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Abstract: To boost productivity, commercial strategies, and social advancement, neural network
techniques are gaining popularity among engineering and technical research groups. This work
proposes a numerical scheme to solve linear and non-linear ordinary differential equations (ODEs).
The scheme’s primary benefit included its third-order accuracy in two stages, whereas most examples
in the literature do not provide third-order accuracy in two stages. The scheme was explicit and
correct to the third order. The stability region and consistency analysis of the scheme for linear
ODE are provided in this paper. Moreover, a mathematical model of heat and mass transfer for
the non-Newtonian Casson nanofluid flow is given under the effects of the induced magnetic field,
which was explored quantitatively using the method of Levenberg–Marquardt back propagation
artificial neural networks. The governing equations were reduced to ODEs using suitable similarity
transformations and later solved by the proposed scheme with a third-order accuracy. Additionally,
a neural network approach for input and output/predicted values is given. In addition, inputs for
velocity, temperature, and concentration profiles were mapped to the outputs using a neural network.
The results are displayed in different types of graphs. Absolute error, regression studies, mean
square error, and error histogram analyses are presented to validate the suggested neural networks’
performance. The neural network technique is currently used on three of these four targets. Two
hundred points were utilized, with 140 samples used for training, 30 samples used for validation,
and 30 samples used for testing. These findings demonstrate the efficacy of artificial neural networks
in forecasting and optimizing complex systems.

Keywords: numerical scheme; stability; induced magnetic field; heat and mass transfer; neural
network

MSC: 65M06; 68T07; 76D05

1. Introduction

The study of heat exchange is well known for its extensive applications in furnaces, nu-
clear reactors, thermal energy storage systems, and temperature exchangers. To experience
a better heat exchange rate, a heat transfer coefficient is named the Nusselt number, which
motivates research in this field. In the Casson fluid flow in the direction of a stretched sheet,
the heat transfer feature of the Casson fluid model [1] is developed in [2]. The focus of [2]
was to calculate heat exchange characteristics with viscous dissipation in addition to the
equation describing heat movement. The results revealed that velocity ratio parameters
and Prandtl and Eckert numbers controlled Casson fluid flow. To generate analytical
solutions, however, it was necessary to consider the full geographical domain, which is
why the Homotopy analysis method (HAM) was developed. Sawati [3] studied the effect
of non-linear extension on heat transfer in the Casson fluid flow.

Suitable transformation procedures were used to convert momentum and energy
equations into reduced ones. Additionally, the numeric of the solutions were deduced
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using the shooting approach following the high temperature and reduced field velocity for
the Casson parameter. Using mixed convection, Sawati et al. [4] analyzed the heat transfer
in Casson fluid over a symmetric wedge. This study was also characterized by the use
of a shooting methodology for graphic outcomes and examined how an increase in the
Falkner–Skan exponent caused an increase in the velocity component with a fall in temper-
ature. It also revealed that an increase in the Prandtl number resulted in a temperature fall.
In the presence of suction or blowing [5], the boundary layer flow of a Casson fluid coupled
with heat transfer along an infinitely extending surface was studied. Temperature field
equations contained a thermal radiation factor, and transformation principles were used to
convert momentum and energy transmission. The results revealed the opposite nature of
velocity and temperature towards Casson fluid; therefore, efficient thermal diffusivity was
obtained due to the rise in temperature due to thermal radiations.

Mahdy [6] investigated how to suction or blow and how the Soret and Dufour effects
affected the flow and heat transfer of a non-Newtonian fluid outside of a stretching per-
meable cylinder using numerical solutions. Non-Newtonian fluid behavior was modeled
using the Casson fluid equations.

Heat and mass transfer were used to investigate the instability of the flow of a Casson
fluid approaching its stagnation point across a stretching/shrinking sheet subjected to
thermal radiation [7]. The linear Rosseland approximation for heat radiation was also taken
into account, as was the impact of a binary chemical reaction with Arrhenius activation
energy. Numerical solutions to non-linear PDEs were found using a novel technique known
as bivariate spectral collocation quasi-linearization. The resulting PDEs were static over all
time and space, but the visual discussion of physical characteristics such as velocity, tem-
perature, and concentration was presented. Using gyrotactic microorganisms, researchers
studied the impact of thermophoresis and Brownian motion on a radiative Casson fluid in a
two-dimensional magnetohydrodynamics (MHD) model [8]. Prioritized by [8] was the em-
ployment of Runge–Kutta and Newton’s methods, which were implemented numerically
to produce graphical outputs. The distributions of velocities, temperatures, concentra-
tions, and densities of movable organisms were analyzed in two cases of suction flow to
determine the impact of the relevant parameters.

Comparing this study’s results to the literature revealed that the temperature and
concentration field was directly proportional to the thermophoresis parameter values. This
study also found that gyrotactic bacteria could boost mass and heat transmission. Reddy
et al. [9] investigated how the development of conjugate heat transfer (CHT) altered the
standard definition of heat function. Casson fluid was filled in a thin vertical cylinder
whose inner walls were at a constant temperature. Linked, non-linear governing equations
were solved using an implicit methodology and displayed graphically, whereas Casson
fluid parameters were prolonged. The superiority of Casson fluid over Newtonian fluid
could be illustrated by the fact that increasing the values of all controlling parameters
typically resulted in less heat being lost from the hot outer wall [10]. This allowed us to
study the effect of nanoparticles in suspension on an inclined plate when subjected to a
Casson fluid flow regime.

The effects of frictional heating, heat generation, and thermal radiation were computed
using a diffusion equation, and TiO2 water and CuO water were used as nanofluids. A new
analytical method was developed to address the difficulty of solving partial differential
equations (PDEs). Mass, momentum, heat transit rates, and their dependence on significant
flow factors were also investigated. Limited chemical reactions and heat radiation were
found to be responsible for the increased thermal and mass transfer rate. The pulsating
flow of a non-Newtonian micropolar-Casson fluid under the effect of the Lorentz force,
according to Darcy’s law, was studied by Ali et al. [11]. A drop in wall shear stress was
observed with increasing porosity, indicating an inverse relationship between the two. At
the same time, the Hartman number had a major impact on the flow separation zone. All
axial positions exhibited parabolic velocity, with a notable rise in the speed close to the
constriction’s throat.
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Casson fluid flow is considered in [12] across an extending, slanted cylinder surface.
There is a mathematical description of the flow field. We resorted to a firing system to
obtain precise numerical information about the cylinder’s surface’s heat transfer coefficient.
Alizadeh et al. [13] took into account the after-effects of Soret and Dufour’s work. Sherwood,
Nusselt, and Bejan numbers were derived from backing up the numerical solution of the
flow equation. The Nusselt number was shown to drop more than Sherwood’s number in
the results. Non-Newtonian features of the fluid were shown to have a significant bearing
on flow temperature and mass transfer irreversibility.

The Casson time-independent nanofluid based on heat movements and entropy cal-
culations was examined by Jamshed et al. [14]. Casson nanofluid flow convection was
subjected to a slipper surface to calculate the slip state, flow characteristics, and thermal
transport. PDEs were drawn and then converted into ODEs, and their self-solutions were
driven using the numerical Keller box technique. An increase in the Reynold number
resulted in the surged entropy of the system, whereas in the Casson phenomenon, thermal
conductivity increased. In [15], the simultaneous heat and mass transfer fluid flow toward
inclined flat and cylindrical surfaces was studied. It was generally agreed that Casson
fluid is a model of a non-Newtonian fluid. The stagnation zone heat and mass transport
analysis of a hybrid nanomaterial Casson fluid flowing over a vertical Riga sheet was
conducted. This formulation incorporated Lorentz forces into the system when simulating
flows through a medium containing a Riga sheet [16]. The present study [17] examined
the time-independent behavior of nanofluid flow with non-Newtonian characteristics in
a two-dimensional setting around a circular stretching cylinder. The utilization of mag-
netic effects in the direction perpendicular to the flow has been studied in relation to the
Casson–Sutterby nanofluid. The authors in reference [18] proposed a numerical scheme
to solve a mathematical model that accounted for the boundary layer flow over a sheet
with electrical and magnetic effects. The methodology comprised two distinct stages: the
predictor stage and the corrector stage. The predictor stage employed the dependent
variable’s first- and second-order derivative in the differential equation provided.

Today, artificial intelligence profoundly relies on artificial neural networks (ANNs).
ANNs own the property of refabricating and are involved in forming models based on
non-linear phenomena; therefore, they possess a wide range of fields that engage young
researchers. System identification, sequence recognition, process control, sensor data analy-
sis, natural resource management, quantum chemistry, data mining, pattern recognition,
medical diagnosis, finance, visualization, machine translation, e-mail spam filtering, and
social network filtering are just some examples of the many fields that make extensive use
of ANNs. ANNs are multidimensional and based on the input that flows via the network
during learning; ANNs are well-known for their efficient and feasible backpropagation of
stochastic numerical techniques. Backpropagation can be defined as a controlled learning
method that is characterized by a gradient descent approach to decrease the gradient of the
error curve, hence lessening the chance of an error being produced.

The backpropagation technique was originally developed by Paul Werbos in 1974 and
was rediscovered by Rumelhart and Parker. For example, many feed-forward multilayer neu-
ral networks employ the backpropagation algorithm for learning. The Levenberg–Marquardt
(LM) backpropagation is a novel technique in the field of ANNs that provides numer-
ical solutions to numerous problems involving fluid flow. Some writers have used a
Levenberg–Marquardt back-propagating artificial neural network (ANN) in conjunction
with Newtonian and non-Newtonian fluid systems to achieve well-defined convergent
stability (LBM-BN). Ly et al. [19] performed a metaheuristic analysis of the specifications
and structure of LBM-BN, which could rapidly and reliably predict the shear capacity of
foamed concrete. Using the LBM-BN technique, Zhao et al. [20] assessed the defect of
reinforced concrete beams. Nguyen et al. [21] investigated ANN-based LM to boost robot
placement accuracy. Ali et al. [22] used an ANN and an LM-based training technique to
predict the volume of water that would flow over a weir with a steep crest. Ye and Kim [23]
used the LBM-BN method to assess a building’s energy consumption in China. Bharati
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et al. [24] developed a novel systematic mechanism using a neuro-fuzzy system framework
and self-organizing maps to analyze superconductor prediction.

ANNs are gaining a profound interest in literary society to solve real-life problems.
These have a wide range of applications and possess versatile domains to encounter fluid
dynamic issues and solve them numerically and analytically. ANNs, compared to old
techniques, are more efficient at forming deterministic computing models and can produce
more reliable and accurate results for stochastic numerical computational analysis. Today,
the major focus of young researchers relies on ANNs due to their validation and precision;
therefore, there is a plethora of research in the literature on the subject, including but not
limited to entropy-generated systems [25], porous fins [26], COVID-19 [27], hydromag-
netic Williamson fluid flow [28], carbon nanotubes [29], the Emden–Fowler equation [30],
second-order singular functional differential models [31], Darcy–Forchheimer models [32],
dissipative fluid flow systems [33], mosquito dispersal models [34] and many others [35–38].
A deep learning technique for estimating the boiling heat transfer coefficient of nanoporous
coated surfaces was developed by the authors of [39]. Over the years, nanoporous-coated
surfaces have been widely employed to boost boiling efficiency.

Numerical schemes can be considered tools for solving problems in applied sciences
and engineering. There exist various numerical methods in the literature that can be used
to solve a variety of problems. There may exist more than one numerical scheme to solve
particular differential equations. However, different schemes have different characteristics
that may depend on the order of accuracy, stability, and consumption time. This attempt
was based on the numerical scheme that provided third-order accuracy in two stages. It is an
explicit scheme that requires no linearization when solving non-linear differential equations.
The method can be applied to solve second and third-order boundary value problems. For
handling these boundary value problems, some initial conditions are assumed, and these
assumed missing initial conditions could be found by applying the shooting method.

The proposed technique took too long to find extra derivatives of dependent variables.
However, it provides third-order accuracy in two stages and is also an explicit scheme.
Most explicit schemes do not have this kind of feature in the literature. They provide this
accuracy in two stages. To ensure that the fluid flowing over the sheet is an incompressible,
two-dimensional, stable, laminar Casson fluid under the effects of the induced magnetic
field. The second aim of this paper was to use the power of artificial back-propagated
neural networks with a Levenberg–Marquardt backpropagation algorithm to augment the
computing power and level of accuracy in the solver.

Artificial neural network techniques are becoming increasingly popular among engi-
neering and technical research organizations to increase productivity, business tactics, and
social progress. Instead of implementing a wide variety of linear and non-linear mathemat-
ical frameworks, artificial intelligence-based stochastic solution techniques are being used.
The mathematical representations of such fluid flow issues can be described by a system of
very non-linear ordinary differential equations (ODEs). These methods for solving them
were created using a modern computer paradigm. So far, this method has not been applied
to the suggested issue. Employing a cutting-edge stochastic solution strategy founded on
the artificial intelligence algorithm, this unique method can address the issue of super-
vised learning by employing intelligent computing techniques for the dynamics of fluid
flow models.

The most important points of the situation are discussed below:

i To resolve first-order linear and non-linear ordinary differential equations (ODEs),
the third-order numerical technique has been put forward as a potential solution in
two stages.

ii The construction of a computational numerical scheme is considered to solve the
proposed mathematical model of the heat and mass transfer of non-Newtonian Casson
nanofluid flow.

iii The proposed numerical scheme is highly accurate and attains the predicted order of
convergence shown through various examples.



Axioms 2023, 12, 527 5 of 22

iv To verify the scheme’s efficacy, a couple of non-linear examples and a few real-life
problems can be solved.

v The mathematical model of heat and mass transfer of non-Newtonian Casson nanofluid
flow is given under the induced magnetic field’s effects. Its numerical performance is
provided through stochastic processes based on Levenberg–Marquardt backpropaga-
tion artificial neural networks.

vi Accuracy evaluations, histograms, and regression analysis for the fluid flow model
are provided in sufficient graphical and numerical detail to validate and verify the
Levenberg–Marquardt backpropagation technique.

2. Numerical Scheme

The proposed numerical scheme is constructed on two grid points that consist of two
stages. Both stages of the scheme are explicit. However, the second-order derivative of
the dependent variables is necessary for the first step. Therefore, one extra derivative in
the scheme solves the first-order differential equation. However, this gives an advantage
over the order of accuracy of the scheme. In this way, the scheme becomes third-order
accurate in two stages; as mentioned earlier, it is an explicit scheme. To propose a scheme,
the first-order differential equation can be considered as:

y′ = λy (1)

which is subject to the initial conditions:

y(0) = α1 (2)

The first stage of the scheme for discretizing Equation (1) can be expressed as:

−
y i+1 = yi + hy′i + ch2y′′i (3)

A first stage is an extended form of the Taylor scheme with the involvement of some
constants. The second stage of the scheme can be given as:

yi+1 =
1
4

(
3yi +

−
y i+1

)
+ h
{

a
−
y
′
i+1 + by′i

}
(4)

The second stage of the scheme finds the solution at the ith grid point using the
information on the “i− 1th” grid point. At the same time, the first stage finds the solution
on assumed grid points. The first-stage solution can be utilized in the second-stage solution.
The first stage of the scheme is called the predictor stage, and the second stage can be called
the corrector stage of the scheme. The second stage involves two unknown values that
can be found by applying the Taylor series in Equation (4). However, before applying the
Taylor series first stage is utilized in Equation (4) as:

yi+1 =
1
4

(
4yi + hy′i + ch2y′′i

)
+ h
{

ay′i + ahy′′i + ach2y′′′i + by′i
}

(5)

before applying Taylor series expansion for yi+1 as:

yi+1 = yi + hy′i +
h3

2
y′′i +

h3

6
y′′′i + O

(
h4
)

(6)

Substituting Equation (5) into Equation (6) yields:

yi + hy′i +
h3

2
y′′i +

h3

6
y′′′i =

1
4

(
4yi + hy′i + ch2y′′i

)
+ h
{

ay′i + ahy′′i + ach2y′′′i + by′i
}

(7)
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Comparing the coefficients of hy′i, h2y′′i and h3y′′′i on both sides of Equation (7) yields:

3
4
= a + b (8)

1
2
=

c
4
+ a + b (9)

1
6
=

a
2
+ bc (10)

Solving Equations (8)–(10) yields:

a =
11
18

, b =
5

36
and c = −1 (11)

Therefore, the first and second stages of the scheme can be expressed as follows:

−
y i+1 = yi + hy′i − h2y′′i (12)

yi+1 =
1
4

(
3yi +

−
y i+1

)
+ h
{

11
18
−
y i+1 +

5
36

y′i

}
(13)

3. Stability Analysis

To find the stability conditions for Equation (1), the first stage of the scheme gives:

−
y i+1 = yi + λhyi − λ2h2yi+1 (14)

where y′i = λyi and y′′i = λ2yi.
Equation (14) can be expressed as:

−
y i+1 = yi

(
1 + λh− λ2h2

)
=
(

1 + z− z2
)

yi (15)

where z = hλ.
The second stage of the suggested strategy to Equation (1) can be applied as follows:

yi+1 =
1
4

(
3yi +

−
y i+1

)
+ h
{

11
18

λ
−
y i +

5
36

λyi

}
(16)

By utilizing Equation (15) in Equation (16), it provides:

yi+1 = 1
4

(
3yi +

−
y i+1

)
+ h
{

11
18 λ
(
1 + z− z2)yi +

5
36 λyi

}
= 1

4
(
3yi +

(
1 + z− z2)yi

)
+ 11

18 z
(
1 + z− z2)+ 5

36 zyi

=

[
3
4 +

(1+z−z2)
4 + 11

18 z
(
1 + z− z2)+ 5

36 z
]

yi=
[
1 + z + 13

36 z2 − 11
18 z3

]
yi

(17)

Therefore, this scheme is consistent if:∣∣∣∣1 + z +
13
36

z2 − 11
18

z3
∣∣∣∣ ≤ 1 (18)

4. Consistency of the Scheme

To check the consistency of the scheme, Equation (17) can be considered:

yi+1 =

(
1 + λh +

13
36

h2λ2 − 11
18

h3λ3
)

yi (19)
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Substituting Taylor series expansion (6) into Equation (19) provides:

yi + hy′i +
h2

2
y′′i +

h3

6
y′′′i + O

(
h4
)
=

(
1 + λh +

13
36

h2λ2 − 11
18

h3λ3
)

yi (20)

Equation (20) can be rewritten as:

yi + hy′i + O
(

h2
)
= (1 + hλ)yi + O

(
h2
)

(21)

Equation (21) can be simplified as:

y′i = λyi + O(h) (22)

Applying limit h→ 0 in Equation (22), the original Equation (1) can be obtained and
evaluated at the ith grid point.

5. Problem Formulation

It can be assumed that the fluid flowing over the sheet is an incompressible, two-
dimensional, stable, laminar Casson fluid. The movement of the sheet generates the
flow. The plate moves with the velocity uw. In a coordinate system in which the x-axis is
horizontally aligned with the flow direction, and the y-axis is perpendicular to the x-axis,
this plate progresses in the direction of the positive x-axis. If the magnetic field is applied,
which is at constant H◦ perpendicular to the sheet, the induced magnetic field can be
considered under the assumption of a large Reynolds number. If the horizontal component
of the induced magnetic field is Hx, the normal component is denoted by Hy where Hy = 0
on the sheet. The effects of viscous dissipation, chemical reaction, uniform electric field

(0, 0,−E◦) =
→
E and transverse magnetic field

→
B = (0, B◦, 0) can also be considered.

According to the assumption of boundary layer theory, the governing equation of the
flow can be expressed as:

∂u
∂x

+
∂v
∂y

= 0 (23)

∂Hx

∂x
+

∂Hy

∂y
= 0 (24)

u
∂u
∂x

+ v
∂u
∂y

= ν

(
1 +

1
β

)
∂2u
∂y2 +

µ◦
4πρ

(
Hx

∂Hx

∂x
+ Hy

∂Hx

∂y

)
− µe He

4πρ

∂Hx

∂x
+

σ

ρ

(
E◦B◦ − B2

◦u
)

(25)

u
∂Hx

∂x
+ v

∂Hx

∂y
−
(

Hx
∂u
∂x

+ Hy
∂u
∂y

)
= α2

1
∂2u
∂y2 (26)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 +

ν

cp

(
∂u
∂y

)2
+ τ

(
DB

∂C
∂y

∂T
∂y

+
DT
T∞

(
∂T
∂y

)2
)
+

σ

ρcp
(uB◦ − E◦)

2 (27)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 + DT

∂2T
∂y2 − k1(C− C∞) (28)

which is subject to the boundary conditions:

u = Uw, v = 0, Hx = H◦
( x

l
)
, Hy = 0,−k ∂T

∂y = h(Tw − T), C = Cw when y = 0
u→ 0, Hx → 0, T → T∞, C → C∞ when y→ ∞

}
(29)

under the transformations:

u = ax f ′, v = −
√

aν f , η =
√

a
ν y, Hx = H◦

( x
l
)

g′(η)

Hy = −
√

ν
a H◦

(
1
l

)
g(η), θ = T−T∞

Tw−T∞
, φ = C−C∞

Cw−C∞

 (30)
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Equations (23)–(29) can be reduced to:

f ′2 − f f ′′ =
(

1 +
1
β

)
f ′′′ + β1

(
g′2 + gg′′

)
+ M

(
E1 − f ′

)
(31)

g′′′ =
1
δ
(− f g′′ + f ′′ g) (32)

1
Pr

θ′′ + f θ′ + Ec f ′2 + MEc
(

f ′ − E1
)2

+ Nbθ′φ′ + Ntθ
′2 (33)

1
Sc

φ′′ + f φ′ +
Nt

Nb
θ′′ − γφ = 0 (34)

which is subject to the boundary conditions:

f = 0, f ′ = 0, g = 0, g′ = 1, θ′(0) = −Bi(1− θ), φ = 1 at η = 0
f → 0, g′ → 0, θ → 0, φ→ 0 when η → ∞

}
(35)

where dimensionless parameters can be defined as:

M = σB2
◦

aρ , β1 = µ◦H2
◦

4πρa2l2 , Ec =
u2

w
cp(Tw−T∞)

, δ = α1
ν , Nt =

τDT(Tw−T∞)
νT∞

, Nb = τDB(Cw−C∞)
ν ,

E1 = E◦
B◦uw

, Pr =
ν
α , Sc =

ν
DB

, γ = k1
a , Bi =

h
k

√
ν
a

We obtained the following expressions for the skin friction coefficient, the local Nusselt
number, and the local Sherwood number:

C f =
τw

ρu2
w

, Nux =
xqw

k(Tw − T∞)
, Shx =

xτw

DB(Cw − C∞)
(36)

where τw = −µ ∂u
∂y

∣∣∣
y=0

, qw = −k ∂T
∂y

∣∣∣
y=0

, Jw = −DB
∂C
∂y

∣∣∣
y=0

.

By utilizing transformation (30), the dimensionless skin friction coefficient, dimension-
less local Nusstel, and Sherwood number could be expressed as:

R
1
2
ex C f = −

(
1 +

1
β

)
f ′′ (0) (37)

R−
1
2

ex Nux = −θ′(0) (38)

R
1
2
ex Shx = −φ′(0) (39)

6. Results and Discussions

The proposed scheme was employed to solve the set of ODEs with boundary condi-
tions. The scheme was explicit, so it did not require another iterative procedure because
the explicit finite difference method contained only one unknown, and the remaining
quantities were known. Therefore, this was one of the advantages of using an explicit
scheme. However, on the other hand, mostly explicit schemes had the disadvantage of
a small stability region. Another advantage of using an explicit scheme was finding a
solution without linearization. Therefore, differential equations could be solved exactly
without considering only linearized ones. Since this scheme could only solve first-order
differential equations or be used to solve second or high-order initial value problems, for
boundary value problems, it could not be employed alone to obtain the solution. Therefore,
to overcome this deficiency, another approach in the form of a shooting approach was
considered in this contribution. The shooting method consists of an extra technique for
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solving equations. The solution procedure starts with some guessing. The guess is used
for those initial conditions which are assumed. Therefore, in this manner, boundary value
problems can be solved.

The impact of the electric field parameter and magnetic parameter M on the velocity
profile is displayed in Figure 1. Figure 1 shows that the velocity increased by enhancing the
electric field parameter d. It decayed by increasing the magnetic parameter M. The reason
behind the enhancement of velocity was the consequence of increasing the Lorentz force
that resisted the velocity of the flow. The rise in the Lorentz force occurred due to a growth
in the magnetic parameter M. Figure 2 portrays the effect of the Casson parameter and
magnetic parameter β1. The velocity profile decayed by increasing the Casson parameter,
which had a dual behavior due to the growing values of the magnetic parameter β. Since
the coefficient of the diffusion term decreased by incrementing the Casson parameter,
this led to a decay in the velocity profile. The effect of the reciprocal of the magnetic
Prandtl number on the horizontal component of the induced magnetic field is displayed in
Figure 3. The horizontal component of the induced magnetic field escalated by increasing
the reciprocal of the magnetic Prandtl number. Figure 4 displays the temperature curve
as a function of the thermophoresis and Brownian motion parameters. The temperature
profile escalated by incrementing thermophoresis and Brownian motion parameters. The
increase in the temperature profile due to the escalation of the thermophoresis parameter
was due to the incrementing thermophoresis force as hot particles of the fluid shifted in the
vicinity while cold particles moved closer to the plate. Additionally, the escalation of the
Brownian motion parameter increased the process of randomly shifting particles; therefore,
the temperature spread in the nearby regions, resulting in the growth of the temperature
profile. Figure 5 shows the effect of the Eckert number and Biot number on the temperature
profile. The temperature profile escalates by growing Eckert and Biot numbers. Since
internal friction between the particles increased due to the rising Eckert number; therefore,
the temperature profile was boosted. Figure 6 shows the concentration curve as a function
of the Schmidt number and the reaction rate parameter. Growing values of the Schmidt
number and the dimensionless reaction rate parameter decayed the concentration profile.
Since mass diffusivity and Schmidt number were inversely proportional to each other, the
mass diffusivity decayed due to the rising Schmidt number values, leading to a decay in
the concentration profile. The numerical values of the parameters in this research were
chosen randomly, or these numerical values of the parameters depended on the behavior
of the profiles. However, in real-world applications, these values depended on the physical
behavior of different boundary layers over the flat plates.

In Table 1, we can see how the results of the proposed system compare to those of
previous studies. The obtained results have some resemblance with those given in past
research. It can be observed from Table 1 that the results obtained by the proposed scheme
were accurate up to the second digits after the decimal points. Table 2 shows the numerical
values for the skin friction coefficient by varying local electric parameters, the magnetic pa-
rameter M, Casson parameters, and the magnetic parameter β1. The skin friction coefficient
declined due to the growing values of magnetic parameters and rose by escalating the local
electric parameter and Casson parameter. The local Nusselt number, as a function of the
Eckert number, thermophoresis, the Brownian motion parameter, the Biot number, and the
Prandtl number, are listed in Table 3. The Eckert number, the Brownian motion parameter,
and the Biot number decreased as the Prandtl number, the thermophoresis parameter,
and the local Nusselt number increased. The local Sherwood number was affected by the
thermophoresis parameter, Brownian motion parameter, Schmidt number, and response
rate parameter, as shown in Table 4. As the thermophoresis parameter was raised, the local
Sherwood number fell, and during the Brownian motion parameter, the Schmidt number
and reaction rate parameter all increased.
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Figure 1. Variation in electric field parameter and magnetic parameter M on velocity profile using
β1 = 0.01, β = 3, δ = 1.5 (a) M = 0.1 (b) E1 = 0.01.
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Figure 3. Variation in the reciprocal of magnetic Prandtl number on the horizontal component of the
induced magnetic field using E1 = 0.01, M = 0.1, β1 = 0.01, β = 3.
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Figure 4. Variation in thermophoresis and Brownian motion parameters on the temperature profile
using, E1 = 0.01, M = 0.9, β1 = 0.01 β = 3, Ec = 0.1, Bi = 0.5, δ = 1.5, Pr = 5, Sc = 1.5, γ = 1
(a) Nb = 0.1 (b) Nt = 0.1.
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Figure 5. Variation in the Eckert number and Biot number on temperature profile using,
E1 = 0.01, M = 0.9, β1 = 0.01 β = 3, Nt = 0.1, Nb = 0.1, δ = 1.5, Pr = 5, Sc = 1.5, γ = 1
(a) Bi = 0.5 (b) Ec = 0.1.
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Figure 6. Variation in the Schmidt number and reaction rate parameter on concentration profiles
using, E1 = 0.01, M = 0.9, β1 = 0.01 β = 3, Nt = 0.1, Nb = 0.1, δ = 1.5, Pr = 5, Ec = 0.1, Bi = 0.1 (a)
γ = 1 (b) Sc = 1.5.
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Table 1. Verification of some results obtained by the proposed scheme using E1 = 0, β→ ∞,
β1 = 0.1, δ→ ∞ .

M Yih [40] Hayat et al. [41] Proposed

0.0 1.0000 1.000000 1.0009
0.5 1.2247 1.224747 1.2231
1.0 1.4142 1.414217 1.4108
1.5 1.5811 1.581147 1.5815
2.0 1.7321 1.732057 1.7360

Table 2. List of numerical values for the skin friction coefficient using δ = 1.5.

E1 M β β1 R1/2
e Cf

0.01 0.1 0.7 0.01 1.6578
0.05 1.6521
0.01 0.5 1.9152

0.1 1.0 1.4984
0.7 0.05 1.6744

Table 3. List of numerical values for the local Nusselt number using β = 0.7, β1 = 0.05,
E1 = 0.01, M = 0.1, δ = 1.5, Sc = 1.5, γ = 0.1.

Ec Nt Nb Bi Pr R−1/2
e Nux

0.1 0.01 0.01 0.1 5 0.0870
0.5 0.0589
0.1 0.05 0.0871

0.01 0.05 0.0865
0.01 0.5 0.3523

0.1 7 0.0873

Table 4. List of numerical values for local Sherwood number using β = 0.7, β1 = 0.05,
E1 = 0.01, M = 0.1, δ = 1.5, Pr = 5, Ec = 0.1, Bi = 0.1.

Nt Nb Sc γ R−1/2
e Shx

0.01 0.01 1.5 0.1 0.8604
0.05 0.6672
0.01 0.05 0.9001

0.01 3 1.2769
1.5 0.9 1.4034

This contribution also consisted of the neural network approach that mapped between
a data set and a set of numerical targets. The neural network fitting tool helped to create and
train a network and select data, which helped evaluate its performance using regression
analysis and means square error. The Levenberg–Marquardt backpropagation algorithm
was utilized by training a network and scaled conjugate gradient backpropagation, which
could be utilized if there was insufficient memory. The Levenberg–Marquardt algorithm
could be employed to solve non-linear least square problems. It interpolated between the
gradient descent method and the Gauss–Newton algorithm. In some particular cases, it
is slower than the Gauss–Newton algorithm. If there existed more than one minimum,
then it could only find a local minimum, and this local minimum was not necessarily the
global minimum. Additionally, if the initial was close to the final solution, it converged
to the global minimum for the problem with multiple minima. The mathematical model
for this contribution had one input and four outputs. The four targets were the velocity
profile, x-component of the induced magnetic field, temperature profile, and concentration
profile. The neural network approach was applied to three targets from these four targets.
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Two hundred points were used, among which 140 samples were used for training, 30 for
validation, and 30 for testing. Figures 7–9 show the mean square error over epochs. The
mean square error can be computed from the following formula:

MSE =
1
N ∑N

j=1

(
Xpred(j) − Xtarg(j)

)2
(40)

The best performance was achieved at the last epoch for all the velocity, temperature,
and concentration profile targets. Figures 10–12 show the error histogram for the velocity,
temperature, and concentration profiles as targets. These error histograms show how many
samples give a certain amount of error. The zero error was the minimum error that was
achieved. The error was found as:

Error = Xtarg − Xpred (41)

where Xpred is the output. So, the error histogram found the error, which is the difference
between the targeted and output values for velocity, temperature, and concentration profiles.
Figures 13–15 show the regression analysis of output or predicted and targeted values. The
following regression line was fitted to draw Figures 13–15,

Ypred = Xtarg + ε (42)
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Figure 7. Training performance for the target of using the velocity profile, E1 = 0.01, M = 0.1,
β1 = 0.05, β = 0.7, Nt = 0.01, Nb = 0.01, δ = 1.5, Pr = 5, Ec = 0.1, Bi = 0.1, γ = 0.9, Sc = 1.5.
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Figure 8. Training performance for the target of using temperature profile E1 = 0.01, M = 0.1,
β1 = 0.05, β = 0.7, Nt = 0.01, Nb = 0.01, δ = 1.5, Pr = 5, Ec = 0.1, Bi = 0.1, γ = 0.9, Sc = 1.5.
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Figure 9. Training performance for the target of using a concentration profile E1 = 0.01,
M = 0.1, β1 = 0.05, β = 0.7, Nt = 0.01, Nb = 0.01, δ = 1.5, Pr = 5, Ec = 0.1, Bi = 0.1,
γ = 0.9, Sc = 1.5.
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Figure 10. Error from using the target of velocity profile E1 = 0.01, M = 0.1, β1 = 0.05, β = 0.7,
Nt = 0.01, Nb = 0.01, δ = 1.5, Pr = 5, Ec = 0.1, Bi = 0.1, γ = 0.9, Sc = 1.5.
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Figure 11. Error histogram from using the target of temperature profile E1 = 0.01, M = 0.1,
β1 = 0.05, β = 0.7, Nt = 0.01, Nb = 0.01, δ = 1.5, Pr = 5, Ec = 0.1, Bi = 0.1, γ = 0.9, Sc = 1.5.
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Figure 12. Error histogram from using the target of concentration profile E1 = 0.01, M = 0.1,
β1 = 0.05, β = 0.7, Nt = 0.01, Nb = 0.01, δ = 1.5, Pr = 5, Ec = 0.1, Bi = 0.1, γ = 0.9, Sc = 1.5.
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Figure 13. Regression analysis from using the target of the velocity profile E1 = 0.01, M = 0.1,
β1 = 0.05, β = 0.7, Nt = 0.01, Nb = 0.01, δ = 1.5, Pr = 5, Ec = 0.1, Bi = 0.1, γ = 0.9, Sc = 1.5.
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Figure 14. Regression analysis from using the target of temperature profile E1 = 0.01, M = 0.1,
β1 = 0.05, β = 0.7, Nt = 0.01, Nb = 0.01, δ = 1.5, Pr = 5, Ec = 0.1, Bi = 0.1, γ = 0.9, Sc = 1.5.
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Figure 15. Regression analysis from using the target of concentration profile E1 = 0.01, M = 0.1,
β1 = 0.05, β = 0.7, Nt = 0.01, Nb = 0.01, δ = 1.5, Pr = 5, Ec = 0.1, Bi = 0.1, γ = 0.9, Sc = 1.5.
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Figure 16 shows the correlation between the input and error. The error was the
difference between the output and target of the velocity profile.
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Figure 16. Correlation between input error, output and target (velocity profile) using E1 = 0.01,
M = 0.1, β1 = 0.05, β = 0.7, Nt = 0.01, Nb = 0.01, δ = 1.5, Pr = 5, Ec = 0.1, Bi = 0.1, γ = 0.9,
Sc = 1.5.

7. Conclusions

This study used artificial neural networks backpropagated with the Levenberg–Mar-
quardt method to examine the effects of factors of interest on velocity and temperature
profiles in the suggested fluid flow system. This made it possible to evaluate the impact of
an induced magnetic field on heat and mass transfer in a non-Newtonian Casson nanofluid
flow. Neural network modeling provided a different way to study the relationship between
the input and targets. The targets in the form of velocity, temperature and concentration
profiles could be obtained by applying the proposed scheme to the given model of the
fluid flow problem. The regression plots showed how accurately the output was obtained
using the adopted approach. The neural network technique is currently used on three of
these four targets. Two hundred points were utilized, with 140 samples used for training,
30 samples used for validation, and 30 samples used for testing. These findings demonstrate
the efficacy of artificial neural networks when forecasting and optimizing complex systems.
This work also provided an explicit numerical scheme that was third-order accurate. This
scheme consisted of two stages. The order of accuracy of the scheme could be proved from
its construction analysis. Since the scheme was capable only of initial value problems, a
shooting method was applied to solve the boundary value problems. The shooting method
was based on the Matlab solver fsolve for solving equations, and the proposed scheme was
employed to solve differential equations. The concluding points can be summarized as:

1. The proposed scheme was third-order accurate in two stages.
2. As the Casson parameter increased, the velocity profile slowed down, and as the

magnetic parameter β increased, it displayed a dual behavior.
3. Growing values of the reciprocal of the magnetic Prandtl number raised the horizontal

component of the induced magnetic field.
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4. Three models representing velocity, temperature, and concentration profiles were
implemented using a neural network approach.

The proposed numerical scheme could solve various partial differential equations
commonly encountered in science and engineering. Upon the conclusion of this study, it
is feasible to suggest alternative applications for the present methods in conjunction with
their existing uses [42–45]. Furthermore, the suggested approach is user-friendly and has
the potential to be utilized when resolving a wider range of partial differential equations in
the fields of science and engineering.
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Nomenclature

u∗
Horizontal components of velocity

σ
Electrical conductivity of the fluid(

m·S−1
) (

S·m−1)
y∗ Cartesian co-ordinate (m) T Temperature of fluid (K)
ν Kinematic viscosity

(
m2·s−1) Tw Temperature of fluid at the wall (K)

ρ Density of fluid
(
kg·m−3) T∞ Ambient temperature of the fluid (K)

C Concentration of fluid
(
mol·m−3) Cw Concentration on the wall

(
mol·m−3)

DB Brownian diffusion coefficient
(
m2·s−1) C∞ Ambient concentration

(
mol·m−3)

cp Specific heat capacity
(

J·kg−1·K−1
)

DT Thermophoresis coefficient
(
m2·s−1)

Hx
Horizontal component of induced

Hy
Vertical component of induced

magnetic field
(
A·m−1) magnetic field

(
A·m−1)

γ Reaction rate α Thermal diffusivity
(
m2·s−1)

k1 Reaction rate parameter
(
s−1) µ Dynamic viscosity

(
kg·m−1·s−1)

Γ Time constant (s) τ Effective heat capacity of fluid

α1 Magnetic diffusivity
(

m2·s−1
)

Ec Eckert number

Pr Prandtl number Nt Thermophoresis variable
Nb Brownian motion variable Sc Schmidt number
β Magnetic parameter We Weissenberg number
δ Reciprocal of magnetic Prandtl number M Magnetic parameter
E1 local electric parameter Bi Biot number
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