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W N e

Abstract: It is well known that ranked set sampling (RSS) is more efficient than simple random
sampling (SRS). Furthermore, the presence of missing data vitiates the conventional results. Only
a minuscule amount of work has been conducted under RSS with missing data. This paper makes
a modest attempt to provide some efficient difference- and ratio-type imputation methods in the
presence of missing values under RSS. The envisaged imputation methods are demonstrated to
provide better results than the existing imputation methods. The theoretical results are enhanced by a
computational analysis using real and hypothetically generated symmetric (Normal) and asymmetric
(Gamma and Weibull) populations. The computational results show that the proposed imputation
method outperforms the existing imputation methods in terms of its higher percent relative efficiency.
Additionally, the impact of skewness and kurtosis on the efficiency of the suggested imputation
methods has also been calculated.

Keywords: bias; mean square error; missing data; imputation; ranked set sampling

MSC: 2020: 62D04

1. Introduction

The most common problem reported by a survey statistician in their daily life is
making inferences from data containing missing values. Such problems of missing values
in survey sampling may be tackled through the technique of imputation. A wide range of
imputation methods have been suggested by various authors. The authors of [1] discussed
three noteworthy concepts on missing values as missing at random (MAR), observed at
random (OAR), and parameter distribution (PD). Subsequently, [2-6] suggested different
types of imputation methods. The authors of [7] showed that missing at random and
missing completely at random (MCAR) are totally different approaches. Many renowned
authors [8-12] assumed the MCAR approach in their studies for the imputation of missing
values. The authors of [13] introduced some imputation methods which outperformed
the imputation methods suggested by [14]. The authors of [15] developed logarithmic-
type imputation methods under SRS. The authors of [16] utilized robust measures and

Copyright: © 2023 by the authors.

suggested compromised imputation-based mean estimators.
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In real-life applications, situations may arise where the measurement of the study
variable is not easy or expensive to do so but can be ranked visually or by a cost-free
measure. In this situation, ref. [17] envisaged the concept of ranked set sampling (RSS)
Attribution (CC BY) license (https:// but did not provide any rigorous mathematical support. The authors of [18] explored
creativecommons.org, licenses /by / the idea of [17] and furnished the essential mathematical foundation to the theory of RSS.
10/). In sample surveys, when each group has very few observations, each observation then
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becomes essential to make an effective prediction. Furthermore, the utilization of these
types of datasets based on missing values may alter the final conclusion and decrease the
efficiency of the estimation procedure. To deal with such problems, refs. [19-22] introduced
an analytical comparison of imputation methods under RSS.

This paper conducted a search for efficient imputation procedures. We adapted some
efficient difference- and ratio-type imputation methods under RSS based on [11,12], which
are more efficient compared to the mean imputation method and the imputation methods
suggested by [21,22] under RSS.

The paper is organised as follows: Section 2 describes the detailed methodology of
RSS as well as the notations utilized throughout the paper. In Section 3, we consider a
concise recap of some imputation methods under RSS, whereas in Section 4, we consider
the proposed methods of imputation. In Section 5, we provide the efficiency conditions.
Section 6 is devoted to the computational analysis and finally, Section 7 considers the
conclusions of this study.

2. Sampling Methodology and Notations

The methodology of RSS was initiated by [17], based on drawing m simple random
samples of size m from the parent population. These m units are now ranked inside each
set regarding the auxiliary variable. The rank 1 unit is chosen from the first set for the
measurement of the auxiliary variables along with the associated study variable. The
rank 2 unit is chosen from the second ranked set for the measurement of auxiliary variable
X along with the associated study variable Y, and the process is proceeded until the rank m
unit is chosen from the last set. The above process is referred to as a cycle. This whole
procedure is repeated k times, providing n = mk ranked set samples.

In the presence of missing values in a dataset, an alteration in the aforesaid methodol-
ogy is proposed for the estimation of the population mean of the study variables under the
consideration of usable auxiliary information. To facilitate ranking, m bivariate random
samples, each consisting of m units, are quantified from the parent population. These m
units are ranked within each set regarding the auxiliary variable as it is hypothesized that
the study variable has some missing values. Now, from the first sample, the smallest ranked
unit of X along with the correlated Y is selected. From the second sample, the second
smallest ranked unit of X along with the correlated Y is selected. The above procedure is
continued in the same mode until the mth sample from the highest ranked unit of X along
with the correlated Y is selected. Compatible to the study variable from the first cycle, m’
units can provide a response for the measurement of the element out of the selected m units
such that m > m’. The whole procedure is repeated k times until responses from n’ units
out of n selected units is obtained, where n > n’.

Notations

Let yy, = N1 YN, Y; be the mean of the finite population Q) of N identifiable units
with values Yj, i € (). Let a ranked set sample s of size n = mk be quantified from
Q) to estimate the population mean y,. Let m’ be the number of responding units out
of the sampled m units. Let P be the probability that the ith respondent belongs to the
responding group A and (1 — P) be the probability that the ith respondent belongs to
the non-responding group A such that s = AU A. The value Y;, i € A is observed for
every unit, but for the units i € A the values are missing and need imputation to build
the complete structure of the data to draw a valid conclusion. The auxiliary variable X
assists in the execution of imputation of missing values. Let X; be the value of X for
the unit i which is positive and known V i € s such that X; = X;; i € s are known.
Let X rss = 2?1:,1 Z;‘:l X(i.iyj/ mkP and Yy rss = Z;’il Z;‘:l Y(i.j)j/ mkP possess the unbiased
estimator of population means i and yy, respectively. Here, X(;;; and Y[;,;; are the ith
order statistics and ith judgement order in the ith sample, respectively, of size m in cycle j
for variable X and Y. For the sake of simplicity, we denote X;;); and Y[;.;; by X(;) and Y,
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respectively. Let P be the probability of determining the response, then E(r~7) = {E(r)}~/,
which provides the variance as

v oy 1
E{V(Yr,rss)} = m - 2kP i:1 Ty[i] (1)
then E(j7") ={E(j)} ' =nP )

The proof of (1) and (2) can be viewed in [20].

To tabulate the bias and mean square error (MSE), the following notations and re-
sults are used throughout this paper. Let Y s = py (1 +€0), Xy s = px(1+€1), and
Xnrss = px(1+ €2), where €, €1, and €, are the error terms, such that E(eg) = E(e1) =
E(ez) =0and

cy 1o T . .
E(ef) = <mkyp— e Z y“) = (’y Cy— Wy )
C% 1 z X(i) _ x 2 2%
kD m2kP = 2 _(“YCX*WJ

CZ 1 mT’%i
Loy ) = (-

nycxcy 1 u Txy[i] % *
Flava) = ( mkP kD & = (1PnCiCy =Wy
=

m -
) ) = (10xyCxCy — Way)

where v* = 1/mkP, v = 1/mk, Wy2 =1y", Tyz[i]/m2ku§, W2 =1y", T,%(i)/mZkyi,

Wy =137, T)%(,») /mPkPyz, Wey = 13714 Ty /mPkpxpy, Wiy = 13505 Txy[i]/m2kpﬂxﬂyr
Ty = (P‘y[i] — Hy), Txgy = (me —Hx), Ty = (P‘x(i) - P‘X)(Vym —Hy)r Cx = Sx/px,
Cy = Sy/muy, py = E(Y), px = E(X), Hyy = E(Y};), and Hxg = E(X;))-

Here, Sy and S, are the population standard deviations due to the auxiliary variable
X and study variable Y, respectively, Cy and C, are the population coefficients of variation
due to the auxiliary variable X and study variable Y, respectively, and py is the population
correlation coefficient between the auxiliary variable X and study variable Y. Moreover,
we would also like to annotate that the quantities jix, and py,, consist of order statistics
from some particular distributions and can be easily determined from [23].

3. Review of Imputation Methods under RSS
3.1. Mean Imputation Method

The method of imputation is

RS forie A
Yi= Y, s fori€ A

The consequent estimator is
tm == Yr,rss (3)

The imputation methods are categorized into three strategies under the consideration
of the availability of auxiliary information.
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Strategy I: When py is known and X, ;<5 is used.
Strategy II: When p is known and X ;s is used.
Strategy I1I: When i, is unknown and X, »ss and X, s are used.

3.2. The Al-Omari and Bouza Imputation Method

To improve the efficiency of the estimators in the presence of missing data, [9,21]
suggested some regression-cum-ratio-type estimators under RSS as
Strategy I

Yr,rss + b(,ux - _n,rss),ux

S H 4

IKG s @
Strategy I1

_ o Yr,rss + b(ﬂx - Xr,rss)]/lx

yKCZ B XV,VSS (5)
Strategy I11

— YT VH] + b(Xl’l rss T XT‘ T’SS)XI’I rss

= — = . - 6
YKCs Xr,rss ( )

where b = Sy, /52 is the regression coefficient of Y on X.

3.3. The Sohail, Shabbir and Ahmed Imputation Methods

Following [20-22], we examined the ratio-type estimators of [8] using RSS for the
imputation of missing values. These imputation methods are

Strategy I
Y, forie A
Yis; = nlr{"Yr,rss (X]:,ers)ﬁl - VYr,rss} forie A
Y, forie A
Yisy = {nlr [”Y’f’“{m} - erss} foric A
Strategy 11
Y, forie A
Yis, = nl_r{”anss (ﬁ)ﬁz _ rlerss} fori € A
Y; forie A
Yiss = { 1 [m—,ms{ L } _ ers} fori € A
Strategy I11

Y; foric A
i = _ % 183 = . A
Yisy ﬁ {nYr,rss (é(-(n'rss ) - rYr,rss } foric A

7,158

Y, foric A
Y = = [”Yr’m { Be X rss-i((nl,risﬁé)xn rss } B VYr,rss} forie 4
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The consequent estimators are

o =ve(2)” <9>

o y_r'rss{ BaXnrss J:lz(l — Ba)px } (10

frs = Yo { B5Xrrss +;i(xl — Bs)px } (v

=t () .

where B;; i =1,2,...,6 are appropriately chosen optimizing scalars.
The MSE values of the consequent estimators consisting of different imputation
methods are given in Appendix A for quick reference and further analytical comparison.

4. The Proposed Imputation Methods
The crux of the present article is:

1. To provide efficient imputation methods for mean estimation.
2. To access the impact of the skewness and kurtosis coefficients on the choice of imputa-
tion procedures.

Motivated by the works of [11,12], we propose nine new imputation methods under
the three strategies discussed earlier, defined as

Strategy I
i = a1Y; fori e A
B aer,rss + %(Xn,rss - ]flx) fOI'i c A
Y; foric A
- B 0 ) )
Yis nl_r{nqur,m (ijss> f rY,,rss} foriec A
Y; foric A
i = % {nlx7Yr,rss (ng) — TYr,rss} foric A

Strategy 11

apY; forie A

Yi, = - - . _

2 X2 Yy rss + %(Xr,rss — ],tx) foric A
Y forie A

. = _ 95 _ . _
Yis ﬁ {nogszs <ny ) — rY,/,ss} fori € A
r,rss

=

foric A

Yig = { 1 - Y - . -
ﬁ |:n068yr’rss { m} - rYr’rss:| fOI‘ 1 6 A
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Strategy 111
Vi = a3Y; foric A
B 7 ) @aVirss + 28 (R pss — Rnpes) fori € A
Yi forie A
H p— - \% 9 —_ —_
Y nl_r{naéy,,,ss (’;{) °_ rY,,,ss} foric A
Y; foric A
y.lg N % {nang’rss{ Xn rss+99)(()%rrsri;s_xn rss) } o rYr’rss:| fOI' l = A
Under the above strategies, the consequent estimators are
= 0‘1Yr,rss + 61 (Xn,rss - Vx) (13)
T, = WZYr,rss + GZ(Xr,rss - Vx) (14)
T3 = “3Yr,rss + 93(Xr,rss - Xn,rss) (15)
_ U 04
Ty = “4Yr,rss (X a ) (16)
n,rss
_ i 05
T5 = a5Y} rss (}_{x) (17)
7,1ss
} X %
Te = &Yy s < Xn,rss) (18)
7,185
T; = “7Yr,rss{ ;‘—lx } (19)
Hx + 97(Xn,rss - Fx)
_ Uy
Tg = agY, = 20
8 8 r,rss{ i T 98(Xr,rss — ]/lx) } ( )
\/ X?’l 1SS }
To = a9, = — = 21
? ? r,rss{ Xn,rss + 69(Xr,rss - Xn,rss) ( )

where «; and 0;;i = 1,2,...,9 are suitably chosen scalars.

Theorem 1. The MSE of the consequent estimators comprising the suggested imputation meth-
ods are

MSE(Ty) = {
MSE(T,) = {
MSE(T3) = {

MSE(Ty) = iy,

MSE(Ty) — 2

(1 = 1) +adpy (v* Cf = Wi ) + 033 (vCF — WE) }

20101 e pry (70:y Cx Cy — Way)

(w2 — 1) + adpf (v C; — W ) + 0343 (v CE — WE)
20202 phy (¥ 02y CxCy — W;y)
(03 = 1)%pf + a3pf (7" Cf — Wi ) + 033 (7 CE — W — 7y C + WR)
+2“393Vx.uy(7*ﬁoxycxcy - W;:y - 'YnyCny + ny)
- * (2 2 2 2

1+“i{ L+97Cy — Wy +04(204 + 1) (7C — W5) }

—404(7pxyCxCy — Wiy)

_20‘4{1 - 94(’)/ny(:ny - ny) + M(W/C?{ - W)%)}

- 14+97C2— W2 +65(205+ 1)(7"C2 — W)
51 —405(7"pxyCxCy — W)
~205{1 = 05(1" 0 CoCy — Wy,) + 5 (72 - W) |

(22)

(23)

(24)

(25)

(26)
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MSE(Ts) = 1

MSE(Ty) = u

MSE(Ts) = i,

MSE(T;) =

Lt 1+9*CE — W2 +06(206 + 1) (7"C2 — WE —4C2 + W2) }

—406 ('Y*nycxcy - W;gky - ')/nycxcy + ny)

. ; (27)
FO (R WE =R W)
14a2{ 149°C2— W2 +362(vCE = W2) — 467 (792 CxCy — Wry) } ] 28)
L *2"‘7{1 + 9%(7C§ - W) - 07(7PxyCxCy — ny)}
1+ ad{ 1+7°CE—WE +303(7'C2 = WE) — 405 (7" puyC:Cy — W3, | )
~205{1+03(1"C — W) — 057700/ CxCy — Wiy }
Lt ad 1+ 7*C§ - WZ + 36557*@% —WZ¥ —9C2+ W2
_499 (’)’ pxycxcy - ny - ’YnyCny + ny) (30)

_zzxg{ 1465 (v"Ci— Wi —1Ci+W5)
—09 (7" pxyCxCy — W5, — 102y CxCy + Way)

Proof. The precis of the derivations are given in Appendix B for quick reference. O

Corollary 1. The minimum MSE of the consequent estimators comprising the suggested imputa-
tion methods are given by

minMSE(T;) = py (1 — i) ); i = 1,2,3,7,8,9 (31)

A;); j=4,5,6 (32)

minMSE(T;) = yf, (1 — &j(opt)

Proof. A summary of the derivations and the definition of the parametric function A; are
given in Appendix B. O

5. Efficiency Conditions

By successively comparing the MSEs of the suggested imputation methods y;, to
i, regarding the other existing imputation methods proposed by [21,22], we obtain the
following efficiency conditions.

(1). From (31) and (A1)
Wiopry > 1= 7"Co+ W75 i=1,2,3,7,89 (33)
(ii). From (32) and (A1)
1 re2 w2, i —
g > 7 (17 I+ WY )i j = 45,6 (34)
(iii). From (31) and (A2)

. B\ 2 .
Xi(opt) > 1 *7*C§+Wy2 - {1 — (R) }(7C§ —W,%); i=1,2,3,7,8,9 (35)

(iv). From (32) and (A2)

. B\? .
1—7"Ci+ Wy —{1— <R> }(ycﬁ—wﬁ)l; j=4,56 (36)

1
Xj(opt) > A

(v). From (31) and (A3)
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iopt) > 1 =7 Co+ Wy — " Ci+ Wy + <R>(7 pxyCxCy — W5,); i=1,2,3,7,8,9 (37)

(vi). From (32) and (A3)

1 * * .
%itopt) > Xj{ 1- " C2+ W2 — " C2+ WE (%) (7" pxyCxCy — W) }; j=4,56 (38)
(vii). From (31) and (A4)

1-yci+wi —{1+(§) }2<7*C§ - W)
+2{1 + (%) }(’Y*nycxcy - W)

(viii).From (32) and (A4)

Xi(opt) >

]; i=1,2,3,7,8,9 (39)

1

Xj(opt) > 4

1— 7" C2+ W2 — {1 + (%) }2(7*C§ -W2)
+2{1+ () }(rom CiCy — Wy)

(ix). From (31) and (A8)

]; j=4,56 (40)

(70xyCxCy — Way)?

* (2 2% o
Xi(opt) > 1—7v Cy + Wy + (4CZ— WD) ; 1=1,2,3,7,8,9 41)

(x). From (32) and (AS8)
Ll e wey PeCG W) | o Iy

(xi). From (31) and (A9)

(7*nycxcy - W;y — 7PxyCxCy + ny)2
(7*Cx2 — W2 — yCx2 + W2)

(xii). From (32) and (A9)

Wiopry > 1= 7" Ch+ W5 + ;i=1,2,3,7,8,9 (43)

*0xyCxCy — W, — CxCy + Wyy)?
> (Ve CxCy = Way = W0y CxCy & Woy) };j—4,5,6 (44)

jort) > & {1 G AWy T e W e s WD)

It is notable that only under these conditions, we can ensure the efficiency of the
suggested imputation methods. Furthermore, we observed that these conditions are
usually satisfied in various populations.

6. Computational Study

To enhance the soundness of the efficiency conditions obtained in the previous section,
a computational study was designed in three subsections, namely, a numerical analy-
sis based on a real population, a simulation analysis based on an artificially generated
population, and a discussion of the computational findings.

6.1. Numerical Study

In this subsection, a numerical study is performed and the performance of the pro-
posed imputation methods is compared with existing imputation methods. The numerical
analysis was accomplished on four real datasets. Population 1 was taken from [24], where
the level of apple production was taken as the study variable and the number of apple
trees taken as the auxiliary variable in 69 villages of the South Anatolia region of Turkey
in 1999. Population 2 was taken from [25], where the population (in millions) in 1983 was
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considered as the study variable and the export (in millions of U.S. dollars) was considered
the auxiliary variable. Population 3 was taken from [26], where the amount (in U.S. dollars)
of real estate farm loans in different states during 1997 was considered as the study variable
and the amount (in U.S. dollars) of non-real estate farm loans in different states during 1997
was considered the auxiliary variable. Population 4 was taken from [25], where the total
number of seats in the municipal council in 1982 was considered the study variable and the
number of conservative seats in the municipal council in 1982 was considered the auxiliary
variable. The necessary values of the parameters for all four populations are reported in
Table 1.

Table 1. Description of the population parameters.

Parameters Population 1 Population 2 Population 3 Population 4
N 69 124 50 284
n 12 12 12 12
m 3 3 3 3

T 4 4 4 4
p 0.5 0.3 0.7 0.6
Hy 71.34 36.65 555.43 47.50
Ux 3165.02 14276.03 878.16 9.05
Sy 110.85 116.80 584.82 11.06
Sy 3965.24 31431.81 1084677 4.95
Oxy 0.91 0.23 0.80 0.66

The percent relative efficiency (PRE) of the proposed imputation methods regarding
the conventional imputation methods was calculated using the following formula:

MSE(t)
PRE = ———~ x 100 45
MSE(T) 45
where T = ty, t5, i=1,2,...,6,and T;, i = 1,2,...,9. The results of the numerical analysis
are summarized in Table 2 and depicted in Figure 1 under strategies I, II, III and III for
each population.

Table 2. PRE of the proposed estimators for real populations.

Estimators Population 1 Population 2 Population 3 Population 4
tm 100.00 100.00 100.00 100.00
Strategy I

T 200.23 379.07 213.14 266.61
Ty 198.93 388.40 216.47 276.07
T 200.23 379.07 213.14 266.61
ts;,i=1,4 169.41 102.59 199.16 233.60
Pke, 111.93 89.60 72.25 78.77
Strategy II

T, 584.83 385.66 360.33 2169.67
Ts 576.85 421.37 369.29 2459.06
Tg 584.83 385.66 360.33 2169.67
ts;,1=2,5 554.02 109.18 346.35 2136.65
Vke, 118.15 72.99 68.44 69.78
Strategy III

T3 220.06 380.63 126.93 167.17
Te 218.39 395.85 127.34 169.46
Ty 223.56 368.69 125.09 160.86
ts;,1=3,6 189.24 104.14 112.94 134.15

Tkes 98.91 79.99 89.12 72.58
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Consequent estimators

T3 T6 9

(c)

Figure 1. PRE results of the consequent estimators under (a) strategy I, (b) strategy II, and (c) strategy
III for the real populations reported in Table 2.

6.2. Simulation Analysis

To assess the performance of the suggested imputation methods, following [27], simu-
lation experiments were conducted over three parent populations, namely, Normal, Gamma,
and Weibull, of size N = 1000 units with variables X and Y, expressed by

S
Y =29+,/(1-p})Y* —|—pxy<Sy)X*
X

X =25+X"*

where X* and Y* are independent variables of the corresponding parent population.
The sampling methodology of Section 2 was used to draw an RSS of size 12 units with set
size 3 from each parent population. Using 20,000 iterations, the PRE of the consequent
estimators compared to the conventional mean estimator were computed as

1 20,000 2
20000 Lic1 (b — y)

PRE = 1 20,000 )

20,000 Lih (T - Vy)

% 100

The outcomes of the simulation experiments are reported in Tables 3-9 by their PRE
for each sensibly opted values of response probability P = 0.2,0.3,0.4,0.5,0.6,0.7, 0.8 with
corresponding correlation coefficient p,, = 0.6,0.7,0.8,0.9.
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Table 3. PRE of the proposed estimators at P = 0.20.

Pxy 0.6 0.7 0.8 0.9
t 100 100 100 100
X* ~ N(20,25)
Y* ~ N(30,35)

Strategy I

T 108.2314 110.1882 113.1969 118.9193
Ty 108.9253 110.9860 114.1003 119.9397
ts,i=1,4 102.4440 102.7442 102.8370 102.7567
Vkey 56.3365 62.5280 70.0558 78.6946
Strategy II

T;,i=2,8 119.3313 122.8567 126.3605 131.6545
Ts 123.7161 127.9222 132.0179 137.8729
ts;,i=2,5 113.5438 115.4126 116.0005 115.492
Tk, 20.5860 25.1720 32.1576 43.0168
Strategy III

T;, i=3,9 116.3368 119.4054 122.7634 128.1837
Te 119.6366 123.2108 127.0276 132.9048
ts;,i=3,6 110.5493 111.9614 112.4035 112.0212
Tikes 21.7699 27.3798 35.9864 49.5031

X* ~ Gamma(5.6,0.9)

Y* ~ Gamma(6.9,0.9)

Skewness of Y 0.6046 0.6134 0.6571 0.7487

Kurtosis of Y 3.4184 3.4308 3.5393 3.7750

Strategy 1

T;,,i=1,7 104.1361 104.0201 103.8752 103.7148
Ty 103.9699 103.8591 103.7210 103.5712
ts,i=1,4 102.2484 102.1062 101.8782 101.5178
ke, 84.4838 84.5867 85.0399 86.0938
Strategy II

T;,i=2,8 114.2407 113.4139 112.1508 110.2765
Ts 113.4229 112.6215 111.3919 109.5685
ts,i=2,5 112.3531 111.5000 110.1539 108.0795
Ve 52.5444 52.7365 53.6026 55.6966
Strategy III

T;,i=3,9 111.5319 110.9071 109.9584 108.5579
Te 110.8735 110.2693 109.3479 107.9888
ts;,i=3,6 109.6442 108.9931 107.9614 106.3608
Tkes 50.0729 50.1878 50.9778 52.9983

X* ~ Wb(0.945,1.0)
Y* ~ Wb(0.953,0.99)

Skewness of Y 1.3561 1.3526 1.4714 1.7607
Kurtosis of Y 5.2276 5.2844 6.0535 7.8079
Strategy 1

T;,i=1,7 107.3833 107.2255 107.1537 107.1449
Ty 107.5074 107.3496 107.2772 107.2674
ts,i=1,4 105.6587 105.0803 104.5253 103.9469
Fkey 80.5933 83.9483 86.6202 88.7951
Strategy II

T;,i=2,8 138.2957 134.0250 130.2555 126.6323
Ts 139.1752 134.8628 131.0549 127.3948
ts,, i=b2,5 136.5711 131.8799 127.6271 123.4344
Tke 46.4315 52.3644 57.8042 62.7748
Strategy III

T;,i=3,9 128.9875 126.1204 123.5728 121.1061
Te 129.6256 126.7374 124.1689 121.6812
ts;,i1=3,6 127.2628 123.9752 120.9444 117.9082
Tk 55.5027 62.5806 68.7953 74.1058

Bold values indicate maximum PRE.
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Table 4. PRE of the proposed estimators at P = 0.30.

Pxy 0.6 0.7 0.8 0.9

tm 100 100 100 100
X* ~ N(20,25)

Y* ~ N(30,35)

Strategy I

T;,i=1,7 107.5696 109.1362 111.2233 114.9679
Ty 108.2824 109.9559 112.1497 116.0109
ts,i=1,4 103.7113 104.1735 104.3167 104.1929
Vkey 46.2412 52.6613 60.9329 71.1186
Strategy II

T;,i=2,8 117.4021 120.3753 122.9071 126.2670
Ts 120.3133 123.7369 126.6603 130.3914
ts;,i=2,5 113.5438 115.4126 116.0005 115.4920
Tk, 20.5860 25.1720 32.1576 43.0168
Strategy III

T;,i=3,9 112.9688 115.2747 117.5940 121.1378
Te 114.8323 117.4214 120.0030 123.8138
ts;,i=3,6 109.1105 110.3120 110.6873 110.3628
Tree 21.7699 27.3798 35.9864 49.5031
X* ~ Gamma(5.6,0.9)

Y* ~ Gamma(6.9,0.9)

Skewness of Y 0.6046 0.6134 0.6571 0.7487
Kurtosis of Y 3.4184 3.4308 3.5393 3.7750
Strategy 1

T,i=1,7 104.6694 104.4689 104.1753 103.7588
Ty 104.5033 104.3080 104.0213 103.6153
ts,i=1,4 103.4110 103.1930 102.8440 102.2941
Tkey 78.4014 78.5344 79.1216 80.4968
Strategy II

T,i=2,8 113.6115 112.7759 111.4852 109.5442
Ts 113.0660 112.2474 110.9790 109.0720
ts;,1=2,5 112.3531 111.5000 110.1539 108.0795
Ve 52.5444 52.7365 53.6026 55.6966
Strategy III

T;,i=3,9 109.5966 109.0575 108.2289 106.9865
T 109.2114 108.6844 107.8719 106.6538
ts;,i=3,6 108.3381 107.7815 106.8976 105.5218
Tkes 50.0729 50.1878 50.9778 52.9983
X* ~ Wb(0.945,1.0)

Y* ~ Wb(0.953,0.99)

Skewness of Y 1.3561 1.3526 1.4714 1.7607
Kurtosis of Y 5.2276 5.2844 6.0535 7.8079
Strategy 1

T;,i=1,7 109.8849 109.2492 108.6973 108.1715
Ty 110.0138 109.3775 108.8245 108.2972
ts,i=1,4 108.7352 107.8191 106.9450 106.0396
Vkey 73.4648 77.7113 81.1888 84.0843
Strategy II

T;,i=2,8 137.7209 133.3100 129.3794 125.5664
Ts 138.3068 133.8682 129.9120 126.0744
ts,i=2,5 136.5711 131.8799 127.6271 123.4344
Vke, 46.4315 52.3644 57.8042 62.7748
Strategy III

T;, i=3,9 124.2186 121.7980 119.6111 117.4585
Te 124.574 122.1439 119.9472 117.7845
ts;,1=3,6 123.0688 120.3679 117.8588 115.3266
Tk 55.5027 62.5806 68.7953 74.1058

Bold values indicate maximum PRE.
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Table 5. PRE of the proposed estimators at P = 0.40.

Pxy 0.6 0.7 0.8 0.9
tm 100 100 100 100
X* ~ N(20,25)

Y* ~ N(30,35)

Strategy I

T;,i=1,7 107.9041 109.3652 111.0196 113.7510
Ty 108.6366 110.2077 111.9699 114.8175
ts,i=1,4 105.0104 105.6432 105.8396 105.6698
Vkey 39.2142 45.4841 53.9122 64.8732
Strategy II

T;,i=2,8 116.4375 119.1347 121.1805 123.5733
Ts 118.6164 121.6501 123.9885 126.6586
ts;, i =2,5 113.5438 115.4126 116.0005 115.4920
Tk, 20.5860 25.1720 32.1576 43.0168
Strategy III

T;,i=3,9 110.6024 112.4326 114.2028 116.8341
Te 111.7649 113.7708 115.7070 118.5106
ts;,i=13,6 107.7087 108.7106 109.0228 108.7528
Tikes 21.7699 27.3798 35.9864 49.5031
X* ~ Gamma(5.6,0.9)

Y* ~ Gamma(6.9,0.9)

Skewness of Y 0.6046 0.6134 0.6571 0.7487
Kurtosis of Y 3.4184 3.4308 3.5393 3.7750
Strategy 1

T;,i=17 105.5441 105.2600 104.8268 104.1809
Ty 105.3782 105.0993 104.6730 104.0376
ts,i=1,4 104.6003 104.3031 103.8283 103.0824
Tkey 73.1359 73.2903 73.9734 75.5831
Strategy II

Ty,i=2,8 113.2969 112.4569 111.1524 109.1780
Ts 112.8877 112.0605 110.7727 108.8238
ts;, 1 =2,5 112.3531 111.5000 110.1539 108.0795
Ve 52.5444 52.7365 53.6026 55.6966
Strategy III

T, 1=3,9 108.0067 107.5535 106.8530 105.7945
T 107.7585 107.3131 106.6230 105.5802
ts;, i =3,6 107.0628 106.5965 105.8546 104.6959
Tkes 50.0729 50.1878 50.9778 52.9983
X* ~ Wb(0.945,1.0)

Y* ~ Wb(0.953,0.99)

Skewness of Y 1.3561 1.3526 1.4714 1.7607
Kurtosis of Y 5.2276 5.2844 6.0535 7.8079
Strategy 1

T;,i=17 112.8585 111.7770 110.7937 109.8172
Ty 112.9926 111.9098 110.9247 109.9461
ts,i=1,4 111.9962 110.7044 109.4795 108.2182
Tkey 67.4948 72.3369 76.3983 79.8482
Strategy II

T;,i=2,8 137.4334 132.9525 128.9413 125.0334
Ts 137.8727 133.3710 129.3406 125.4143
ts;,i=2,5 136.5711 131.8799 127.6271 123.4344
Tke 46.4315 52.3644 57.8042 62.7748
Strategy III

T;, i=23,9 120.0047 118.0372 116.2409 114.4546
Te 120.2233 118.2512 116.4501 114.6584
ts;,i=13,6 119.1424 116.9646 114.9267 112.8556
Tk 55.5027 62.5806 68.7953 74.1058

Bold values indicate maximum PRE.
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Table 6. PRE of the proposed estimators at P = 0.50.

Pxy 0.6 0.7 0.8 0.9
tm 100 100 100 100
X* ~ N(20,25)

Y* ~ N(30,35)

Strategy I

T;,i=1,7 108.6574 110.1325 111.5516 113.6541
Ty 109.4103 110.9988 112.5270 114.7449
ts,i=1,4 106.3424 107.1549 107.4076 107.1891
Vkey 34.0412 40.0286 48.3422 59.6361
Strategy II

T;,i=2,8 115.8588 118.3903 120.1445 121.9570
Ts 117.5997 120.3998 122.3876 124.4215
ts;, i =2,5 113.5438 115.4126 116.0005 115.4920
Tk, 20.5860 25.1720 32.1576 43.0168
Strategy III

T;,i=3,9 108.6574 110.1325 111.5516 113.6541
Te 109.4103 110.9988 112.5270 114.7449
ts;,i=13,6 106.3424 107.1549 107.4076 107.1891
Tikes 21.7699 27.3798 35.9864 49.5031
X* ~ Gamma(5.6,0.9)

Y* ~ Gamma(6.9,0.9)

Skewness of Y 0.6046 0.6134 0.6571 0.7487
Kurtosis of Y 3.4184 3.4308 3.5393 3.7750
Strategy 1

T;,i=17 106.5723 106.2029 105.6304 104.7617
Ty 106.4066 106.0424 105.4768 104.6186
ts,i=1,4 105.8172 105.4373 104.8316 103.8829
Fkey 68.5332 68.7027 69.4543 71.2347
Strategy II

Ty,i=2,8 113.1081 112.2655 110.9527 108.9583
Ts 112.7807 111.9483 110.6489 108.6749
ts;, 1 =2,5 112.3531 111.5000 110.1539 108.0795
Ve 52.5444 52.7365 53.6026 55.6966
Strategy III

T;,1=3,9 106.5723 106.2029 105.6304 104.7617
T 106.4066 106.0424 105.4768 104.6186
ts;, i =3,6 105.8172 105.4373 104.8316 103.8829
Tkes 50.0729 50.1878 50.9778 52.9983
X* ~ Wb(0.945,1.0)

Y* ~ Wb(0.953,0.99)

Skewness of Y 1.3561 1.3526 1.4714 1.7607
Kurtosis of Y 5.2276 5.2844 6.0535 7.8079
Strategy 1

T;,i=17 116.1487 114.6065 113.1884 113.1884
Ty 116.2883 114.7441 113.3234 113.3234
ts;, i =24 115.4588 113.7484 112.1370 112.1370
Tkey 62.4222 67.6579 72.1416 72.1416
Strategy II

T;,i=2,8 137.2610 132.7379 128.6785 128.6785
Ts 137.6123 133.0727 128.9979 128.9979
ts;,i=2,5 136.5711 131.8799 127.6271 127.6271
Tke, 46.4315 52.3644 57.8042 57.8042
Strategy III

T;, i=23,9 116.1487 114.6065 113.1884 111.7674
Te 116.2883 114.7441 113.3234 111.8997
ts;,1=23,6 115.4588 113.7484 112.137 110.4883
Tk 55.5027 62.5806 68.7953 68.7953

Bold values indicate maximum PRE.
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Table 7. PRE of the proposed estimators at P = 0.60.

Pxy 0.6 0.7 0.8 0.9
tm 100 100 100 100
X* ~ N(20,25)

Y* ~ N(30,35)

Strategy I

T;,i=1,7 109.6378 111.1919 112.4761 114.1403
Ty 110.4120 112.0830 113.4776 115.2564
ts,i=1,4 107.7087 108.7106 109.0228 108.7528
Vkey 30.0739 35.7417 43.8154 55.1814
Strategy II

T;,i=2,8 115.4729 117.8940 119.4538 120.8795
Ts 116.9226 119.5671 121.3212 122.9311
ts;, i =2,5 113.5438 115.4126 116.0005 115.4920
Tk, 20.5860 25.1720 32.1576 43.0168
Strategy III

T;,i=3,9 106.9395 108.1245 109.2929 111.0573
Te 107.4275 108.6858 109.926 111.7676
ts;,i=13,6 105.0104 105.6432 105.8396 105.6698
Tikes 21.7699 27.3798 35.9864 49.5031
X* ~ Gamma(5.6,0.9)

Y* ~ Gamma(6.9,0.9)

Skewness of Y 0.6046 0.6134 0.6571 0.7487
Kurtosis of Y 3.4184 3.4308 3.5393 3.7750
Strategy 1

T;,i=17 107.6921 107.2345 106.5202 105.4283
Ty 107.5266 107.0743 106.3668 105.2854
ts,i=1,4 107.0628 106.5965 105.8546 104.6959
ke, 64.4756 64.6556 65.4555 67.3595
Strategy II

Ty,i=2,8 112.9823 112.1380 110.8195 108.8119
Ts 112.7094 111.8736 110.5664 108.5756
ts;, 1 =2,5 112.3531 111.5000 110.1539 108.0795
Ve 52.5444 52.7365 53.6026 55.6966
Strategy III

T, 1=3,9 105.2295 104.9411 104.4940 103.8147
T 105.1188 104.8339 104.3914 103.7192
ts;, i =3,6 104.6003 104.3031 103.8283 103.0824
Tkes 50.0729 50.1878 50.9778 52.9983
X* ~ Wb(0.945,1.0)

Y* ~ Wb(0.953,0.99)

Skewness of Y 1.3561 1.3526 1.4714 1.7607
Kurtosis of Y 5.2276 5.2844 6.0535 7.8079
Strategy 1

T;,i=17 119.7173 117.6797 115.8029 113.9216
Ty 119.8630 117.8223 115.9423 114.0574
ts,i=1,4 119.1424 116.9646 114.9267 112.8556
Fkey 58.0588 63.5474 68.3343 72.5392
Strategy II

T;,i=2,8 137.1460 132.5949 128.5032 124.5004
Ts 137.4387 132.8739 128.7694 124.7542
ts;,i=2,5 136.5711 131.8799 127.6271 123.4344
Tke 46.4315 52.3644 57.8042 62.7748
Strategy III

T;, i=23,9 112.571 111.4195 110.3556 109.2842
Te 112.6604 111.5080 110.4430 109.3701
ts;,1=23,6 111.9962 110.7044 109.4795 108.2182
Tk 55.5027 62.5806 68.7953 74.1058

Bold values indicate maximum PRE.
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Table 8. PRE of the proposed estimators at P = 0.70.

Pxy 0.6 0.7 0.8 0.9
tm 100 100 100 100
X* ~ N(20,25)

Y* ~ N(30,35)

Strategy I

T;,i=1,7 110.7640 112.4389 113.6473 114.9807
Ty 111.5604 113.3559 114.6761 116.1231
ts,i=1,4 109.1105 110.3120 110.6873 110.3628
Vkey 26.9348 32.2841 40.0638 51.3460
Strategy II

T;,i=2,8 115.1973 117.5395 118.9605 120.1099
Ts 116.4391 118.9727 120.5600 121.8671
ts;, i =2,5 113.5438 115.4126 116.0005 115.4929
Tk, 20.5860 25.1720 32.1576 43.0168
Strategy III

T;,i=3,9 105.3648 106.3004 107.2767 108.8108
Te 105.6700 106.6513 107.6731 109.2571
ts;,i=13,6 103.7113 104.1735 104.3167 104.1929
Tikes 21.7699 27.3798 35.9864 49.5031
X* ~ Gamma(5.6,0.9)

Y* ~ Gamma(6.9,0.9)

Skewness of Y 0.6046 0.6134 0.6571 0.7487
Kurtosis of Y 3.4184 3.4308 3.5393 3.7750
Strategy 1

T;,i=17 108.8775 108.3284 107.4682 106.1495
Ty 108.7123 108.1684 107.3151 106.0069
ts,i=1,4 108.3381 107.7815 106.8976 105.5218
Fkey 60.8715 61.0588 61.8921 63.8842
Strategy II

Ty,i=2,8 112.8924 112.0468 110.7245 108.7072
Ts 112.6585 111.8202 110.5074 108.5048
ts;, 1 =2,5 112.3531 111.5000 110.1539 108.0795
Ve 52.5444 52.7365 53.6026 55.6966
Strategy III

T;,1=3,9 103.9503 103.7398 103.4146 102.9218
T 103.8791 103.6708 103.3486 102.8603
ts;, i =3,6 103.4110 103.1930 102.844 102.2941
Tkes 50.0729 50.1878 50.9778 52.9983
X* ~ Wb(0.945,1.0)

Y* ~ Wb(0.953,0.99)

Skewness of Y 1.3561 1.3526 1.4714 1.7607
Kurtosis of Y 5.2276 5.2844 6.0535 7.8079
Strategy 1

T;,i=1,7 123.5616 120.9808 118.6098 116.2403
Ty 123.7138 121.1290 118.7538 116.3799
ts,, i=1,4 123.0688 120.3679 117.8588 115.3266
Tkey 54.2655 59.9077 64.9087 69.3645
Strategy II

T;,i=2,8 137.0639 132.4928 128.3781 124.3481
Ts 137.3148 132.7318 128.6062 124.5657
ts;,i=2,5 136.5711 131.8799 127.6271 123.4344
Tke 46.4315 52.3644 57.8042 62.7748
Strategy III

T;, i=23,9 109.2279 108.432 107.696 106.9533
Te 109.2831 108.4869 107.7505 107.0071
ts;,1=23,6 108.7352 107.8191 106.945 106.0396
Tk 55.5027 62.5806 68.7953 74.1058

Bold values indicate maximum PRE.
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Table 9. PRE of the proposed estimators at P = 0.80.

Pxy 0.6 0.7 0.8 0.9
tm 100 100 100 100
X* ~ N(20,25)

Y* ~ N(30,35)

Strategy I

T;,i=1,7 111.9961 113.8224 114.9935 116.0618
Ty 112.8155 114.7665 116.0507 117.2317
t;i=1,4 110.5493 111.9614 112.4035 112.0212
Vkey 24.3891 29.4365 36.9040 48.0091
Strategy II

T;,i=2,8 114.9907 117.2736 118.5905 119.5327
Ts 116.0767 118.5271 119.9893 121.0694
ts;1=2,5 113.5438 115.4126 116.0005 115.4920
Tk, 20.5860 25.1720 32.1576 43.0168
Strategy III

T;, i=23,9 103.8908 104.6052 105.427 106.7974
Te 104.0641 104.8043 105.6524 107.052
ts;,i=13,6 102.444 102.7442 102.8370 102.7567
Tikes 21.7699 27.3798 35.9864 49.5031
X* ~ Gamma(5.6,0.9)

Y* ~ Gamma(6.9,0.9)

Skewness of Y 0.6046 0.6134 0.6571 0.7487
Kurtosis of Y 3.4184 3.4308 3.5393 3.7750
Strategy 1

T;,i=17 110.1161 109.4716 108.4607 106.9101
Ty 109.9513 109.3120 108.3079 106.7677
ts,i=1,4 109.6442 108.9931 107.9614 106.3608
ke, 57.6491 57.8411 58.6967 60.7498
Strategy II

Ty,i=2,8 112.8250 111.9785 110.6531 108.6288
Ts 112.6203 111.7802 110.4632 108.4516
ts;, 1 =2,5 112.3531 111.5000 110.1539 108.0795
Ve 52.5444 52.7365 53.6026 55.6966
Strategy III

T;,1=3,9 102.7203 102.5847 102.3774 102.0671
T 102.6788 102.5444 102.3389 102.0311
ts;, i =3,6 102.2484 102.1062 101.8782 101.5178
Tkes 50.0729 50.1878 50.9778 52.9983
X* ~ Wb(0.945,1.0)

Y* ~ Wb(0.953,0.99)

Skewness of Y 1.3561 1.3526 1.4714 1.7607
Kurtosis of Y 5.2276 5.2844 6.0535 7.8079
Strategy 1

T;,i=17 127.6940 124.5115 121.6015 118.7077
Ty 127.8533 124.6656 121.7504 118.8513
ts,i=1,4 127.2628 123.9752 120.9444 117.9082
Tkey 50.9375 56.6624 61.8101 66.4561
Strategy II

T;,i=2,8 137.0023 132.4162 128.2842 124.2339
Ts 137.2218 132.6253 128.4838 124.4243
ts;,i=2,5 136.5711 131.8799 127.6271 123.4344
Tke 46.4315 52.3644 57.8042 62.7748
Strategy III

T;, i=23,9 106.0898 105.6166 105.1824 104.7464
Te 106.1208 105.6476 105.2132 104.777
ts;,1=23,6 105.6587 105.0803 104.5253 103.9469
Tk 55.5027 62.5806 68.7953 74.1058

Bold values indicate maximum PRE.
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6.3. Discussion of Computational Findings

After carefully observing the findings reported in Tables 2-9, we discuss the following
points:

(i). From the findings of Table 2, the proposed imputation methods y;;, j = 1,2,...,9
outperform the mean imputation methods, ref. [21] imputation methods and ref. [22]
imputation methods in each real population. Furthermore, the proposed imputation
methods y ;;, j = 1,3,7,9 were superior among the proposed imputation methods in
population 1, whereas the proposed imputation methods y ;;, j = 4,5, 6 were superior
among the proposed imputation methods in populations 2—4. This is easily observed
in Figure 1.

(ii). From the findings of Tables 3-9, the proposed imputation methods y;;,j = 1,2,...,9
are also better than the mean imputation, ref. [21] imputation methods and ref.
[22] imputation methods under both the symmetric and asymmetric populations for
different correlation coefficients pyy, coefficients of skewness f; and coefficients of
kurtosis 2.

(iii). When the parent population was normal (symmetric) and Weibull (asymmetric), the
proposed ratio-type imputation methods y ;;, j = 4,5, 6 always performed better than
the competitors as well as within the proposed class of imputation methods under
strategies I, Il and 1L

(iv). When the parent population was Gamma (asymmetric), the proposed difference-
and ratio-type imputation methods Yijs j=1,2,3,7,8,9 were equally efficient and
outperformed the conventional methods and performed better in comparison with
the proposed imputation methods under strategies I, Il and III.

(v). The suggested imputation methods performed better in strategy II compared to
strategies I and Il in the real and artificially generated populations.

(vi). It can be easily seen that the PRE decreases with the increase in asymmetry and
peakedness for asymmetric distributions such as Gamma and Weibull.

(vii). Moreover, the numerical analysis is summarized in Table 2 and Figure 1 under strate-
gies I, II, and III for real populations 1-4. The PRE of the consequent estimators for
the remaining simulation results in Tables 3-7 exhibit the same pattern and can be
easily presented as line diagrames, if required.

7. Conclusions

In this manuscript, we proposed efficient difference- and ratio-type imputation meth-
ods for the estimation of the population mean in the presence of missing data. The efficiency
conditions have been derived and sustained with computational analysis on some real
and hypothetically generated symmetric and asymmetric populations. The computational
and theoretical results show that the proposed imputation methods y;;, j = 1,2,...,9
outperformed the mean imputation method y ;, ref. [21] imputation methods k¢, i =1, 2,
3, and ref. [22] imputation methods Y.isjs i=12,...,6.

In the simulation analysis, we considered one family of a symmetric population,
namely, Normal, and two families of asymmetric populations, namely, Gamma and Weibull,
to ascertain the effect of the correlation coefficient for a symmetric population and the effect
of skewness and kurtosis for asymmetric populations.

It is worth mentioning that among the asymmetric populations, all imputation meth-
ods exhibited a decreasing trend in PRE as the coefficient of skewness and kurtosis increased.
Although, in such cases, the proposed estimators fared better than their conventional coun-
terparts. These results are in agreement with the results of [17,28,29], where these authors
took skewed distributions and reported that the efficiency of the estimators decreased with
an increase in skewness and kurtosis. The same was also true for imputation as well.

Lastly, the proposed imputation methods currently provide the best possible imputa-
tion methods for the estimation of a population mean in the presence of the missing data.

Furthermore, the proposed imputation strategies can be defined using multi-auxiliary
information, which our future research with investigate.
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Appendix A

The expressions of MSE, minimum MSE, and the optimum scalar values of the
existing resultant estimators is reported below.

V(tw) = 15 (v"Cg =Wy ) (A1)
MSE(Fice,) = {i}(1°C = W3') + (R? = BA)d(vC2 - W3) } (a2)
MSE(jkc,) = {uﬁ(v*cﬁ —WZ) + (7" C3 = W2') — Bttty (7" 0y CxCy — W;‘y)} (A3)

_ uE(r°Cy — Wi ) + (R+ B)2p3 (v CE — WE)
MSE(yKC3) = ~_92(R B * C.C, — W* (A4)
( + )VxVy('Y PxyCxCy xy)
MSE(ts,) :P‘;{W*Cﬁ - Wyz* + B7 (vC; — W3) — 2Bi (702 CxCy — ny)}, =14 (A5)
MSE(ts,) :“ui{fy*C§ —WZ + B2y CE = WE) — 2Bi(7*pxyCxCy — w;;y)}, i=25 (A6)
of T -WE B CE-WE G )
MSE(ts,) =py 2 ( *0xyCxCy — W C.C,+ W 1 1=3,6 (A7)
*ﬁz')’nyxy* xy*'Ynyxy+ xy
. 2 w2 2 (1pxyCiCy — ny)2 C i
min MSE(ts,) = yy{'y C,— W, — (7 CZ— WD) ; i=1,4 (A8)
o (Y CeCy — WY )?
: _ 2 ) k2 2 y y xy L
min MSE(ts,) = yy{’y C,—W, — (" C W) ; i=2,5 (A9)
, : *p2y CaCy = Wiy =701y Cx Cy+- Wiy ) ,
MSE(t.) — 12 *CZ_WZ_(’YP/ v My yCxly v . i=36 Al
minMSE(ts) yy{v N e e e - I 3 (A10)

To obtain the minimum MSEs, the optimum scalar values associated with the estima-
tors discussed in Section 3 are given below.

_ Sy _ _ (90yCxCy—Way) _ _ (e CCy =Wy ) _
B = 52 ﬁl(opt) - 184(opt) - ("/C%—W%) ’ ;BZ(opt) - 185(0;71‘) - (,Y*C%,W%*) ’ ﬁ?)(opt) =
,B _ ('Y*nycxcy*W;y*Wnycherny)

6(opt) (7*Cx2—W2" —Cx2+W32)

Appendix B

In this section, we outline the proof of Theorem 1 and Corollary 1.
Under strategy I, consider the estimator

T = aer,rss + Gl(Xn,rss — ]/‘x)
Using the notations discussed in the earlier section, we obtain
Ty — py = (21 — 1)y + g py€o + 01 pixer (A11)

Squaring both sides of (A11) and taking the expectation, we obtain the MSE of the
estimator as

MSE(T;) = { (01 = 1) + aqp (v Cg = W) + 033 (1CF — WE) } (A12)
+2a101 papy (70xyCxCy — Way)
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The optimum values of a1 and 0; can be obtained by minimizing (A12) with respect to

«q and 67 as
o ! o (A13)
Lopt) = = 7(opt)
*(2 _ A2 (70:xy CxCy—Way)?
{1 TG -Wy - Tt
My (7PxyCxCy — Way)
and el(opt) = 7@ ('YC925 — W%) X1(opt) (A14)
Introducing &y, and 6y (ypy) into (A12), we obtain the minimum MSE as

minMSE(Ty) = py (1 — aq(pr)) (A15)

Similarly, we can obtain the optimum values of constants and minimum MSEs of
other proposed estimators, which are

1
“2(opt) = = &g(opt) (A16)
* (2 _ TN2%) (7*xyCxCy—W3y )2
{1 TG W) - e
iy (g GGy — W)
Oaop) = = o WE) “2en) (A17)
1
“3(opt) = = (A18)
vy 1+9*C2 — W2' — (7" ey Cx Cy— Wiy =102y Cx Cy+ Wiy )2 9(opt)
vy (YC3—W2—*C24+W2")
P yCI—WZ— " C2+ WZ “3(opt) (A19)
Aj
Kj(opt) = ?j; j=456 (A20)
(702yCxCy — Way)
Sitor) = —(cz—wzy ¢ =47 (A21)
(7o CxCy = W)
Sitor) = —(pczowzy 1= %8 (A22)
“0xyCxCy — WE — 705y CxCy + W,
Btopr) = (7" pxyCxCy xy — VPxyLx y* xy); i=6,9 (A23)
e (7C3 - W2 — "3 + WP')

where

Ag=1+ (’)/nycxcy - ny) _ (’)/nycxcy - ny)z/
2 2(vCz —W3)
2(7pxyCxCy — Way)?
(C:-wz)
(’Y*nycxcy - W;y) (’V*nyCny - W;y)z

A =1 — ,
T 2 2(1°C2—WE)

: 2(7"0xyCaCy — Wy, )?
_ fm2 2 . x Y
Bs =1+9"C, — Wy +7"0xyCxCy — Wy, — (1*CZ—WZ)

(70 CxCy = Wiy — 10y CCy + Woy)? 1 .
xyCxCy xy xyCxCy xy +§(7 PxyCxCy — Wy, — 10y CiCy + Wiy,

By=1+ ')/*Cﬁ — Wyz* + ')’nycxcy - ny -

Ag—1—
6 — A * *
2 (7*C2 —WF —C: +W2)

. { 1+ 9" C2 = W2 + 9" pryCxCy — Wiy — 10y CxCy + Wiy }
6 — .

) ('y*prCXCy7W;‘]/7'ypxnyCy+ny)z

(7*C2—W2" —C3+W32)
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