@ axioms

Article

Faber Polynomial Coefficient Estimates for Bi-Close-to-Convex
Functions Defined by the g-Fractional Derivative

Hari Mohan Srivastava

and Sarfraz Nawaz Malik 10

check for
updates

Citation: Srivastava, H.M.; Al-Shbeil,
1; Xin, Q.; Tchier, E; Khan, S.; Malik,
S.N. Faber Polynomial Coefficient
Estimates for Bi-Close-to-Convex
Functions Defined by the g-Fractional
Derivative. Axioms 2023, 12, 585.
https:/ /doi.org/10.3390/
axioms12060585

Academic Editor: Georgia Irina Oros

Received: 3 April 2023
Revised: 28 April 2023
Accepted: 30 May 2023
Published: 13 June 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1,2,3,4,5

, Isra Al-Shbeil ®*©, Qin Xin 7, Fairouz Tchier 8©, Shahid Khan °

1 Department of Mathematics and Statistics, University of Victoria, Victoria, BC VW 3R4, Canada;

harimsri@math.uvic.ca

Department of Medical Research, China Medical University Hospital, China Medical University,

Taichung 40402, Taiwan

Center for Converging Humanities, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu,

Seoul 02447, Republic of Korea

Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street,

AZ1007 Baku, Azerbaijan

Section of Mathematics, International Telematic University Uninettuno, I-00186 Rome, Italy

Department of Mathematics, Faculty of Science, The University of Jordan, Amman 11942, Jordan

Faculty of Science and Technology, University of the Faroe Islands, Vestarabryggja 15,

FO 100 Torshavn, Faroe Islands, Denmark; qinx@setur.fo

Mathematics Department, College of Science, King Saud University, P.O. Box 22452,

Riyadh 11495, Saudi Arabia; ftchier@ksu.edu.sa

9 Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad 22500, Pakistan;
shahidmath761@gmail.com

10 Department of Mathematics, COMSATS University Islamabad, Wah Campus, Wah Cantt 47040, Pakistan;
snmalik110@ciitwah.edu.pk or snmalik110@yahoo.com

*  Correspondence: i.shbeil@ju.edu.jo

Abstract: By utilizing the concept of the g-fractional derivative operator and bi-close-to-convex
functions, we define a new subclass of .4, where the class A contains normalized analytic functions in
the open unit disk [E and is invariant or symmetric under rotation. First, using the Faber polynomial
expansion (FPE) technique, we determine the /th coefficient bound for the functions contained within
this class. We provide a further explanation for the first few coefficients of bi-close-to-convex functions
defined by the g-fractional derivative. We also emphasize upon a few well-known outcomes of the
major findings in this article.

Keywords: quantum (or g-) calculus; analytic functions; g-derivative operator; bi-univalent functions;
Faber polynomial expansions

1. Introduction, Definitions and Motivation

Alexander [1] established the first integral operator in 1915, which he successfully
applied in the investigation of analytical functions. This area of study of analytic functions,
encompassing derivative and fractional derivative operators, has been a focus of ongoing
research in geometric function theory of complex analysis. Several combinations of such
operators are continually being developed [2,3]. Recent publications such as [4] provide
an example of how important differential and integral fractional operators are in research.
Recent research on differential and integral operators from a variety of angles, including
quantum (or g-) calculus, has produced intriguing findings that have applications in other
branches of physics and mathematics. Further investigation may reveal that such operators
play a role in providing solutions to partial differential equations, since they have a role in
the investigation of differential equations using functional analysis and operator theory. In
his survey-cum-expository review study, Srivastava [5] highlights the intriguing operator
applications that are emerging from such a methodology.
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Many applications of the g-calculus can be found in both the field of mathematics
and in other scientific disciplines such as numerical analysis, fractional calculus, special
polynomials, analytic number theory and quantum group theory. Mathematicians and
physicists are becoming interested in the large field of fractional calculus. The theory of
analytical functions has been integrated with the theory of fractional calculus. The fractional
differential equations are used in numerous mathematical models. In fact, nonlinear
differential equations are considered to be a rival to fractional differential equations as a
model (see, for example, Refs. [6-9]).

Researchers, who have created and examined a significant number of new analytic func-
tion subclasses in the field of geometric function theory (GFT), have extensively used the
g-calculus. In the year 1909, Jackson [10,11] is to be acknowledged for the formal beginning
of g-calculus because he provided the first definitions of the g-integrals and the g-derivatives.
He proposed the g-calculus operator and the g-difference operator (D;), which are extensions
of the derivative and integral operators. Several mathematical and scientific disciplines, in-
cluding mechanics, the theory of relativity, control theory, basic hypergeometric functions,
combinatorics, number theory, and statistics, use the g-calculus. Ismail et al. [12] established
the generalized version of the starlike functions, which was one of the very first contributions
of the use of g-calculus in GFT. They gave this newly created class the name “class of g-starlike
functions” because they defined it by using g-derivatives. It took a while for this area of
research to advance, but the recent works of Anastassiu and Gal [13,14] based upon their
complex operators research with their separate g-generalizations happen to provide a fine
addition. Those were termed as g-Gauss—Weierstrass and g-Picard singular integral operators,
respectively (see also the work of Mason [15] on the solution of linear g-difference equations
with entire-function coefficients). By utilizing fundamental g-hypergeometric functions, Srivas-
tava [5] built a solid foundation for the use of the g-calculus in GFT. Aral and Gupta [16-18]
provided a further set of contributions by using g-beta functions. Aldweby et al. [19,20]
established the g-analogue of certain operators by utilizing the convolution techniques for
analytic functions. Additionally, they explored the composition of g-operators in the context
of analytic functions that involve the g-version of hypergeometric functions. The subject of
g-calculus has drawn the interest of several researchers in recent years, and the papers [21-23]
contain a variety of new observations. Further current details on convex and starlike functions
with regard to their symmetric points can be found in [24,25] and the references therein. As
a consequence of ongoing research on differential and integral operators, we in this study
present a novel fractional differential operator. With the aid of this operator, we intend to
introduce a new family of analytic functions which are geometrically close-to-convex.

The class A contains all functions & which are analytic in E and which also satisfy the
normalization condition given by

h(0)=0 and HK(0)=1,
where
E={z:zeC and |[z| <1},

C being the set of complex numbers. Thus, clearly, each function & € A can be expressed
as follows:

h(z) = ialzl (z€E; a;:=1). 1)
=1

Let the class S C A consist of univalent functions in E. The commonly known
subclasses of S are the classes of convex, starlike and close-to-convex functions, which are
denoted by and defined, respectively, as follows:

!

C:=Xh:he8 d R (Zh/(Z)) 0 E
= che an e > (z€eE),
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St = {h:heS and m(ZZ(S)>>0} (z€E)

IC::{h:hES,gGS* and %(Zg(iz))>>o} (z €E)

and

or, equivalently,

!

IC::{h:hG.A,gGC and %(h,(é))>>0} (z€R)
8

For hy, hy € A, I is said to be subordinate to h; in E, denoted by
hy(z) < ha(2) (zeE),
if we have a Schwarz function £ in E such that ¢ € A, |{(z)| < 1and ¢(0) = 0, and
hi(z) = hy(4(z)) (z € E).

The image of E under every 1 € A contains a disk of radius % and each function & € S has
an inverse h~! = 1 given by

v(h(z)) =z (z € E)

and
h(v(9) =0 (8] <ro(h)),

where r((h) is the radius of the disk with ro(h) = }. The inverse function (®) has the
following series expansion:

Y(8) = 0 — ay0? + (243 — a3)®° — (543 — 5azaz +ag)0* + - - - . ()

If both i and i1 are in the univalent function class S, then the function  is called
bi-univalent in [E. The set of bi-univalent functions in E is denoted by X. In GFT, the issue
of finding bounds on the coefficients has always been important. Many characteristics of
analytic functions, such as univalency, rate of growth and distortion, can be affected by the
size of their coefficients. The pioneering work, which actually revived the study of analytic
and bi-univalent functions, was presented in the year 2010 by Srivastava et al. [26]. In 1914,
for 0 < a < 1, Hamidi and Jahangiri [27] defined the class of bi-close-to-convex functions
and investigated some useful results by using the Faber polynomial expansion technique.
To overcome some the aforementioned problems, several researchers employed various
other techniques. Finding coefficient estimates of functions belonging to X had already
attracted a lot of interest, just like for univalent functions. For i € %, Levin [28] demon-
strated that |a;| < 1.51 and after that, Branan and Clunie [29] contributed the improvement
of |az| and demonstrated that |ay| < /2. Furthermore, for h € %, Netanyahu [30] proved
that (see, for details, Refs. [31,32])

max|ay| = 3

In many of these efforts, only non-sharp estimates of the initial coefficients were
derived. In [33], Alharbi et al. investigated two new subclasses of X by using the Sdldgean-
Erdélyi-Kober operator and problems related to coefficients, such as the Fekete-Szega
problem, were also investigated. Recently, Oros et al. [34] defined some new subfamilies of
bi-univalent functions and found the coefficient estimates for these subfamilies.

Our current work is primarily driven by the discovery of numerous intriguing and
productive applications of special polynomials in GFT. One of these is the well-known
Faber polynomial that has recently gained immense importance in the study of mathe-
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matics and other scientific disciplines. Faber [35] introduced Faber polynomials and these
polynomials have important uses in many areas of mathematics, especially in GFT of
Complex Analysis. Schiffer [36] discussed the applications of the Faber polynomials in 1948
(see also [37]). Following that, Pommerenke [38—40] significantly added to the facts that
were already known about the structure of the Faber polynomial expansion (FPE). By using
the FPE technique and defining subclasses of the bi-univalent function class ¥, Hamidi and
Jahangiri [27,41] found some new coefficient bounds. Furthermore, many authors (see, for
example, Refs. [42-51]) applied the technique of Faber polynomials and determined some
interesting results for bi-univalent functions (see, for details, Ref. [44]).

For understanding the concepts of this article, it is now necessary to review certain
fundamental definitions and notions relevant to the g-calculus.

Definition 1. The g-shifted factorial (; q); is presented as

l_ .
(sq) = @—%¢) (I€N; 5,q€C), 3)

]

Juy

Il
o

where, as usual, C is the set of complex numbers. If ¢ # q~™ (m € Ny :={0,1,2,3,--- }), then
Goqe=T1(1-20)  (x€C gl <1). )
j=0

In the case when s # 0 and q 2 1, (3;q) oo diverges. Therefore, when we take (3¢;q) oo, then we
will assume that |q| < 1.

Remark 1. For g — 1— in (3¢ q);, we have

-1
Gaqh =G =]1(<+j) (eN).
j=0
The q-factorial [I),! is defined by
n
M =111; (eN), (5)
I=1
where the g-number [], is given below:
m,=171  em
q 1— q ’

Ifl =0, then [I];! = 1.

Definition 2. The (¢;q); in (3) can be given more precisely in the form of the g-gamma function
as follows:

() = Lm0 @)

(9% 7)o O<q<1b)
1—¢"\T,(c+1)
(@59 = ( qrz(i) (I € N).

Definition 3 (Jackson [10]). For h € A, the g-difference operator is defined by

Dm@):hfhf§f> (z € E).
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We recall that for I € Nand z € E, we have

Dy(2') = [1]gz"! and Dy (Z alzl> =
=1

[Ngarz' ™,

hgk

1

1

where the g-number [I], is already given along with (5).
The g-generalized Pochhammer symbol is expressed as follows:

Ly(e+1)

[ = TG (leN; »e€C).

Remark 2. If g — 1—, then
gs = G =~
Definition 4 (see [52]). For ¢ > 0, the fractional g-integral operator is defined by

z&mn—riwﬁﬂﬂJmeuwum ©)

where (z — tq),,_4 is given by

- _ tq®
(Z—W)Qq =2z° 11‘130(11 QH;;q,q).

z

The representation of the q-binomial series 1Py is given by

1Po(a;,—;q,2) =1+ Z z (lg] < 1; |z] < 1).

Definition 5 (see, for example, [53,54]). For an analytic function h, the fractional q-derivative
operator Dy of order ¢ is described by

Dyh(z) = Dyl °h(z)

- rq(11_Q)fo /OZ(Z — 1) _,h(D)dg(t) (0S¢ <1).

In Geometric Function Theory, linear operators (both derivative and integral oper-
ators) are extensively utilized. The most important aspect of this study is that we are
simultaneously examining the characteristics of many classes of analytic functions under
a certain linear operator. Taking the aforementioned importance of linear operators into
consideration, we now define the operator below.

Definition 6. The extended fractional g-derivative @g of order g is specified as follows:
Dih(z) = D'l °h(z), @)
where m is assumed to be the smallest integer. We find from (7) that

Ly(1+1)
ol _ q I—o < - -1
D5z 71},(14—1—@)2 00 I >-1).
Remark 3. For —co < ¢ <0, @S denotes a fractional q-integral of h of order 0. Additionally, for
0So0<2, @g denotes a q-derivative of h of order .
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Definition 7. Following the work of Selvakumaran et al. [55], we introduce the (o, q)-differintegral
operator Qf : A — A, which they defined as follows:

Q%h(z) = r"r(j(;)g)z@sagh(z)
B X Tp(2—0)T,(1+1)
LT G ©

where0 < 0 <2and 0 < q < 1.

Each of the following properties of the (o, q)-differintegral operator Qgh are worthy
of note.

Property 1.
lim Qgh(z) = Qgh(z) = zDyh(z).
o0—1

Property 2.

5 = Ty(2— Q)Ty(2 = 8)(Ty(1 +1))°
0 (O5h(z)) = 03 (Ofh(z)) = 2+ L WO WG g Q)rq(qz e UEE

Property 3.
zDyh(z)
=0
Dq(ngh(z)> ] The (=0)
Qlh(z)
q D, (Dgh(z)
1422000 (=),

Considering the operator Qg defined in Definition 7 and inspired by the work given
in [27], a new subclass of the class X is introduced by means of this operator. The next
section will provide proofs of the original findings by using the Faber polynomial method
and one lemma.

Definition 8. Let the function h be of the form (1). Then, h is referred to as o-fractional bi-close-to-
convex function in IE if a suitable function ¢ € S* exists such that

(o),

and

(25 )

where0 S a <1, 0= 0 <2 and z,0 € E. All such functions are symbolized by Kx(q, «, 0).

Remark 4. If we let ¢ — 1— and ¢ = 0, then Kx(q,«, 0) reduces to the class introduced by
Hamidi and Jahangiri in [27].

Remark 5. If g — 1— and a = 0, then Kx(q, «, 0) reduces to the class introduced by Sakar and
Giiney in [56].
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2. The Faber Polynomial Expansion Method and Its Applications

The coefficients of the inverse mapping v = h~! can be expressed by using the Faber
polynomial method for analytic functions / and as follows (see [43,57]):

v(0) =@ =0+ L ol @),
where
9t = (=2l JF(I)Z')('Z - 1)!“12_1 TR JF(I)Z})!!(Z - 3)!”12_3”3
(=) -4

+

(2l +3)(l—ap™ ™

TR +(2)l])!!(1 - 5);”12_5 [”5 +(=1+ 2)a§}
+ (=I)! al2_6[a6 + (=21 + 5)613014]

(—20+5)1(—6)!

+ Z ﬂlz_isi

i=7

and a homogeneous polynomial in a5, a3, - - -, a; is denoted by S; for 7 < i < . Especially,
the first three terms of ql__l1 are given below:

and .
iqg‘l + —(SLI% — 5aza3 + ay).

Generally, an extension of qj of the following type is used forr € Z (Z:=0,41,£2,---)
and [ = 2:

q;:ral+ Vl3+"'+

r(r—1),, 7!
> Y

r! 1
R P TET Vi

where

Vi =Vi(azas,- )
and, by using [57], we have

(e =10,

VIU(QZ/... /ﬂl) - Z

Clearly, upon adding all non-negative integers y1, - - - , yt;, which satisfy
i+ ua+--+u=v and p+2up+---+ly =1,

we find that
Vi(ay, - ,a;) = Vi
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and that the first and last polynomials are given by
Vll =a and V= a.

Lemma 1 (see [58]). If p is a function with a positive real part and

o
zZ)=1+) az,
1=1

then
o] = 2.

The problem of finding bounds for the coefficients has always been a key concern
in geometric function theory. The size of their coefficients can determine a number of
properties of analytic functions, including univalency, rate of growth and distortion. Many
scholars have used a variety of methods to overcome the aforementioned issues. Similar
to univalent functions, bi-univalent function coefficient estimation has received a lot of
interest lately. As a result of the significance of studying the coefficient problems described
above, in this section, we utilize the (varrho, q)-fractional derivative operator and the Fabor
polynomial technique to obtain coefficient estimates for |a;| and discuss the unpredictable
behavior of the initial coefficient bounds for |a;| and |a3|. We also investigate the Fekete—
Szego problem and give some examples. We also demonstrate how some of the previously
published results would be improved and generalized as a result of our primary findings
as well as their corollaries and consequences.

3. Main Results
Our first main result is asserted by Theorem 1 below.

Theorem 1. If h has the series representation stated in (1) and belongs to the class Ks,(q, «, 0), and
ifa; =0and2 =i <1 —1, then

T(2)Tg(I+1—0)(2(1—a) +1) (1=3).
[14Tq(2 = 0)T4(I+1)

Dy (Qf1(z))

Proof. For h € Kx(q,«,0), there exists a function g. The FPE for — 3y isgiven by

|ay| =

0 o T,(2—0)T4(1+1)
M 14 2 (mqm 1 — ) Z ql (b2/b3/ T /bl+l) 2171 (9)
z (2—0)Ty(1+1
8(2) =2 (([] )% a—p — by l)
Additionally, regarding the inverse maps ¢ = h~! and § = ¢~!, we obtain
0 I,(2—o)T (l+l)
Di(05x0) | (R A B) S o e B | (10)
6(0 - T, (2—0)T, (141 '
I ! I (RS

As opposed to that, since

%(qu(nsh(?:))) > (z € E),

g(z)
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there must exist a function p(z) given by

(e}
z)=1+) ¢
=1
such that

D, (ngh(z))

FE) =1+(1—a)p(z)

+(1—w) i iz (11)
=1

Similarly, since

0
%(W)>a (0=sa<1;z€E),

there must exist a function ¢ given by

e(®) =1+ Y dyo'

=1
such that
Dy (g (9)
”7(5{1”) =1+ (1-a)q(9)
:1+(1—a)id119’. (12)
1=1

For each | 2 2, evaluating the coefficients of the Equations (9) and (11), we obtain
I, (2—0)Ty (141
(e e U bl) 2 4 (b b, biga)
1(2—o)T (l+1)
(s = Dot g~ b)

Additionally, by evaluating the coefficients of the Equations (10) and (12), for any
1 2 2, we have

= (1—-a)e . (13)

I, (2—0)T, (I+1 =2 _
(1 FZEz)FQq)(li(lfe; ) P '(By, Bs, -+, Bria)
- =1-a)d1. (14

T, (1+1
'(([l] —Z)%AH—BFO

Using the Equations (13) and (14), we derive the following for the particular case when
=2

[] (2—0)T4(3)
I3(2)F4(3 - 0)
2]qT4(2 — 0)T4(3)
q( )3 —0)

a—by=(1—-a)

A2 —Bz = (1 —D()dl
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and

((1 — Dé)Cl + bz)

(1 —a)dy + Ba).

We now solve for 4; and apply Lemma 1 and the moduli, so that

0] < 2[[4(2)T4(3 - @)
2= [2]4T4(2 — 0)T4(3)

However, assuming that2 < k < | — 1 and a; = 0 are true, the following results are ob-
tained.

(2 —u).

A =—a
and
[1404(2 — 0)T4(1 +1)
;q(g)rq(z g = (-,
L g = -
and

I(2)T(1+1—0)
[1gTq(2—)Tq(1+1)
o — I(2)T(1+1—0)

P L2 o)T,(1+1)

a = (T—a)er—1 +by)

(1—w)d;_1+By)

By solving for 4; and using Lemma 1 and the moduli, we can derive

Ta(2)T(I+1—-0)(2(1—a)+1)
[1]4T4(2 = )T4(1 +1) ’

|ay| =

upon noticing that
by| < Tand [B)| = 1.

This completes the proof of Theorem 1. [

The following corollaries can be obtained by putting different values of the parame-
ters involved.

Corollary 1. If the function h has the series representation stated in (1) and belongs to the class
Kx(q,0,1), and if
;=0 25i51-1),
fhen L,(2)T,(1)(2+1
AR

1] = [T, (1+1) =

Corollary 2. If the function h has the series representation stated in (1) and belongs to Kyx.(q,a,1),
and ifa; =0 (21 1—1), then

| < T(2)05(1)(2(1 —a) +1)

[gTq(I+1) (1z3).
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Corollary 3. If the function h has the series representation stated in (1) and belongs to the class
Ks(q—1—,a,0),andifa; =0 (2= i< 1—1), then

)L +1-0)(2(1-a)+1)

o] = T2 — o)Ll +1)

(123).

Corollary 4. If the h has the series representation stated in (1) and belongs to the class Ky (q —
1—,a,1),and ifa; =0 (21 1—1), then

r(2)T()(2(1 —a)+1)
IT(I+1)

| = (1=3).

The following known consequence of Theorem 1 for ¢ = 0 and 4 — 1— was demon-
strated in [27].

Corollary 5 (see [27]). Leth € Ky (). Ifaj,1 =0 (1 <i < 1), then

2(1—a)

|al|§1—|— ]

(1=3).
Corollary 6 (see [56]). If the function h has the series representation stated in (1) and belongs to
the class Kx(q — 1—,0,0), and ifa; =0 (2=i<1—1), then

24+NDI(l+1-09)

Te—orasn =3

lag| =

As a special form of Theorem 1, our next result (Theorem 2 below) provides estimates
for the initial coefficients |a;| and |az|, and also for the Fekete-Szego-type functional
involved in |a3 — 43| for functions in the class Kx (m, «,q).

Theorem 2. Let the function h € Kx(q,«, 0) be given by (1). Then,

204 (2)T4(3 — )Ty (4 — 0)(1 — )
Ty(2 = 0) ([31T4(4)T(3 = @) — [2,T4(3)T4(4 — 0))
|a2|§ (O§a<1_¢(%9))

and
|a | < ZFQ(Z)R]M—Q)(I_“)
= BT @)T,2— o) —T,(2)Ty (4 — o)
[2]gT4(2 = 0)Tq(3) —T(2)T3(3 — @) +2(1 — a)[(2)[4(8 — @)
2],T4(2 = 0)T4(3) = I4(2)I4(3 —¢) '
where
0.0 : Ty (2)Tg(4 — @) {[214T4(2 = 0)Ty(3) ~ T4()Ty(3 — 0)}*

- 2T (3 = 0)T4(2) ([314T(4)T4(2 — @)T4(3 — ) — [2]4T4(3)T4(2 — 0)T4(4 — @)

Furthermore, it is asserted that



Axioms 2023, 12, 585 12 of 19

2Ih(2)I(4 —0)(1 —a)
3]gTq(2 — )T4(4) —T4(2)Te(4—0)

’ﬂ3—ﬂ%‘ g [

Proof. Taking a function g(z) = QSh(z) in the proof of Theorem 1, we obtain a; = —b;. For
I = 2, the Equations (13) and (14), respectively, yield

. <[2]qrq(2 —0)T4(3)
2\ T,@r,G o)

<[2]qu (2—0)T4(3)
Iy(2)L4(3—0)

- 1) =(1—a)c,

+ 1) = (1 — Dc)dl,'
and
I4(2)T3(3—0)
2]4T4(2 — @)T4(3) — [4(2)T4(3 — o)
—ay = Iy(2)T4(3—0)
2]4T4(2 = 0)T4(3) = T4(2)T4(3 - 0)

If we use moduli of either of these two equations, we obtain

ap = (1 —DC)Cl,

(1 — lk)d1.

204(2)T4(3 —0)(1 —a)
2]qTq(2 = )T4(3) = T4(2)T4(3 — o)

For | = 3, the Equations (13) and (14), respectively, yield

BlgT4(2—0)T4(4) (T 2=9TB) N,
(Tq(Z)Fq(4—Q) 1)”3 (rq(z)rq(g_g) 1)”2 (1-a)ex  (15)

lag| <
[

and

22 3]4T4(2 — 0)T4(4) ) 2]4T4(2 — 0)T4(3) 12 =(1—u«
=) (s )~ (e )= a-we 9

By combining the two equations mentioned above, we obtain

2 (Blgfg(2—0)ly(4) 1\ /[204T4(2—0)T,(3)
? 2( [(2)Tg(4 - ¢) 1) 2( [(2)T4(3 - o)

2 BlaTg(2 = )T4(4)  [2]4T4(2 = 0)T4(3) e
22( [3(2)T4(4—0) T,(2)T,(3—0) > (1 —a)(ca +da)

— 1)01% = (1 —(X)(Cz-i—dz),

or

[3]4T4(3 — @)Tq(2 — 0)T4(4)
[q(2)I4(3

—[2]4T9(4 — 0)T4(2 — 0)T4(3)

203 =
> o)Ty(4—0)

=(1-a)(c2+dr)

Now, by finding |a;|, we arrive at

’a%’ — I(2)T4(3 — )Tg(4 —0)(1 —a)|da + o5 .
242 = ) { [BlyTy(4)Ty (3 — o) — 21,14 (34 (4= 0) |

Additionally, by applying Lemma 1, we obtain

Mﬂ<:¢ 20, ()T, (3~ 9Ty (4 —9)(1 1) |
~V T(2— ) ([BlT4(4)T(3 — @) — [Z]qrq(3)rq(4 —0))
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As a result, we obtain the following estimate:

204(2)T4(3— @)Tg(4 — 0)(1 - )
JFAZ—@GﬂJAQU@—e%ﬂﬂﬁﬂ%%@—eﬂ
204(2)T4(3 — 0)Ty(4 — 0)(1 - ) |
Tg(2— ) (Bl4T4 (4)T4(3 = 0) — [2],T4(3)Ty (4 — o) )

<

Upon substituting

0 — c1(1—a)l,(2)Iy(3 —0)
27 2T, 2—0)T,(3) — T,(2)T,(3—0)

into (15), we have
e T@TE-9(1-n)
BlaTq(4)T4(2 = 0) = T4(2)T¢(4 —0)
_<Q+ (1 - )Tg(2)T4(3 o) g>
2,042 - 0)T4(3) —~T4(2)T4B3—0) ')’
Taking the moduli on both sides, we find that
[g(2)T(4 —0)(1 —«)
3JgT4(4)T4(2 — @) = T4(2)T4(4 — )
(e + o A=OT@ATE—0)
[2],T4(2 = 0)T4(3) —T4(T,(3 —0) Il )J°
Applying Lemma 1, we obtain
PRV (VTR
= [BlgTg(4)T4(2 — ) —T4(2)ly(4 — @)

A2 4(1—a)l4(2)T4(3 —¢)
[2],T4(2 = 0)T4(3) = T4(2)T4(3—¢) )’

laz| = [

thatis,

204(2)T4(4 —0)(1 —«a)
3lgLq(4)T4(2 —0) —T4(2)I4(4 —0)
_ ( 2],T9(2=0)T4(3) = T4(2)T4(3 — @) +2(1 — a)I'g(2)[ (3 — Q)>
2],T4(2 = 0)T4(3) —I4(2)I4(3 —¢) '

las| = i

Lastly, upon subtracting Equation (15) from Equation (16), we have

2I4(2)(4 - 0)(1 —a)
[3]qT4(2 — 0)T4(4) —T4(2)T4(4 — @)’

Our proof of Theorem 2 is thus completed. [

‘ﬂs—ﬂﬁ‘ =

Several corollaries and consequences of Theorem 2 are presented below.
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Corollary 7. Let the function h € Ky (q,«,1) be given by (1). Then,

24(2)T(2)T(3)(1 — a)
(18]qT4(4)T4(2) — [2],T4(3)T4(3))
0=a<l-gi(g)

laz| =
20, (2)14(2)(1 —«a)
2]4T4(3) —T4(2)I4(2)
1—¢1(q) Sa<1)
< 2(2)T;(3)(1 —a)

)~ Ty
. ( [2],14(3) —T(2)T4(2) +2(1 - "‘)rq(z)rq(z)>
[2],T4(3) = T4(2)T4(2)

and

‘a —a2’ < 2(2)T(3)(1 — )
3T 3], (4) — T4(2)T4(3)

where )
_ T3(2)T4(3)([2]4T4(3) — T4(2)T4(2))
2T (2)T4(2) ([8]4T4(4)T4(2) — [2]4T4(3)4(3))

Corollary 8. Let h € Kx(q,0,1) be given by (1). Then,
\/ 214(2)T4(2)T4(3)

[3]4T4(4)I'(2) — [2],T4(3)F4(3)
< (0=a<1—g(q))

¢1(q)

20, (2)T,4(2)
2]4T4(3) — T4(2)T4(2)

(1-galg) Sa < 1),

ol < T @T3)
= [BlgTq(4) — T4(2)T4(3)
[2]gT4(3) —T4(2)T4(2) +T4(2)I4(2)
[2],04(3) = T4(2)I4(2)
and 2T, (2)T,(3)
V“”ﬂ§mww5—ﬁmmwr
where

Ty (2)T4(3){[21T4(3) — T4(2)T,(2)}
2T, (2)T4(2){[8]4T4(4)T4(2) — [2]4T4(3)T4(3) }

$2(q) =
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Corollary 9. Let h € Kx(q — 1—,u, 0) be given by (1). Then,

¢ 2r(2)T(3 — o)T(4—0)(1 1)
T2 )3T(4T(3 o) —2IB)I(4— o)}
(0= a<1—¢3(0)
2F(2)F(3 — Q)(l
2r(2—o)I(3) ~I(2)T(3 o)
(1-gs() Sa<1)

laz| <

and

where

0 = T(2)T(4 - 0){2Y(2— @)T(3) ~T(2)T(3 0}
P T B T {BT@T(2— T3 —0q) —2TB)T(2— QT (4— )}

As another application of Theorem 2 for ¢ = 4 and ¢ — 1—, we obtain the result given
in [27].

Corollary 10 (see [27]). Leth € Kx(q — 1—,«,0). Then,

201 —a) (0=a<i)
|aa| =
2(1—a) (%§a<1>

and

2(1— ) (0ga<i)
las| =
(1—a)(3 — 2) (%§w<l).

Corollary 11 (see [56]). Let h € Kx(q — 1—,0, 0) be given by (1). Then,

\/ 2r(3— o)l (4 — o)
T(2—0){3[(4)T(3—¢) —2IB)T(4 —0)}’

2T (2)T(3 — o)
22— ¢)I'(3) —~I'(2)L(3 - o)

|a2] £ min

‘ag‘ < ZFQ(4*Q>
T 3(A)I(2-0)-T(4-0)
. <zr(2 —0)T(3) —T(3—¢)+2T(3— g))
2r(2-0)T(3) ~T(3-0)
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and

2r(2)T(4—o)
—0o)T(4)-T(4-0)

Example 1. For | 2 3, we will demonstrate that h(z) given by

‘”3 N ”5‘ =312

1—«a
5!

is starlike in |, we have

Yi(g.0)[q(1—a)\ ;-
DOgh(z) 1+ (T )2
¢(2) 1— (1:§)Zl_1
14 i (1—a) " Yi(g,0lg(I—a)j\ _ap
S\i-ay  (-1-a)" ’
where
¥ ( ) rq(z_Q)rﬁ(Z+l)
M= T, @r, 0+ 10
Therefore, we obtain
D, Q%h(2)
St (el +1) —iaQ e -1
1—w a (I-1(1—a)
1 — j_l Z(l_l)]
I —uw
Obviously, we also have
D,Qth
R Dyh(z) ) _ x>0 (z€E).
8(z)
Fory=nh"Yand 6 = ¢!, it is easily seen that
11—«
1(0) =0 - o,
and if we set
5(9) =0+ }:“ L
which is starlike in E. As a result, we have
D0 (9)
RO 1y {Fr@ s +1) ~¥1(4,Q)[llge 1
1—w = (I-1)(1—«a)

i—1
. (1 —"‘)] =
| —«
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References

Thus, clearly, we find that

%(W—a>>o (z € E).

4. Conclusions

In this article, we have used the notions of the g-fractional derivative, bi-univalent
functions and FPE to define some new subfamilies of X.. We investigated /th coefficient
bounds and the Fekete-Szego functional for these newly defined classes. Our study has also
demonstrated how the results are enhanced and expanded by appropriate specialization of
the parameters, including some recently released findings.

This article is composed of three sections. We briefly reviewed some fundamental
geometric function theory ideas in Section 1 because they were important to deriving our
main findings. All of these components are well-known, and we have correctly cited them.
In Section 2, we provide the Faber polynomial approach and its applications and some
initial lemmas. In Section 3, we present our key findings.

For future studies, researchers can use other extended g-operators instead of the
(0; q)-differintegral operator and define a number of new subclasses of the bi-univalent
function class X. Furthermore, by using the Faber polynomial technique, the interested
researchers can discuss the behavior of coefficient estimates for different types of newly
defined subclasses of bi-univalent functions. Researchers may also investigate a variety
of methods, depending on how inspired they are by the knowledge gained in this subject.
Fractional derivative operators have made it possible to study differential equations from
the perspectives of functional analysis and operator theory. Using the operator method
for resolving differential equations, various properties fractional derivative operator are
used extensively.

It is a clearly presented fact that the transition from our g-results to the corresponding
(p, q)-results is a rather trivial exercise because the additional forced-in parameter p is
obviously redundant (see, for details, ([5], p. 340) and ([54], Section 5, pp. 1511-1512); see
also [59-62]).
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