables and its value is not necessarily the same at
each occurrence.

2. Auxiliary Lemmas

In this section, we need to introduce some notations and establish some lemmas. For
γ ≥ 2, consider the family of measures {σKf,h ,s,r := σs,r : s, r ∈ R+} and its concerning
maximal operators σ∗h and Mh,γ on Rκ ×Rη given by∫∫

Rκ×Rη
g dσs,r =

1
sρ1 rρ2

∫
1/2s≤τκ(υ)≤s

∫
1/2r≤τη(ω)≤r

Kf,h(υ, ω)g(υ, ω)dυdω,

σ∗h (g)(υ, ω) = sup
s,r∈R+

||σs,r| ∗ g(υ, ω)|,

and

Mh,γ(g)(υ, ω) = sup
j,k∈Z

∫ γj+1

γj

∫ γk+1

γk
||σs,r| ∗ g(υ, ω)|dsdr

sr
,

where |σs,r| is defined in the same way as σs,r except that hf is replaced by |hf| .
We shall need the following two lemmas from [11].

Lemma 1. Let f ∈ Lq(Sκ−1 × Sη−1) and h ∈ ∆`(R+ ×R+) for some q, ` > 1. There then
exists Ah,f > 0 such that

‖σs,r‖ ≤ Ah,f, (4)

∫ γj+1

γj

∫ γk+1

γk
|σ̂s,r(ζ, ξ)|2 dsdr

sr
≤ A2

h,f ln2(γ)
∣∣∣Dγk ζ

∣∣∣± 2δ
n1 ln(γ)

∣∣∣Dγj ξ
∣∣∣± 2δ

n2 ln(γ) , (5)

where ‖σs,r‖ is the total variation of σs,r, 0 < δ < min{ 1
2 , n1

2q′ ,
n2
2q′ ,

n1
βκ

, n2
βη
} and n1, n2 denote the

distinct numbers of {βκ,k}, {βη,j}, respectively.
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Lemma 2. Let f ∈ L1(Sκ−1 × Sη−1) and h ∈ ∆`(R+ ×R+) for some ` > 1. Then we have that

‖σ∗h (g)‖Lp(Rκ×Rη) ≤ Ãp,h,f‖g‖Lp(Rκ×Rη) (6)

for all p ∈ (`′, ∞), where Ãp,h,f = Ap‖h‖∆`(R+×R+)
‖f‖L1(Sκ−1×Sη−1).

By using Lemma 2, it is easy to show that

‖Mh,γ(g)‖Lp(Rκ×Rη) ≤ Ãp,h,f ln2(γ)‖g‖Lp(Rκ×Rη) (7)

for all p ∈ (`′, ∞).
Now we need to prove the following result:

Lemma 3. Let f ∈ Lq(Sκ−1 × Sη−1), h ∈ ∆`(R+ ×R+) with 1 < `, q ≤ 2 and γ = 2`
′q′ .

Then for all p ∈ ( µ`′

µ+`′−1 , µ′`
µ′−` ) with µ ∈ (1, `′], we have∥∥∥∥∥∥∥∥

 ∑
j,k∈Z

γj+1∫
γj

γk+1∫
γk

∣∣∣σs,r ∗ Fj,k

∣∣∣µ dsdr
sr


1/µ
∥∥∥∥∥∥∥∥

Lp(Rκ×Rη)

≤ Ah,f

(
1

(q− 1)(`− 1)

)2/µ
∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣∣Fj,k

∣∣∣µ)1/µ
∥∥∥∥∥∥

Lp(Rκ×Rη)

,

where {Fj,k(·, ·), j, k ∈ Z} is any class of functions defined on Rκ ×Rη .

Proof. Let us start with the case p ∈ (µ, µ′`
µ′−` ). It is clear that

∣∣∣σs,r ∗ Fj,k(υ, ω)
∣∣∣µ ≤ A‖f‖(µ/µ′)

L1(Sκ−1×Sη−1)
‖h‖(µ/µ′)

∆`(R+×R+)

r∫
r/2

s∫
s/2

∫∫
Sκ−1×Sη−1

|Jκ(υ)|
∣∣Jη(ω)

∣∣
×

∣∣∣Fj,k(υ− Dτκ x, ω− Dτη y)
∣∣∣µ|f(x, y)|dσ(x)dσ(y)

∣∣h(τκ , τη)
∣∣µ− µ`

µ′
dτκdτη

τκτη
. (8)

By duality there exists a non-negative function ϕ ∈ L(p/µ)′(Rκ × Rη) such that
‖ϕ‖

L(p/µ)′ (Rκ×Rη)
≤ 1 and

∥∥∥∥∥∥
(

∑
j,k∈Z

∫ γj+1

γj

∫ γk+1

γk

∣∣∣σs,r ∗ Fj,k

∣∣∣µ dsdr
sr

)1/µ
∥∥∥∥∥∥

µ

Lp(Rκ×Rη)

=
∫∫

Rκ×Rη
∑

j,k∈Z

∫ γj+1

γj

∫ γk+1

γk

∣∣∣σs,r ∗ Fj,k(υ, ω)
∣∣∣µ dsdr

sr
ϕ(υ, ω)dυdω. (9)

Thus, by the last two inequalities and Hölder’s inequality, we obtain that∥∥∥∥∥∥
(

∑
j,k∈Z

∫ γj+1

γj

∫ γk+1

γk

∣∣∣σs,r ∗ Fj,k

∣∣∣µ dsdr
sr

)1/µ
∥∥∥∥∥∥

µ

Lp(Rκ×Rη)

≤ A‖f‖(µ/µ′)
L1(Sκ−1×Sη−1)

‖h‖(µ/µ′)
∆1(R+×R+)

×
∫∫

Rκ×Rη

(
∑

j,k∈Z

∣∣∣Fj,k(υ, ω)
∣∣∣µ)M

|h|
µ− µ`

µ′ ,γ
(ϕ)(−υ,−ω)dυdω

≤ A‖h‖(µ/µ′)
∆1(R+×R+)

‖f‖(µ/µ′)
L1(Sκ−1×Sη−1)

∥∥∥∥∥ ∑
j,k∈Z

∣∣∣Fj,k

∣∣∣µ∥∥∥∥∥
L(p/µ)(Rκ×Rη)

∥∥∥∥∥M
|h|

µ(µ′−`)
µ′ ,γ

(ϕ)

∥∥∥∥∥
L(p/µ)′ (Rn×Rm)

,
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where ϕ(υ, ω) = ϕ(−υ,−ω). As |h|
µ(µ′−`)

µ′ belongs to the space ∆ µ′`
µ(µ′−`) (R+×R+)

, then by

employing (7), we obtain that

∥∥∥∥∥∥
(

∑
j,k∈Z

∫ γj+1

γj

∫ γk+1

γk

∣∣∣σs,r ∗ Fj,k

∣∣∣µ dsdr
sr

)1/µ
∥∥∥∥∥∥

Lp(Rκ×Rη)

≤ Af,h ln2/µ(γ)

∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣∣Fj,k

∣∣∣µ)1/µ
∥∥∥∥∥∥

Lp(Rκ×Rη)

(10)

for all p ∈ (µ, µ′`
µ′−` ).

Let us consider the case p = µ, by Hölder’s inequality and (8), we get∥∥∥∥∥∥
(

∑
j,k∈Z

∫ γj+1

γj

∫ γk+1

γk

∣∣∣σs,r ∗ Fj,k

∣∣∣µ dsdr
sr

)1/µ
∥∥∥∥∥∥

µ

Lp(Rκ×Rη)

≤ A‖f‖(µ/µ′)
L1(Sκ−1×Sη−1)

‖h‖(µ/µ′)
∆1(R+×R+)

× ∑
j,k∈Z

∫
Rκ×Rη

∫ γj+1

γj

∫ γk+1

γk

∫ r

r/2

∫ s

s/2

∫
Sκ−1×Sη−1

∣∣∣Fj,k(υ− Dτκ x, ω− Dτη y)
∣∣∣µ

× |f(x, y)|
∣∣h(τκ , τη)

∣∣ µ(µ′−`)
µ′ dσ(x)dσ(y)

dτκdτη

τκτη

dsdr
sr

dυdω

≤ A
(

1
(q− 1)(`− 1)

)2

‖f‖(µ/µ′)+1
L1(Sκ−1×Sη−1)

‖h‖(µ/µ′)+1
∆1(R+×R+)

∫
Rκ×Rη

(
∑

j,k∈Z

∣∣∣Fj,k(υ, ω)
∣∣∣µ)dυdω. (11)

Finally we prove the lemma for the case p ∈ ( µ`′

µ+`′−1 , µ). Let L be the linear operator
defined on any function F = Fj,k(x, y) by L(F ) = σγks,γjr ∗ Fj,k(x, y). It is easy to see that

∥∥∥∥∥∥∥‖L(F )‖L1([1,γ)×[1,γ)), dsdr
sr

∥∥∥
l1(Z×Z)

∥∥∥∥
L1(Rκ×Rη)

≤ A ln2(γ)

∥∥∥∥∥
(

∑
j,k∈Z

∣∣∣Fj,k

∣∣∣)∥∥∥∥∥
L1(Rκ×Rη)

. (12)

Furthermore, by the inequality (6) we get∥∥∥∥∥ sup
j,k∈Z

sup
(s,r)∈[1,γ]×[1,γ]

∣∣∣σγks,γjr ∗ Fj,k

∣∣∣∥∥∥∥∥
Lp(Rκ×Rη)

≤
∥∥∥∥∥σ∗h

(
sup
j,k∈Z

∣∣∣Fj,k

∣∣∣)∥∥∥∥∥
Lp(Rκ×Rη)

≤ Ah,f

∥∥∥∥∥ sup
j,k∈Z

∣∣∣Fj,k

∣∣∣∥∥∥∥∥
Lp(Rκ×Rη)

for all p ∈ (`′, ∞), which in turn implies that∥∥∥∥∥∥∥‖σγks,γjr ∗ Fj,k‖L∞([1,γ]×[1,γ], dsdr
sr )

∥∥∥
l∞(Z×Z)

∥∥∥∥
Lp(Rn×Rm)

≤ Ah,f

∥∥∥∥∥∥∥Fj,k

∥∥∥
l∞(Z×Z)

∥∥∥∥
Lp(Rκ×Rη)

. (13)

Consequently, the proof of the lemma is finished in the case p ∈ ( µ`′

µ+`′−1 , µ) if we interpolate
(12) with (13).

Lemma 4. Letf and {Fj,k(·, ·), j, k ∈ Z} be given as in Lemma 3. Suppose that h ∈ ∆`(R+ ×R+)
for some ` ∈ (1, ∞). Then there exists a positive constant Ah,f such that∥∥∥∥∥∥∥∥

 ∑
j,k∈Z

γj+1∫
γj

γk+1∫
γk

∣∣∣σs,r ∗ Fj,k

∣∣∣µ dsdr
sr


1/µ
∥∥∥∥∥∥∥∥

Lp(Rκ×Rη)

≤ Ah,f

(
`

q− 1

)2/µ
∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣∣Fj,k

∣∣∣µ)1/µ
∥∥∥∥∥∥

Lp(Rκ×Rη)

(14)
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for all p ∈ (1, µ) if µ ≤ `′ and γ ≥ 2; and∥∥∥∥∥∥∥∥
 ∑

j,k∈Z

γj+1∫
γj

γk+1∫
γk

∣∣∣σs,r ∗ Fj,k

∣∣∣µ dsdr
sr


1/µ
∥∥∥∥∥∥∥∥

Lp(Rκ×Rη)

≤ Ah,f

(
`

(q− 1)(`− 1)

)2/µ
∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣∣Fj,k

∣∣∣µ)1/µ
∥∥∥∥∥∥

Lp(Rκ×Rη)

(15)

for all p ∈ (`′, ∞) if µ ≥ `′.

A proof of this Lemma can be constructed by following a similar argument as that
employed in the proof of Lemma 3 and following similar argument as that used in the
proofs of Theorems 4–5 in [16] (with minor modifications). We omit the details.

3. Proof of the Main Results

Proof of Theorem 1. Suppose that f ∈ Lq(Sκ−1 × Sη−1) and h ∈ ∆`(R+ ×R+) for
some q, ` ∈ (1, 2], and that µ > 1. By Minkowski’s inequality we get

G(µ)f,h(g)(x, y) =

(∫∫
R+×R+

∣∣∣∣∣ ∞

∑
j,k=0

1
sρ1 rρ2

∫
2−j−1s<ρτ(υ)≤2−js

∫
2−k−1r<ρκ(ω)≤2−kr

Kf,h(υ, ω)

× g(x− υ, y−ω)dυdω|µ dsdr
sr

)1/µ

≤
∞

∑
j,k=0

(∫∫
R+×R+

∣∣∣∣ 1
sρ1 rρ2

∫
2−j−1s<ρτ(υ)≤2−js

∫
2−k−1r<ρκ(ω)≤2−kr

Kf,h(υ, ω)

× g(x− υ, y−ω)dυdω|µ dsdr
sr

)1/µ

≤ 2a1+b1

(2a1 − 1)(2b1 − 1)

(∫∫
R+×R+

|σs,r ∗ g(x, y)|µ dsdr
sr

)1/µ

. (16)

Let γ = 2`
′q′ . For k ∈ Z, choose a collection of smooth functions {ψk} defined on R+

satisfying the following properties:

ψk ⊂ [0, 1], ∑
k∈Z

ψk(s) = 1,

supp (ψk) ⊆ [γ−1−k, γ1−k], and
∣∣∣∣dtψk(s)

dst

∣∣∣∣ ≤ Ct

st ,

where Ct does not depend on γ. For (ζ, ξ) ∈ Rκ × Rη , define the operators (Ψ̂k(ζ)) =
ψk(τκ(ζ)) and (Ψ̂j(ξ)) = ψj(τη(ξ)). Hence, for any g ∈ S(Rκ ×Rη),(∫∫

R+×R+

|σs,r ∗ g(x, y)|µ dsdr
sr

)1/µ

≤ A ∑
n,m∈Z

Hn,m(g)(x, y), (17)

where

Hn,m(g)(x, y) =
(∫∫

R+×R+

|Vn,m(g)(x, y, s, r)|µ dsdr
sr

)1/µ

and

Vn,m(g)(x, y, s, r) = ∑
j,k∈Z

σs,r ∗
(
Ψk+m ⊗Ψj+n

)
∗ g(x, y)χ

[γk ,γk+1)×[γj ,γj+1)
(s, r).

Thus, to finish the proof of Theorem 1, it is enough to show that there exists a positive
constant ε such that
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‖Hn,m(g)‖Lp(Rκ×Rη) ≤ Ap,h,f

(
1

(q− 1)(`− 1)

)2/µ

2−
ε
2 (|n|+|m|)‖ f ‖ .

F
−→
0 ,µ
p (Rκ×Rη)

(18)

for all `′ < p < ∞ with `′ ≤ µ and for all p ∈ ( µ`′

µ+`′−1 , µ′`
µ′−` ) with `′ ≥ µ.

First, we estimate the norm of Hn,m(g) for the case p = µ = 2. By using Fubini’s
theorem along with Plancherel’s theorem and the inequality (5) we get

‖Hn,m(g)‖2
L2(Rκ×Rη)

≤ ∑
j,k∈Z

∫∫
Bn+j,m+k

(∫ γj+1

γj

∫ γk+1

γk
|σ̂s,r(ζ, ξ)|2 dsdr

sr

)
|ĝ(ζ, ξ)|2dζdξ

≤ Ap

(
1

(q− 1)(`− 1)

)2
A2

h,f ∑
j,k∈Z

∫∫
Bn+j,m+k

∣∣∣Dγk ζ
∣∣∣± 2δ

n1 ln(γ)
∣∣∣Dγj ξ

∣∣∣± 2δ
n2 ln(γ) |ĝ(ζ, ξ)|2dζdξ

≤ Ap

(
1

(q− 1)(`− 1)

)2
2−ε(|n|+|m|) A2

h,f ∑
j,k∈Z

∫∫
Bn+j,m+k

|ĝ(ζ, ξ)|2dζdξ

≤ Ap

(
1

(q− 1)(`− 1)

)2
2−ε(|n|+|m|) A2

h,f‖g‖
2
L2(Rκ×Rη), (19)

where Bj,k =
{
(ζ, ξ) ∈ Rκ ×Rη : (|ζ|, |ξ|) ∈ [γ−1−k, γ1−k]× [γ−1−j, γ1−j]

}
and ε ∈ (0, 1).

Now, let us estimate the Lp-norm ofHn,m(g). By Littlewood–Paley theory, Lemma 3,
inequality (15), and invoking Lemma 2.3 in [13], we get

‖Hm,n(g)‖Lp(Rκ×Rη)

≤ A

∥∥∥∥∥∥
(

∑
j,k∈Z

∫ γj+1

γj

∫ γk+1

γk

∣∣σs,r ∗
(
Ψm+k ⊗Ψn+j

)
∗ g
∣∣µ dsdr

sr

)1/µ
∥∥∥∥∥∥

Lp(Rκ×Rη)

≤ Ah,f
1

[(q− 1)(`− 1)]2/µ

∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣(Ψm+k ⊗Ψn+j
)
∗ g
∣∣µ)1/µ

∥∥∥∥∥∥
Lp(Rκ×Rη)

≤ Ap
1

[(q− 1)(`− 1)]2/µ
Ah,f‖g‖ .

F
−→
0 ,µ
p (Rκ×Rη)

(20)

for `′ < p < ∞ with µ ≥ `′, and also for p ∈ ( µ`′

µ+`′−1 , µ′`
µ′−` ) with µ ≤ `′. Therefore, by

interpolating (19) with (20), we obtain (18). The proof of Theorem 1 is complete.
Proof of Theorem 2. A proof can be constructed by following a similar approach as

that used in the proof of Theorem 1 except that we employ Lemma 4 instead of Lemma 3.
We omit the details.
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