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Abstract: Dynamic loading causes (1) a substantial change in the strength and deformation param-
eters of sandy soil and (2) excessive viscoplastic deformation. The goal of this study is to create
a new analytical solution to the problem of the settlement of (1) the foundation that is the source
of dynamic loading, and (2) a nearby foundation, taking into account the rheological properties of
sandy soil subjected to vibration, given that these rheological properties depend on shear stresses.
The proposed solution allows the progress of deformation over time to be described. The present
paper states and provides an analytical solution for the problem of evaluating the settlement of a
single foundation that transmits static and dynamic harmonic pressure to the base. The authors
also analyze the settlement of another foundation located at some distance from the transmitting
foundation. The second foundation transmits static pressure to the base. The dependence of the
viscosity coefficient on the shear stress intensity and vibration intensity, as well as the vibrocreep
decay over time, are based on the exponential and homographic dependencies previously identified
by two of the authors (A.Z. Ter-Martirosyan and E.S. Sobolev). The solution to the problem is ob-
tained by numerical integration in the Mathcad program of an analytical expression for nonlinear
viscoplastic deformations. As a result of the research, the authors have found that the dynamic
viscoplastic component makes the greatest contribution to foundation settlement. The settlement of
the transmitting foundation increases along with increasing static and dynamic pressure transmitted
to the base. The settlement of the nearby foundation increases when the pressure increases under
the foundation, but it reduces when static pressure from the transmitting foundation, the depth of
the foundation, and the distance between the foundations increase. General analytical dependencies
obtained by the authors comply with the results of laboratory and field experiments performed by
other researchers. These dependencies can be used to predict the settlement of foundations in whose
unsaturated sandy bases mechanical vibrations propagate.

Keywords: excessive foundation settlement; foundation vibrations; dynamic cyclic loading;
vibrocreep of sandy soil; viscosity of sandy soil; numerical integration in Mathcad; mathematical
analysis of nonlinear soil deformation

MSC: 74L10

1. Introduction

The safety of industrial and civil buildings and structures must be evaluated through-
out their lifecycles if these buildings and structures are subjected to dynamic effects from
various sources [1,2]. Such sources encompass various fixed and mobile machines and
mechanisms, traveling road and rail vehicles, earthquakes, etc. In practice, dynamic loading
may have a wide range of adverse effects on the performance of bases and foundations,
ranging from slow long-term accumulation of settlements to higher-than-normal continu-
ous settlements, causing critical damage to foundations and superstructures.
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For example, according to R.A. Ershov and A.A. Romanov, the average annual settle-
ment of buildings located within 30 m from the axis of highways is 0.3–2.2 mm/year [3].
Any excessive settlements, caused by the cyclic loading of the sand base, can also worsen
the operating parameters of the equipment installed inside due to warping and eccentrici-
ties [4]. Cases of excessive settlement, reaching 28 cm, were registered in the plant building
area where a swaging machine was in operation. As for another plant building, the settle-
ments of column foundations reached 40 cm in the area where a drop forging hammer was
in operation [3]. According to the observations of D.D. Barkan [5,6], a drop forging hammer
weighing 4.5 tons that was in operation in a production shop caused excessive settlement of
an adjacent brick building located within the plant territory. Eventually, its settlement led
to its failure. In his work, V.M. Pyatetsky [7] provides an extensive list of 25 facilities where
critical structural damage was observed (cracks in bearing walls, excessive deformations
of the framework, deformations of crane tracks, disintegrated column–truss joints, etc.).
Settlements were observed at a distance of up to 20–30 m from the source of dynamic
loading (compressors, sawmills, crushing machines, ore grinders, etc.). According to other
researchers, the maximum value of settlement reaches 88 cm [3,8–10].

Changes in the deformation and strength properties of sandy soils subjected to dy-
namic loads are important factors in predicting the stress–strain state of the bases of
building structures [1,2,11]. Engineering practice is aware of a large number of structural
failures caused by the vibrocreep of sandy soils. These failures were manifested as the
substantial settlement of bases (including those described above), damaged building struc-
tures, and the collapse of entire buildings, which most clearly demonstrate the relevance
of this issue. A study on the phenomenon of vibrocreep of sandy soils was initiated in
the first half of the 20th century and it gained increasing interest in 1960–1980 due to
the widespread implementation of industrial construction projects accompanied by the
installation of powerful sources of dynamic loading [12]. Most of the works in this subject
area focus on the study of the deformation and stability of saturated sandy bases since
pore pressure increases under dynamic loading and vibration-induced liquefaction of the
foundation occurs, which can lead to the rapid destruction of structures. However, many
authors study the deformation of unsaturated sandy soils.

An important contribution to the study of vibrocreep processes was made by the
outstanding scientist D.D. Barkan [1,2], who conducted initial experiments focused on
the identification of the viscosity coefficient. In the course of his experiments, a ball was
immersed in sandy soil under vibration. D.D. Barkan conducted a simple laboratory
experiment to demonstrate that sandy soil develops rheological properties if subjected
to vibration, and the viscosity coefficient of sandy soil depends on vibration accelera-
tion. Of particular interest, is the work of V.A. Ilyichev, V.I. Kerchman, B.I. Rubin, and
V.M. Pyatetsky, in which the authors described a large-scale field experiment consisting
of the field observation of vibrations and settlement of seven experimental foundations
of different sizes and pressure under the foundation. In this experiment, one of the foun-
dations was the source of the vibrations [7,10,13]. The authors discovered the effect of
static and dynamic pressure under the foundation on the manifestation of vibrocreep.
V.S. Bogolyubchik, M.N. Goldstein, and V.Ya. Khain conducted numerous flute and field
tests to simulate foundation displacement under dynamic loading [14–16]. Results ob-
tained by D.F. Gil et al. from flume testing [17] demonstrate a decrease in the stability
of the sandy base under cyclic loading when there is an increase in the frequency and
amplitude of vertical vibrations. Flume tests, involving the cyclic loading of a sandy base
model, were conducted by K. Al-kaream et al. [18] and showed the accumulation of plastic
deformations over time with the final stabilization of the deformation process. The work
of J. Wang et al. [19] reports the results of large-scale laboratory studies on the mutual
effect of two closely located foundations on a sandy base subjected to cyclic loading based
on the depth and distance between them. The authors show that if the two foundations
are subjected to cyclic loading, the greatest bearing capacity is observed if the distance
between the foundations is equal to twice the width of the foundation base. The works
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report the regularity of settlement development over time at different values of soil density,
static loading, and foundation depth. The conclusions drawn by the above researchers are
important practical materials for evaluating the results of the theoretical solution to the
problem described in this work.

Early studies on the behavior of soils under dynamic loading were conducted by
A. Casagrande and W.L. Shannon during the construction of the Panama Canal [20]. The
tremendous loss of life and destruction of civil infrastructure facilities built on saturated
sand bases and the collapses of hydraulic facilities as a result of the earthquakes in the US
and Japan in 1960–1970, coupled with the launched construction of nuclear power plants,
served as the reason for the intensive research of the behavior of sandy soils under dynamic
loading. The publication written by H.B. Seed and K.L. Lee [21] reaches an important
conclusion about the effect of lateral compressive pressure σ3 on the number of loading
cycles that cause soil failure. Studies by K.L. Lee and J. Focht [22] showed that, for practical
purposes, the relationship between dynamic strength and effective pressure σ3 can be
taken as a direct dependence for a small range of stresses. Researchers R.C. Chaney and
H.Y. Fang [23] studied the behavior of dry sandy soils subjected to cyclic loading and
showed that axial deformation accumulates in the course of small-amplitude dynamic
loading, and, following a number of cycles, the hysteresis loop closes and the specimen
stabilizes. According to V.K. Khosla and R.D. Singh [24], if the dynamic stress amplitude
σd increases or the lateral compressive pressure σ3 decreases, the stable state of the soil is
replaced by the slow accumulation of deformations (vibrocreep).

A wide range of modern studies on the vibrocreep of sandy soils was conducted by
two of the current study’s authors (AZT-M and ESS) and Z.G. Ter-Martirosyan. The authors
believe that under compression an increase in plastic deformations decays alongside an
increase in the number of cycles and that in the case of low-frequency cyclic loading (up
to 1–2 Hz), frequency has no significant effect on deformation propagation (the difference
does not exceed 2% for the same number of loading cycles), while the number of loading
cycles and soil density have a strong effect when the number and amplitude of the cyclic
loading are at a maximum [25,26]. Vibrocreep coefficients for compression and shear differ
significantly (up to 10 times). Hence, soils are more sensitive to shear vibration than to com-
pression vibration [25,27]. In cases of cyclic and vibratory loading, additional deformations
increase with increasing static shear stresses and decrease with increasing mean stresses.
Therefore, these deformations depend on the proximity to the limiting state [25,27,28]. In
the case of a vibratory action, vibrocreep-induced deformation increases with increasing
frequency and decays in time [25,27]. Viscosity increases during loading, and by the time
the vertical deformations stabilize, viscosity values approach the values obtained during
the tests conducted at low velocities (nearly static ones). Viscosity plummets at the onset
of loading, which causes vertical deformations to spike. Then, as the testing progresses,
soil density increases, viscosity gradually increases, and vertical deformations stabilize.
At the onset of a dynamic test, the viscosity differs from the “static” viscosity by a factor
of 100. Hence, during dynamic loading, soil behaves as a non-Newtonian fluid [25,27,29].
E.A. Voznesensky conducted a wide range of research on the behavior of sandy bases and
evaluated the development of deformations over time and the effect of the amplitude of
dynamic pressure [12].

Liu X. et al. [30] compare the deformation of sand specimens subjected to static and
cyclic loading and demonstrate the effect of cyclic loading and relative density on cyclic
strength. M. Poblete et al. [31] describe a succession of sand tests whereby sand was
subjected to various values of compressive pressure and vibration amplitudes under cyclic
loading. B. Kafle and F. Wuttke [32] have found that in the case of cyclic loading, dry sand
accumulates deformations more intensively than wet unsaturated sand. Each cycle makes
the accrual of plastic strain smaller, but even with a large number of cycles, the strain does
not reach any final value.

K. Wang et al. [33] studied the effect of lateral compressive pressure on the intensity
of axial and volumetric deformation of sandy soil subjected to cyclic loading. It was
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recorded that at a certain value of lateral compressive pressure the specimen did not
collapse due to significant expansion (dilatancy), as it was recorded at lower values of σ3,
but its compaction occurred due to the increasing axial deformation and destruction of
soil particles, which was also mentioned in the work of one of the current authors (AZT-
M) [25]. This paper also describes the breakdown of deformation mechanisms of sandy
soil subjected to cyclic load into plastic compaction, vibrocreep, and continuous plastic
failure. The authors describe the deformation of sandy soil using an analytical dependence
in which values of vertical σ1 and lateral σ3 stresses are used. Similar results are reported
in the studies of Y. Jianhong et al. [34], where the authors use the case of triaxial tests to
demonstrate three stages of soil deformation before failure: the elastoplastic stage, the
slow creep stage, and the fast creep stage at different values of compressive pressure and
vertical loading. The work by Dong-Ning D. et al. [35] has an analytical description of the
rheological model describing this staged viscoplastic behavior of sandy soils subjected to
vibration. The results of research performed by Y. Liu et al. [36] show a significant increase
in transverse deformation in the case of cyclic loading; this feature is observed up to a
certain value of axial deformation (in the authors’ work it is 6%), and if it is exceeded, cyclic
loading has no effect on transverse deformation even at different values of relative density
and amplitude of cyclic deformation. The article written by D.F. Gil et al. [17] reports the
effect of the frequency of dynamic loading on soil deformation.

Z. Wang and L. Zhang [37] show the effect of cyclic deformation amplitude, lat-
eral compressive loading, the ratio of vertical and lateral static stresses, and vibration
frequency on axial deformation and stiffness of sandy soil subjected to cyclic loading.
A. Kumar et al. [38] present the results of triaxial tests of embankment soil of a railroad
track at different vibration frequencies and show that an increase in frequency reduces soil
stiffness to some extent, but any further increase in frequency does not lead to a substantial
reduction in stiffness. The results of D. Song et al. [39] and W. Ma et al. [40] show how the
shear modulus changes under cyclic loading at different angular deformation and compres-
sive pressure values. It is found that the deformation modulus decreases significantly with
increasing angular deformation during vibration, but this decrease reduces significantly
with increasing compressive pressure. In addition, W. Ma et al. [40] investigated the effect
of the intensity of static and dynamic components of loading on a decrease in its shear
modulus. The authors provide an analytical relationship to take into account a decrease in
the shear modulus using experimental parameters and the value of angular deformation.
P. Xia et al. [41] propose an analytical dependence describing the vibration of soil under
dynamic loading and breakdown into elastic and plastic components. Dependencies identi-
fied by the authors in respect of strain and shear moduli are also applicable to this study
in terms of a reduction in the viscosity coefficient if the soil deformation over time and
damping creep are considered.

The numerous works mentioned above offer a nearly exhaustive description of the
deformation of sandy soil over time under cyclic loading taking into account the effect
of the frequency and amplitude of dynamic impacts, the static loading, and the lateral
pressure. This study, describing the process of deformation of sandy soil under dynamic
loading, employs a rheological model that takes into account dependencies obtained earlier
by the researchers of NRU MGSU of the effect of vibration acceleration, the proximity to
the limit state, and the nature of deformation over time [25–28]. These dependencies are
consistent with the results obtained by other researchers.

Publicly available articles offer numerical solutions to the problem of settling founda-
tions resting on sandy non-saturated bases and subjected to dynamic loading (e.g., works
written by Vivek P. and Ghosh P. [42], Wichtmann T. et al. [43], Wuttke F., Schmidt H.G.,
Zabel V. et al. [44]) or analytical solutions obtained by introducing reduced deformation
characteristics of soils into soil analysis (e.g., Yi F. [45,46] and Pradel D. [47] suggest cal-
culating settlement using angular deformation by taking into account a reduction in the
shear modulus and soil porosity; one of the current authors (ESS) [48] suggests reducing
the deformation modulus of the base by taking into account the vibrocreep coefficient).
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At the same time, there are no analytical solutions obtained using the rheological model
of sandy soil that allow for the accurate identification of dependencies and mathematical
analysis of the effect of each factor separately. To fill this gap, the authors propose a new
analytical solution to the problem of settlement of a single foundation subjected to dynamic
harmonic loading and an adjacent foundation subjected to static loading.

Hence, the researchers identified several dependencies determining the deformation
of sandy non-saturated soil for various parameters of dynamic loading. However, a review
of solutions to problems of foundation settlement shows that authors do not use any
currently available rheological models to describe deformation in their computational
models. Moreover, the heterogeneous stress–strain state is formed in a foundation with
varying proximity of tangential stress intensity to its limit value, which should also be
taken into account in projections of foundation settlements. The purpose of this study
is to propose a new solution to the analytical problem of foundation settlement under
dynamic loading taking into account the vibrocreep of sandy soil with a changing viscosity
coefficient, which depends on the stress level, vibration intensity, and time.

2. Materials and Methods

We consider the propagation of the settlement of a single foundation that has width
b1 = 2·a1, and is located at depth h1 (see Figure 1). The foundation is subjected to static load
N1 and dynamic harmonic load ∆N·sin(ω·t), which trigger pressures p1 and ∆p·sin(ω·t)
below the foundation base, resting on the homogeneous unsaturated sandy base, charac-
terized by gravity γ, internal friction angle ϕ, deformation modulus E, Poisson’s ratio ν
and viscosity coefficient η0 during manifestations of vibrocreep, the rheological param-
eter of strengthening at vibration creep α and coefficient δ, showing the dependence of
viscosity on vibration acceleration using the case of a refractory tube mill (width of founda-
tion b1 = 7.2 m, static pressure below the foundation base p1 = 160 kPa, the amplitude of
dynamic pressure ∆p = 30 kPa, frequency of loading ω = 10 Hz).
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Figure 1. Loading diagram.

The base has a layer of unsaturated fine sand having the following principal design
characteristics: γ = 19.6 kN/m3; ϕ = 30.3◦; E = 30.2 MPa; ν = 0.3; α = 0.015; ∆ = 9.9;
η0 = 2.76·105 Pa·s. Information about the particle size distribution is provided in Figure 2.
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A solution is provided for the case of the quasi-dynamic problem statement (with inertial
terms being neglected in equations of motion) [49]: the sand medium becomes viscous due to
the vibration triggered by the dynamic component of loading [3,6,8,50], and the foundation
sinks into the viscous base due to the static component of vertical loading [51]. The foundation
settlement in time s(t) is composed of an elastic component sst, which the foundation gets from
the static component of loading p1 before the commencement of operation, and a viscoplastic
component sdyn(t), which the foundation gets after the commencement of equipment operation
that has a dynamic effect on the base ∆p·sin(ω·t) (1) [3].

s(t) = sst + sdyn(t) (1)

Elastic settlement sst в is calculated according to the well-known dependence (2) [52].

sst =
n

∑
i=1

0.8·
σzp,i·hi

Ei
(2)

where n is the number of layers within the compressible thickness;
σzp,i is an additional stress in the i-th soil layer according to Formula (5);
hi is the thickness of the i-th soil layer;
Ei is the static deformation modulus of the i-th soil layer.
The viscoplastic component of settlement sdyn(t) is calculated by Formula (3) by in-

tegrating the vertical deformations εz over the depth of the sand layer [53] using the
dependences obtained by authors AZT-M [25,28] and ESS [27] in respect of the propagation
of vibrocreep in time, the effect of increasing shear stresses that approach their limit value,
and the effect of vibratory acceleration on the viscosity coefficient.

sdyn(t) =
∫

ε
dyn
z dz =

∫ H

0

 τi

α·η0·e−∆·a· τ
*
i −τi
τ*

i

·
(
1− e−α·t)

dz (3)

where τi is the intensity of shear stresses according to Formula (4);
τi* is the ultimate tangential stress according to Formula (4);
α is the experimental rheological hardening parameter [25,27];
∆ is an experimental coefficient, showing the dependence of viscosity on vibratory

acceleration of vibrations [25,27];
a is the vibratory acceleration of vibrations;
η0 is the viscosity coefficient before the commencement of vibratory loading;
H is the distance from the foundation to the bottom of the sand layer.

τ*
i = σm·tgϕ

σm =
σx+σy+σz

3

τi =

√
(σx−σy)

2
+(σy−σz)

2
+(σz−σx)

2+6·(τ2
xy+τ2

yz+τ2
zx)√

6

(4)

In the case of the application of a uniformly distributed load, expressions for stresses
are obtained by G.V. Kolosov (5) [52,54] by integrating the solution of the Boussinesque
problem in the case of two dimensions in width 2a for a plane strain problem [53,55].

σx = p
π ·
(
arctg a−x

z + arctg a+x
z
)
− 2ap

π ·
z·(x2−z2−a2)

(x2+z2−a2)
2
+4a2z2

σz =
p
π ·
(
arctg a−x

z + arctg a+x
z
)
+ 2ap

π ·
z·(x2−z2−a2)

(x2+z2−a2)
2
+4a2z2

σy = ν·(σx + σz) =
2νp
π ·
(
arctg a−x

z + arctg a+x
z
)

τxz =
4ap
π ·

x·z2

(x2+z2−a2)
2
+4a2z2

(5)
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By substituting expressions for stress components (5) into expressions (4) at a1 = 3.6 m
and p1 = 160 kPa in Mathcad software, we obtain graphs for mean stresses σm and shear
stress intensity τi, shown in Figures 3 and 4, respectively.

1 
 

 
 
 

 
 
 

 
  

Figure 3. Isofields of mean stresses σm in the sandy base at a1 = 3.6 m and p1 = 160 kPa.

1 
 

 
 
 

 
 
 

 
  

Figure 4. Isofields of the intensity of shear stresses τi in the sandy base at a1 = 3.6 m and p1 = 160 kPa.

The value of the vibration amplitude Az,0 is found using the well-known Formula (6) [3].

Az,0 =
∆N
KZ
· 1√(

1− ω2

λ2
z

)2
+ (Φz·ω)2

(6)

where KZ is the stiffness coefficient of the base;
λz is the frequency of natural vibrations;
Φz is the modulus of decay.
The base stiffness coefficient KZ is calculated by Formula (7) [3,9,10,52]. The expression

for the coefficient Cz in Formula (7) was adopted based on the results of a study by
S.K. Lapin, who conducted field experiments on more than 300 foundations with an area
of 0.5 to 3700 m2 [3]. These results have satisfactory convergence with field experiments
and are accepted in the Soviet standard of building design.

KZ = Cz·F = b·E·
(

1 +
√

F0/F
)
·F (7)
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where b is the coefficient, taken as being equal to 1.0 for sands;
E is the soil modulus of elasticity;
F0 = 10 m2;
F is the area of the foundation bottom.
The frequency of the natural vibrations λz is calculated by Formula (8) [3,7,10].

λz =

√
Kz

M
(8)

The approximate value of the modulus of decay Φz can be taken from reference tabular
data depending on the type of soil [13] or found by Formula (9) [3].

Φz =
2ξz

λz
=

4
√

M√
pm·Kz

(9)

where M is the mass of the oscillating object;
pm is the average pressure under the foundation.
The amplitude of the vertical vibrations of the soil Az(r) at distance r from the center

of the base of the source of vibrations is determined by Formula (10) [7,9,10,52].

Az(r) = Az,0·

 1

∆·
[
1 + (∆− 1)2

] + ∆2 − 1√
3∆(∆2 + 1)

 (10)

where Az,0 is the amplitude of vertical vibrations of the foundation that is the source
of vibrations;

∆ = r/r0 is the parameter that is equal to the ratio of distance r from the center of the
base of the foundation that is the source of vibrations to the reduced radius of that base.

The distribution of vibrations in depth z follows dependence (11) [3,7,52]. It is note-
worthy that the amplitude of harmonic vibrations with constant frequency is directly
proportional to the acceleration of vibrations, as in a second derivative of displacement,
so the following dependence (11) is also true for the distribution of vibration amplitudes
with depth.

w = w0·e−βz (11)

where w is the acceleration of vibrations in depth z;
w0 is the acceleration of the base vibrations at the level of the foundation bottom;
β is the coefficient of decay, whose value is 0.07–0.10 m−1 for sandy soils.
The expression for the vibration amplitudes of the base Az in Mathcad is shown

in Figure 5. Vibration amplitude isofields for the sandy base Az obtained in Mathcad,
are shown in Figure 6 for the case where the dynamic load component ∆p = 40 kPa and
ω = 10 Hz.
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The expression for the viscoplastic component of settlement sdyn in Mathcad is shown
in Figure 7. The expression is obtained by substituting expressions (7–9) in (6), and then (6),
(10), and (11) in (3) [56,57].
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The above problem of settlement of a single foundation helps to solve another problem
of excessive settlement of the foundation of a nearby building. Towards this end, we use the
case of an existing finished product screening shop near which a tube mill will be erected.
Figure 8 shows photographs of the site that will accommodate the tube mill.
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The foundation plan is shown in Figure 9 and the loading diagram is shown in
Figure 10.
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By placing the source of loading close to the existing foundations, we trigger additional
stresses identified using the expressions obtained by G. Kolosov (5) [52,54].

Figures 11 and 12 show the isofields of mean stresses σm and the intensity of shear
stresses τi in the base subjected to the combined action of loads from the constructed
foundation p1 = 160 kPa and the existing foundation p2 = 350 kPa if the half-widths of
foundations are a1 = 3.6 m, a2 = 1.2 m, the distance between foundations c = 4.0 m, and
their depth is h1 = 3.8 m. 
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3. Results

As for a single foundation (Figure 1), if we sum the elastic sst and viscoplastic sdyn(t)
components of the settlement calculated using Formulas (2) and (3), we will have a family
of foundation settlement curves, as shown in Figure 13.
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load component ∆p increase, the foundation settlement increases. Hence, according to the 
results of Kerchman’s field studies [58], an increase in the dynamic component ∆p makes 
a more substantial contribution by triggering viscoplastic shear of the double-sided extru-
sion type. This is evident in the nonlinear dependence s(∆p) presented in Figure 14. The 
increase in settlement that accompanies an increase in dynamic component ∆p is caused 
by a decrease in the viscosity coefficient and an increase in vibratory acceleration of the 
base vibration, while the increase in settlement that accompanies an increase in static com-
ponent p1 is triggered by an increase in the intensity of shear stresses in base τi and their 
approaching ultimate stresses τi*, according to authors AZT-M [25,28] and ESS [27] and 
others [17,26]. This conclusion, stemming from the theoretical solution, complies with the 
results of large-scale field tests conducted by V.A. Ilyichev, V.I. Kerchman, B.I. Rubin, and 
V.M. Pyatetsky [7,13] focused on the influence of static and dynamic loading. 
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Analysis of Figure 13 makes it clear that, as the static load component p1 and dynamic
load component ∆p increase, the foundation settlement increases. Hence, according to
the results of Kerchman’s field studies [58], an increase in the dynamic component ∆p
makes a more substantial contribution by triggering viscoplastic shear of the double-sided
extrusion type. This is evident in the nonlinear dependence s(∆p) presented in Figure 14.
The increase in settlement that accompanies an increase in dynamic component ∆p is caused
by a decrease in the viscosity coefficient and an increase in vibratory acceleration of the
base vibration, while the increase in settlement that accompanies an increase in static
component p1 is triggered by an increase in the intensity of shear stresses in base τi and
their approaching ultimate stresses τi*, according to authors AZT-M [25,28] and ESS [27]
and others [17,26]. This conclusion, stemming from the theoretical solution, complies with
the results of large-scale field tests conducted by V.A. Ilyichev, V.I. Kerchman, B.I. Rubin,
and V.M. Pyatetsky [7,13] focused on the influence of static and dynamic loading.
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Figure 15. Foundation settlement propagation in time, if the value of static load p1 = 160 kPa and
dynamic load ∆p = 30 kPa, triggered by the source foundation, when static load p2 from the foundation
of a nearby building is: (
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Figure 16. Dependence of the value of excessive settlement of the foundation of a nearby building s2

on the static load from the source foundation p1 if the dynamic component ∆p = 30 kPa, the distance
between foundations c = 4.0 m, and the load values p2: (
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4. Discussion

When analyzing the s2(p1) graph (Figure 16), one can observe a decrease in the settle-
ment of a nearby foundation with an increase in the static load from the source foundation
p1, which can be explained by an increase in the difference between the intensity of shear
stresses τi (Figure 17b) and their limiting value τi*, which in turn depends on the value of
mean stress σm (Figure 17a). 
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Figure 17. Dependence of stresses σm(z) (a) and τi(z) (b) arising below the nearby foundation if
loading p2 = 300 kPa and loading values p1: (
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It will be more obvious to show the effect of the load from the source foundation p1
on the settlement of the nearby foundation using the coefficient kult (12). This coefficient is
part of Formula (3) and shows a decrease in the viscosity coefficient η0 with the approach
of the intensity of shear stresses τi to their limiting value τi*. Figure 18 clearly shows an
increase in the coefficient kult under the nearby foundation with an increase in the pressure
p1 of the source foundation.

kult =
τ*

i − τi

τ*
i

(12)
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Figure 18. Dependence of the coefficient kult(z) below the nearby foundation if loading p2 = 300 kPa
and loading values p1: (
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The static load from source foundation p1 and the soil above the foundation base serve
as the lateral surcharge concerning the nearby foundation. This lateral surcharge increases
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mean stresses σm and reduces the intensity of shear stresses τi, thereby bringing the stress
state a little closer to compression.

The above statement that the settlement of the nearby foundation s2 decreases with
increasing static pressure p1 from the source foundation has some exceptions. As it can
be seen, for large values of p1 and small values of p2 and c, the settlement of the nearby
foundation s2 increases with the growth of p1, and does not decrease. The graph in Figure 19
shows the peculiar shape of the two characteristic areas (approximately p1 < 150 kPa and
p1 > 150 kPa), which require explanation. The first area (approximately p1 < 150 kPa) shows
an intensive decrease in the s2 settlement caused by the loading of the zone of the soil uplift
from under the base of the adjacent foundation. In this case, the size of the zone of plastic
deformation propagation increases because the intensity of tangential stresses τi decreases
and, thus, gets further from their limiting value τi* (Figure 17b). Since the ratio of stresses
τi and τi* has a non-linear character, in the area of p1 ≈ 150 kPa the effect of an increase
in lateral loading decreases, and the curve changes its direction. At the same time, if the
distance between the foundations c is small and the load from nearby foundation p2 is low,
one can observe an increase in settlement s2 in the case of considerable load from the source
foundation p1 (Figure 19, approximately p1 > 150 kPa), which is explained by an increase in
the intensity of shear stresses τi and small mean stress σm.
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Figure 19. Dependence of the value of excessive settlement of the foundation of a nearby building s2

on static load from the source foundation p1, if load p2 = 90 kPa, dynamic component ∆p = 30 kPa, and
the distance between the foundations c: (
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The graph, showing the dependence of the value of excessive settlement of a nearby
foundation s2 on the static load from source foundation p2, if the dynamic component
∆p = 30 kPa and values of load p1 are variable, is shown in Figure 20. Dependence of the
effect of load from the source foundation p1 on the value of excessive settlement of a nearby
foundation s2 can also be seen in Figure 16, where smaller values of load p1 correspond to a
larger value of settlement s2.

If the static load from the source foundation p1 = 160 kPa, the dynamic component is
∆p = 30 kPa, the load p2 = 350 kPa, and the values of depth h1 vary, the dependence of the
value of excessive foundation settlement s2 on the distance between the foundations c is
as shown in Figure 21. The settlement of the nearby foundation s2 nonlinearly decreases
with an increase in the distance from the source foundation, which naturally follows from
theoretical assumptions. At a distance of c > 2b, the effect of the transmitting foundation
decreases significantly, and this fact converges with the numerical solution of Vivek P. and
Ghosh P. [42] to the problem of the effect of a transmitting foundation that transmits static
and dynamic loads to the base (an active foundation) on the additional settlement of an
adjacent foundation that only transmits static loads to the base (a passive foundation).
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Settlement s2 of the foundation located near the foundation that serves as the source
of the dynamic effect (the source foundation) naturally increases with an increase in
static pressure p2 below its base (Figures 15 and 20); however, it decreases as the static
component of the load from the source foundation p1 and the depth of the foundation
increase (Figures 16 and 19), which is explained by an increase in the difference between
shear stress intensity τi and the limiting value τi*, the first of which decreases as the
stress state of the base approaches its limit value and the second of which increases due
to the increasing mean stress σm (Figure 17). The theoretical solution to the problem,
obtained by the current authors, complies with the results of the field studies conducted
by V.S. Bogolyubchik, V.Y. Khain, and M.N. Goldstein [14–16] in respect of the effect of soil
loading beyond the foundation on the vibrocreep intensity of a sandy base subjected to
vibrations. It is quite natural that the excessive settlement of a nearby foundation decreases
with increasing distance from the source foundation c and depth of the foundation h1
(Figure 21), which is explained by a decrease in the value of vibratory acceleration and
an increase in the viscosity coefficient [5,6,25–28]. The problem is solved for the value of
the loading frequency ω = 10 Hz. With a change in vibration frequency, the qualitative
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pattern of vibration will remain the same, but the settlement will take greater values, as
was identified earlier [27,28,50].

The above-mentioned conclusions were obtained for the case of flexible load transfer
to the base without taking into account the stiffness of the foundations themselves and
the superstructures of the construction. In the future, the solution to this problem can be
developed by including the stiffness of building structures in the structural analysis, which
should lead to a decrease in additional settlement.

The authors believe that this research can be furthered by developing a generalized
rheological model of sandy soil subjected to cyclic loading. In his earlier work, one of the
authors (AZT-M) remarked that lateral pressure increases under dynamic loading [25],
which indicates a change in Poisson’s ratio. In addition, AZT-M found that the phenomenon
of vibrocreep is more pronounced when shear deformation prevails [25]. Further, the
authors believe that more research is needed to study the effect of the dynamic load
intensity on Poisson’s ratio. They also intend to create a quantitative description of the
effect of the stress–strain state of sandy soil on the intensity of vibrocreep, taking into
account the Nadai-Lode parameter [54], as was done by K. Wang et al. [33]. The above-
listed further research undertakings will generate important practical results that will
allow for a more accurate projection of displacement of the soil massif and pressure on
substructures subjected to dynamic loading.

5. Conclusions

Applying the analytical solution proposed by the authors, it was found that the set-
tlement of a single foundation to which vertical static and dynamic loads are transmitted
increases with an increase in its static and dynamic components. The dynamic compo-
nent, which is triggered by viscoplastic shear of the double-sided extrusion type, makes a
greater contribution to settlement propagation. The increase in settlement accompanying
an increase in the dynamic component is due to a decrease in the viscosity coefficient that
accompanies an increase in the vibratory acceleration of the base, while the increase in set-
tlement that accompanies an increase in the static component is caused by an increase in the
intensity of shear stresses in the base and those stresses approaching their limiting values.

The settlement of a foundation located in proximity to the foundation that is the source
of dynamic effects naturally increases with an increase in static pressure below its base but
decreases with an increase in the static component of the load from the source foundation
and greater foundation depth, which is explained by an increase in the difference between
the values of shear stresses intensity and their limiting values, the first of which decreases
as the stress state of the foundation gets closer to compression, and the second of which
increases due to an increase in the mean stress.
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