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Abstract: In this paper, using a fixed point method, we proved the existence and uniqueness of
solutions for a backward differential equation with time advance via ζ−Caputo fractional derivative.
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1. Introduction

The study of ordinary differential equations and partial differential equations of
fractional order has interested several researchers for a long time [1–4]. Problems of the
stability of these equations have been studied in a very large way. For example, the authors
in [5,6] studied the finite-time stability, and in [7–10], the authors studied the stability in the
sense of Ulam–Hyers–Rassias (UHR) and Ulam–Hyers (UH). Additionally, some problems
of controllability and optimal control of these equations have been completed by several
researchers [11–15].

In the literature, several types of fractional derivatives have been introduced by
some researchers such as [16–18]. These different types of fractional derivatives have
greatly contributed to the development and enrichment of many basic sciences such as
mathematics, physics, medicine, engineering, stochastics, etc. For example, the authors
in [19] studied a fractional model for COVID-19, in [20] the authors studied a fractional
order eco-epidemiological system with infected prey, and a fractional differential system in
hepatitis B has been investigated in [21].

The existence of a solution and the stability in the sense of Ulam have been studied
abundantly by several researchers [7–10,22]. In [2,23–25], and the stability with delay was
investigated for different types of fractional derivatives. To the best of our knowledge,
the study of stability with time advance for a backward differential equation with time
advance via ζ−Caputo fractional derivative has never been investigated. In this paper, we
considered a backward differential equation with time advance via ζ−Caputo fractional
derivative. In the first time, we proved the existence and uniqueness of solutions by using
a fixed point method. Next, we gave two stability results, in the sense of Ulam, for the
backward differential equation with time advance. Finally, some numerical experiments
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have been presented at the end of the paper to illustrate the theoretical results. Then, we
can summarize the novelties of this work as follows:

� The presentation a new problem defined by a backward differential equation with
time advance via ζ−Caputo fractional derivative.

� The study of the existence and uniqueness of solutions for the backward differential
equation with time advance via ζ−Caputo fractional derivative by using Banach
fixed-point Theorem.

� Study of the UHR and UH stabilities for the backward differential equation with time
advance via ζ−Caputo fractional derivative.

� Numerical implementations.

In Section 2, the main results of the paper are given. Section 4 is devoted to the
numerical implementations and discussion of the numerical experiments.

2. Preliminaries and Definitions

In this paper, we consider following notations:

• The space AC([a, b];R) defined by:

AC([a, b];R) =
{

f : [a, b] −→ R, f is absolutely continuous
}

.

• The Banach space C([a, b];R) of continuous functions defined from [a, b] into R.
• The Banach space Dr([−r, 0];R) of continuous functions defined from [−r, 0] into R,

where r > 0.

Let a, b, r be some positive real numbers such that a < b and r > 0. We define a metric
space (E, d), where the space E = C([a, b + r];R) and the metric d is given by

d(u, v) = sup
x∈[a,b+r]

{ |u(x)− v(x)|
σ(x)δ(x)

}
,

where the function σ and δ are defined by

σ(x) =

{
1 , ∀ x ∈ [b, b + r],

eλ(ζ(b)−ζ(x)), ∀ x ∈ [a, b].

δ(x) =

{
γ(b), ∀ x ∈ [b, b + r],
γ(x), ∀ x ∈ [a, b],

where γ is a non-increasing continuous positive function and ζ is an increasing continuous
function. It is clear that the two functions σ and δ are non-increasing functions on [a, b].

Definition 1 ([26]). Let α ∈ (0, 1) and ζ ∈ C1([a, b]) be functions such that ζ is increasing and
ζ ′(t) 6= 0, for all t ∈ [a, b]. The ζ−Caputo fractional derivative of a function v(t) is defined by:

CDα,ζ
b v(t) =

1
Γ(1− α)

(
− 1

ζ ′(t)
d
dt

) ∫ b

t
ζ ′(s)(ζ(s)− ζ(t))−αv(s) ds.

Lemma 1. If v ∈ AC([a, b];R), then the ζ−Caputo fractional derivative of the function v(t) is
given by

CDα,ζ
b v(t) = − 1

Γ(1− α)

∫ b

t
(ζ(s)− ζ(t))−αv′(s) ds,

where α ∈ (0, 1) and ζ ∈ C1([a, b]) is a functions such that ζ is increasing and ζ ′(t) 6= 0, for all
t ∈ [a, b].
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Theorem 1 (Theorem 2.1 in [9]). Suppose (F, d) is a complete metric space and L : F −→ F is a
contraction (with τ ∈ [0, 1)). Suppose that v ∈ F, λ > 0 and d(v, L(v)) ≤ λ. So, there exists a
unique β ∈ F that satisfies β = L(β). Moreover,

d(v, β) ≤ λ

1− τ
.

3. Main Results

Consider the backward differential equation with time advance:

CDα,ζ
T u(t) = f (t, ut), ∀t ∈ [t0, T], (1)

u(t) = ϕ(T − t), ∀t ∈ [T, T + r], (2)

where CDα,ζ
T (·) is the well-known ζ−Caputo fractional derivative with order α ∈ (0, 1),

see [26]. The variable ut is defined by

ut(x) = u(t− x), for all x ∈ [−r, 0], r > 0. (3)

Let ι = T − t, for t ∈ [T, T + r], then ι ∈ [−r, 0]. Consequently, the initial condition defined
by Equation (2) can be rewritten as follows:

uT(ι) = ϕ(ι), ∀ι ∈ [−r, 0],

where ϕ is a continuous function belonging to the space Dr = C([−r, 0];R). The second
member f in Equation (1) is a continuous function and is defined by

f : [t0, T]×Dr −→ R.

The correspondent integral equation of (1) is given by [26]

u(t) = u(T) +
1

Γ(α)

∫ T

t
ζ ′(s)

(
ζ(s)− ζ(t)

)α−1
f (s, us)ds.

Let us now consider the following assumption:

(H) : | f (t, v1)− f (t, v2)| ≤ L‖v1 − v2‖, ∀v1, v2 ∈ Dr and ∀t ∈ [t0, T],

where L is a positive constant.

Definition 2. The problem (1)–(2) is UH stable if there exists a real number λ f > 0 such that for
every ε > 0 and for each solution ũ ∈ AC([t0, T + r];R) of the following inequality:∣∣∣CDα,ζ

T ũ(t)− f (t, ũt(t))
∣∣∣ ≤ ε,

there exists a solution u of Equation (1) with

u(t) = ũ(t), ∀t ∈ [T, T + r],

such that
|ũ(t)− u(t)| ≤ λ f ε, t ∈ [t0, T].

Definition 3. The problem (1)–(2) is UHR stable with respect to γ ∈ C([t0, T];R), if there exists
a real number C f ,γ > 0 such that for every ε > 0 and for each solution ũ ∈ AC([t0, T + r];R) of
the following inequality:∣∣∣CDα,ζ

T ũ(t)− f (t, ũt(t))
∣∣∣ ≤ εγ(t), t ∈ [t0, T],
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there exists a solution u of Equation (1) with

u(t) = ũ(t), ∀t ∈ [T, T + r],

|ũ(t)− u(t)| ≤ C f ,γεγ(t), t ∈ [t0, T].

Let Mα,ζ
T be the constant defined by

Mα,ζ
T =

λα(ζ(T)− ζ(t0))
α

(λα −L)Γ(α + 1)
eλ(ζ(T)−ζ(t0)), (4)

where λ is a positive constant such that L < λα.
We present in the following the first main result, Theorem 2, which expresses the UHR

stability for the system (1)–(2).

Theorem 2. Suppose that the assumption (H) holds. If y ∈ AC([t0, T + r];R) satisfies the
inequality:

|CDα,ζ
T y(t)− f (t, yt)| ≤ εγ(t), for all t ∈ [t0, T], (5)

where ε > 0 and γ is a non-increasing continuous positive function, then there exists a unique
solution u∗ of (1)–(2) with

u∗(t) = y(t), ∀t ∈ [T, T + r],

such that
|u∗(t)− y(t)| ≤ εMα,ζ

T γ(t), ∀t ∈ [t0, T],

where the constant Mα,ζ
T is given by the relation (4).

Remark 1. Let y ∈ C([t0, T];R). Then, the function y is a solution to the inequality (5) if and
only if there exists a function θ ∈ C([t0, T];R) and a function χ ∈ C([t0, T];R):

CDα,ζ
T y(t) = f (t, yt) + θ(t) and |θ(t)| ≤ εχ(t), ∀t ∈ [t0, T].

Let E = C([t0, T + r];R). Now, we define the operator A : E −→ E as follows:

(Au)(t) =


y(t), ∀t ∈ [T, T + r],

y(T) + 1
Γ(α)

∫ T
t ζ ′(s)

(
ζ(s)− ζ(t)

)α−1
f (s, us)ds, ∀t ∈ [t0, T].

Immediately, we have the following result.

Proposition 1. The operator A : E −→ E is contractive.

Proof. Let u1, u2 ∈ E. Then, we have

(Au1)(t)− (Au2)(t) = 0, ∀t ∈ [T, T + r].

For t ∈ [t0, T], we obtain∣∣∣(Au1)(t)− (Au2)(t)
∣∣∣ =

∣∣∣ 1
Γ(α)

∫ T

t
ζ ′(s)

(
ζ(s)− ζ(t)

)α−1[
f (s, us

1)− f (s, us
2)
]
ds
∣∣∣,

≤ L
Γ(α)

∫ T

t
ζ ′(s)

(
ζ(s)− ζ(t)

)α−1
‖us

1 − us
2‖ds,
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where:

‖us
1 − us

2‖ = sup
ι∈[−r,0]

(
|u1(s− ι)− u2(s− ι)|

)
.

For s ∈ [t, T], there is ι ∈ [−r, 0] such that

‖us
1 − us

2‖ = |u1(s− ι)− u2(s− ι)|,

=
|u1(s− ι)− u2(s− ι)|

σ(s− ι)δ(s− ι)
σ(s− ι)δ(s− ι),

≤ d(u1, u2)σ(s)δ(s).

Therefore,∣∣∣(Au1)(t)− (Au2)(t)
∣∣∣ ≤ Ld(u1, u2)

Γ(α)

∫ T

t
ζ ′(s)

(
ζ(s)− ζ(t)

)α−1
σ(s)δ(s)ds,

≤ Ld(u1, u2)

Γ(α)
δ(t)

∫ T

t
ζ ′(s)

(
ζ(s)− ζ(t)

)α−1
eλ(ζ(T)−ζ(s))ds. (6)

Let ρ = ζ(s). Then, dρ = ζ ′(s)ds. Consequently, we obtain

∫ T

t
ζ ′(s)

(
ζ(s)− ζ(t)

)α−1
eλ(ζ(T)−ζ(s))ds =

∫ ζ(T)

ζ(t)

(
ρ− ζ(t)

)α−1
eλ(ζ(T)−ρ)dρ,

=
∫ ζ(T)

ζ(t)

(
ρ− ζ(t)

)α−1
eλ(ζ(T)−ζ(t))e−λ(ρ−ζ(t))dρ,

= eλ(ζ(T)−ζ(t))
∫ ζ(T)

ζ(t)

(
ρ− ζ(t)

)α−1
e−λ(ρ−ζ(t))dρ.

Let s = λ(ρ− ζ(t)). Then, ds = λdρ. Therefore,

∫ T

t
ζ ′(s)

(
ζ(s)− ζ(t)

)α−1
eλ(ζ(T)−ζ(s))ds = eλ(ζ(T)−ζ(t))

∫ λ(ζ(T)−ζ(t)

0

sα−1

λα
e−sds,

≤ eλ(ζ(T)−ζ(t))

λα
Γ(α). (7)

Thus, from relations (6) and (7), we deduce that∣∣∣(Au1)(t)− (Au2)(t)
∣∣∣ ≤ L

λα
d(u1, u2)δ(t)eλ(ζ(T)−ζ(t)) =

L
λα

d(u1, u2)σ(t)δ(t), ∀t ∈ [t0, T].

Therefore, we obtain

d(Au1,Au2) ≤
L
λα

d(u1, u2).

Recall that L < λα. Thus, the operator A is contractive.

We can now establish the proof of Theorem 2.

Proof of Theorem 2. We have

(Ay)(t)− y(t) = 0, for all t ∈ [T, T + r].

It follows from (5) that

|y(t)− (Ay)(t)| ≤ ε

Γ(α)

∫ T

t
γ(s)ζ ′(s)

(
ζ(s)− ζ(t)

)α−1
ds,
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≤ εγ(t)
Γ(α)

∫ T

t
ζ ′(s)

(
ζ(s)− ζ(t)

)α−1
ds,

≤ εγ(t)
Γ(α + 1)

(
ζ(T)− ζ(t)

)α
.

Therefore,
d(y,Ay) ≤ ε

Γ(α + 1)

(
ζ(T)− ζ(t0)

)α
.

Using Theorem 2.1 in [9], there exists a unique solution u∗ of (1)–(2), with u∗(t) = y(t) for
all t ∈ [T, T + r], such that

d(y, u∗) ≤ ε

Γ(α + 1)

(
ζ(T)− ζ(t0)

)α 1
1− L

λα

,

≤
λα
(

ζ(T)− ζ(t0)
)α

(λα −L)Γ(α + 1)
ε.

Therefore,

|y(t)− u∗(t)| ≤
λα
(

ζ(T)− ζ(t0)
)α

(λα −L)Γ(α + 1)
eλ(ζ(T)−ζ(t0))γ(t)ε = εMα,ζ

T γ(t), ∀t ∈ [t0, T].

The second main result of this paper is given by the following Corollary 1, which
expresses the UH stability for the system (1)–(2).

Corollary 1. Suppose that the assumption (H) holds. If y ∈ AC([t0, T + r];R) satisfies the identity

|CDα,ζ
T y(t)− f (t, yt)| ≤ ε, for all t ∈ [t0, T], (8)

where ε > 0, then there exists a unique solution u∗ of (1)–(2) with

u∗(t) = y(t), ∀t ∈ [T, T + r],

such that

|u∗(t)− y(t)| ≤ Mα,ζ
T ε, ∀t ∈ [t0, T], (9)

where the constant Mα,ζ
T is given by the relation (4).

Proof. The proof of Corollary 1 can be deduced from that of Theorem 2, where the consid-
ered metric function d, in this case, is defined by

d(u, v) = sup
x∈[t0,T+r]

{ |u(x)− v(x)|
β(x)

}
,

where the positive function β is given by

β(x) =


1 , ∀ x ∈ [T, T + r],

eλ(ζ(T)−ζ(x)), ∀ x ∈ [t0, T].
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4. Numerical Illustration

In this section, we consider the case when f (s, us) is written in the form g(s, u(s + r)).
Consider the following integral equation:

u(t) = u(T) +
1

Γ(α)

∫ T

t
ζ ′(s)

(
ζ(s)− ζ(t)

)α−1
g(s, u(s + r))ds. (10)

We divide the interval [t0, T] into N sub-intervals [ti, ti+1], for i = 0, · · · , N − 1, of
equal amplitude h, where

ti = t0 + ih, i = 0, · · · , N and h =
T − t0

N
.

Then, it is clear that

T = tN ,

h = ti+1 − ti, 0, · · · , N − 1

At the grid point ti, for i = N − 1, · · · , 0, Equation (10) takes the form

u(ti) = u(tN) +
1

Γ(α)

∫ T

ti

ζ ′(s)
(

ζ(s)− ζ(ti)
)α−1

g(s, u(s + r))ds,

= u(tN) +
1

Γ(α)

N−1

∑
k=i

∫ tk+1

tk

ζ ′(s)
(

ζ(s)− ζ(ti)
)α−1

g(s, u(s + r))ds, (11)

≈ u(tN) +
1

Γ(α)

N−1

∑
k=i

g(tk, u(tk + r))
∫ tk+1

tk

ζ ′(s)
(

ζ(s)− ζ(ti)
)α−1

ds.

By integrating the integral in the right side of Equation (11), we obtain

u(ti) = u(tN) +
1

Γ(1 + α)

N−1

∑
k=i

g(tk, u(tk + r))ωi
k, (12)

where the coefficients ωi+1
k are given by

ωi
k = (ζ(tk+1)− ζ(ti))

α − (ζ(tk)− ζ(ti))
α, k = i, · · · , N − 1, i = N − 1, · · · , 0.

Now, let us consider the following notation:

ui = u(ti), i = 0, · · · , N.

Assume that there exists a positive integer p > 0 such that r = ph. The coefficient u(tk + r)
can be rewritten as

u(tk + r) = u(t0 + kh + ph) = u(t0 + (k + p)h) = u(tk+p) ≈ uk+p.

Therefore, Equation (12) can be rewritten as

ui = uN +
1

Γ(1 + α)

N−1

∑
k=i

g(tk, uk+p)ω
i
k, i = N − 1, · · · , 0. (13)

Example 1. Let [t0, T] = [0, 1], r = 0. Consider the system:

CDα,ζ
T u(t) = 5u(t) +z(t), ∀t ∈ [t0, T], (14)

u(T) = uT . (15)
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whose exact solution is u(t) = 1+ t2. The initial condition u(T) = u(1) = 2 and α = 0.75, ζ(t)
= t. The source term z is given by

z(t) =
2t2−α

Γ(3− α)
− 5(1 + t2).

The system (14)–(15) is solved using the scheme (13) by the software Matlab 7.5.0 (R2007b).
Figure 1 show the convergence of the numerical solution to the exact solution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

t

 

 

Numerical solution

Exact solution

Figure 1. The exact solution and the numerical solution for a time step h = 10−3.

Example 2. This example is devoted to the UHR stability.
The data used in this experiment are chosen as follows:

[t0, T] = [1, e], [−r, 0] = [− 1
10

(e− 1), 0], λ = 0.2, α = 0.75.

Let ζ(t) = ln(t). In this case, we obtain CDα,ζ
T u(t) =CH D0.75

e u(t), where CH D0.75
e u(t) is

the Caputo–Hadamard fractional derivative of u(t) (see [26]).
Consider the Caputo–Hadamard fractional problem:

CH D0.75
e u(t) = f (t, ut), ∀t ∈ [1, e], (16)

where f (t, ut) = 1
10 cos(t)u(t + r). Note that the function f satisfies the assumption (H):

| f (t, u)− f (t, v)| ≤ 1
10
‖u− v‖, ∀t ∈ [1, e].

Now, let us define the fractional system:

CH D0.75
e y(t) = f (t, yt) + θ(t), ∀t ∈ [1, e],

y(t) = 0.6 cos(2.5π(e− t))e−3(e−t), ∀t ∈ [e, e + r],
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where θ(t) = 1
30t2+1 . Since, we have

|θ(t)| = 1
30t2 + 1

≤ 1
30

1
t2 , ∀t ∈ [1, e],

then, from Remark 1, y ∈ C([1, e];R) is a solution to the inequality (5), with ε = 1
30 and γ(t) = 1

t2 :

|CH D0.75
e y(t)− f (t, yt)| ≤ 1

30
1
t2 , ∀t ∈ [1, e].

Therefore, from Theorem 2, we deduce that Equation (16) has a unique solution u∗ such that

u∗(t) = y(t), ∀t ∈ [e, e + r],

and
|u∗(t)− y(t)| ≤ 1

30
1
t2 M0.75,ζ

e , ∀t ∈ [1, e],

where the constant M0.75,ζ
e is given by

M0.75,ζ
e =

λα(ζ(T)− ζ(t0))
α

(λα −L)Γ(α + 1)
eλ(ζ(T)−ζ(t0)),

=
0.20.75(ln(e)− ln(1))0.75

(0.20.75 − 0.1)Γ(0.75 + 1)
e0.2(ln(e)−ln(1)) ≈ 1.9966.

So, we obtain

|u∗(t)− y(t)| ≤ 0.06655
1
t2 , ∀t ∈ [1, e].

In Figure 2, we plotted the solution u∗ of Equation (16) for t ∈ [1, e] and the corresponding initial
condition u(t) = y(t) = ϕ(e − t), for t ∈ [e, e + r]. In Figure 3, we plotted the solution u∗

of Equation (16) and the solution y(t) of the inequality (5), for t ∈ [1, e], with the same initial
condition u(t) = y(t) = ϕ(e− t), for t ∈ [e, e + r]. The difference |u∗(t)− y(t)| and the curve
of the function εγ(t)M0.75,ζ

e , for t ∈ [1, e], are plotted in Figure 4. In fact, it is clear that there is
consistency between the UHR stability result and the numerical experiment given in Figure 4.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

t

 

 

Solution u∗(t), t ∈ [1, e]

Initial condition u(t) = ϕ(e− t), t ∈ [e, e+ r]

Figure 2. The numerical solution u∗(t) for t ∈ [1, e], with the initial condition ϕ(e− t), for t ∈ [e, e+ r].
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1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
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0.615
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u∗(t), t ∈ [1, e]

y(t), t ∈ [1, e]

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
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Figure 3. The numerical solution u∗(t) and the numerical solution y(t), for t ∈ [1, e].
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Example 3. This example is devoted to the UH stability.
The data used in this experiment are chosen as follows:

[t0, T] = [1, 2e], [−r, 0] = [−1
5
(2e− 1), 0], λ = 0.2, α = 0.7.

Let ζ(t) =
√

t2 + 1. Consider the system defined by ζ−Caputo fractional derivative:

CD0.7,ζ
2e u(t) = f (t, ut), ∀t ∈ [1, 2e], (17)

where f (t, ut) = 0.3 sin(5t)u(t + r). Note that the function f satisfies the assumption (H):

| f (t, u)− f (t, v)| ≤ 0.3‖u− v‖, ∀t ∈ [1, 2e].

Now, let us define the fractional system:

CD0.7,ζ
2e y(t) = f (t, yt) + ε, ∀t ∈ [1, 2e],

y(t) = 6 cos(12π(2e− t)) sin(13π(2e− t)), ∀t ∈ [2e, 2e + r],

where ε = 0.01. If y ∈ C([1, 2e];R) is a solution to the inequality

|CD0.7,ζ
2e y(t)− f (t, yt)| ≤ ε, ∀t ∈ [1, 2e],

then, from Corollary 1, we deduce that Equation (17) has a unique solution u∗ such that

u∗(t) = y(t), ∀t ∈ [2e, 2e + r],

and
|u∗(t)− y(t)| ≤ εM0.7,ζ

2e , ∀t ∈ [1, 2e],

where the constant M0.7,ζ
2e is given by:

M0.7,ζ
2e =

λα(ζ(T)− ζ(t0))
α

(λα −L)Γ(α + 1)
eλ(ζ(T)−ζ(t0)),

=
0.20.7(ζ(2e)− ζ(1))0.7

(0.20.7 − 0.3)Γ(0.7 + 1)
e0.2(ζ(2e)−ζ(1)) ≈ 90.5732.

So, we obtain
|u∗(t)− y(t)| ≤ 0.905732, ∀t ∈ [1, 2e].

In Figure 5, the solution u∗ of Equation (17) for t ∈ [1, 2e] and the corresponding initial condition
u(t) = y(t) = ϕ(2e− t), for t ∈ [2e, 2e + r] are plotted. In Figure 6, we plotted the solution u∗

of Equation (17) and the solution y(t) of the inequality (8), for t ∈ [1, 2e], with the same initial
condition u(t) = y(t) = ϕ(2e− t), for t ∈ [2e, 2e + r]. The difference |u∗(t)− y(t)| and the
horizontal line ξ(t) = εM0.7,ζ

2e , for t ∈ [1, 2e], are plotted in Figure 7. Again, it is clear that there is
consistency between the UH stability result and the numerical experiment given in Figure 7.
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Figure 5. We plotted the solution u∗ of Equation (17) for t ∈ [1, 2e], and the corresponding initial
condition u(t) = y(t) = ϕ(2e− t), for t ∈ [2e, 2e + r].
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Figure 6. We plotted the solution u∗ of Equation (17) and the solution y(t) of the inequality (5), for
t ∈ [1, 2e], with the same initial condition u(t) = y(t) = ϕ(2e− t), for t ∈ [2e, 2e + r].



Axioms 2023, 12, 581 13 of 14

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

t

 

 

|u∗(t)− y(t)|, t ∈ [1,2e]

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

 

 

|u∗(t)− y(t)|, t ∈ [1,2e]

ξ(t) = εM 0.7,ψ
2e , t ∈ [1,2e]

Figure 7. We plotted both the difference |u∗(t)− y(t)| and the horizontal line ξ(t) = εM0.7,ζ
2e , for

t ∈ [1, 2e].

5. Conclusions

In this work, several goals are achieved. We have proved the existence and the
uniqueness of solutions for the problem defined by backward differential equations with
time advance via ζ−Caputo fractional derivative. Moreover, two stability results, in the
sense of UHR and UH, have been established. Finally, we presented numerical results to
confirm the theoretical results obtained.

In future work, it would be interesting to study the finite-time stability for this type of
backward differential equation with time advance with other types of fractional derivatives.
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