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Abstract: Train operation control is of great importance in reducing train operation energy consump-
tion and improving railway operation efficiency. This paper investigates the design of optimal control
inputs for multiple trains on a single railway line with several stations. Firstly, a distributed optimal
control problem for multiple train operation is formulated to reduce the energy consumption and
improve the punctuality of trains. Then, we propose an efficient algorithm based on the framework
of the symmetric alternating direction method of multipliers to solve this optimization problem.
Finally, numerical simulations show that the method can obtain the optimal train control sequence in
fewer iterative steps compared to the alternating direction multiplier method, thus illustrating the
effectiveness of the algorithm.
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1. Introduction

For a high-speed railway system, it is important to design operation control strategies
for each train such that the trains can operate according to the scheduled timetable. Since
the 1960s, the train operation control problem has received a lot of attention, and various
train control strategies have been proposed [1–9]. In particular, Li et al. [10] investigated
the robust train operation controller design problem using the framework of linear matrix
inequalities. In [11,12], Li et al. extended the single train control problem to the multiple
train movement control problem. By using LaSalle’s invariance principle, a coordinated
control strategy has been proposed for multiple train operations on a railway line [11,12].
The above works on train operation control are based on a feedback control approach.
On the other hand, a large number of optimal control schemes have been proposed by
addressing the train operation control problem as an optimization problem. Optimal control
is a branch of numerical optimization, which deals with finding the control sequence of
a plant in a period of time such that the objective function is optimized. Lin et al. [13]
studied the design of single- and double-integrator operation feedback controllers for
multiple trains operating on a railway line, and employed a convex optimization method
to obtain the optimal control gains. Yan et al. [14] proposed a distributed cooperative
optimal control algorithm for multiple high-speed train trajectory planning. Wang et al. [15]
investigated the optimal trajectory planning problem for trains under operation constraints,
and formulated it as a mixed-integer linear programming (MILP) problem. Since the train
operation control problem is often a large-scale optimization problem, the most important
issue is to find an efficient algorithm to obtain the optimal control inputs.
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As an algorithm developed on the basis of the augmented Lagrange algorithm, the
alternating direction method of multipliers (ADMM) aims to combine the decomposability
of dual ascent with the superior convergence of the method of multipliers, and alternately
minimize the decision variables [16]. A lot of studies have been performed to investigate
the applications of the ADMM. For example, Fu et al. [17] designed optimal feedback
gains via the ADMM, which can obey the sparsity constraints of controllers as well as
optimizing the system performance. Li et al. [18] studied the distributed optimal control of
multiple high-speed train movements by using the algorithm of ADMM with the objective
of tracking the desired speed and position trajectories for each train. As an extension of
ADMM, the symmetric alternating direction method of multipliers (SADMM) has been
studied in 2014 [19–22]. SADMM is often used for the convex optimization problem with
linear constraints and a separable objective function. This method has a better convergence
rate compared with ADMM, though it requires additional assumptions to ensure its conver-
gence [20,23,24]. In fact, SADMM has the potential to be used in various fields, including
the train operation control problem.

In this paper, we consider the optimal control problem of multiple high-speed train
movements on a single railway line with several stations. Different from the problem
considered in [18], we consider a railway line consisting of several stations, and assume
that the departure time of each train from every station is not earlier than the scheduled
time in the timetable. Furthermore, the optimization model in [18] focuses on minimizing
the deviation of the actual train operation from the desired operation, while in this paper,
we treat the actual operation of each train as an optimization variable under the necessary
safety and punctuality constraints. By so doing, the modeling error caused by the mismatch
between the actual and nominal operations could be avoided. Furthermore, we use the
symmetric alternating direction method of multipliers (SADMM) to solve the optimization
problem, which usually outperforms the the alternating direction method of multipliers
(ADMM), as used in [18].

This paper is structured as follows. In Section 2, we present the continuous-time dynamics
of high-speed trains and some operation constraints. In Section 3, the dynamics of high-speed
trains is discretized and the train operation control problem is formulated. In Section 4,
SADMM is introduced to solve the problem. In Section 5, numerical simulations are performed
to illustrate the effectiveness of the proposed method. Section 6 concludes the paper.

2. Problem Statement
2.1. Train Dynamics

The dynamical equation of a high-speed train i is modelled as{
ẋi(t) = vi(t),
mi v̇i(t) = Fi(t)− f , i = 1, 2, . . . , M,

(1)

where xi(t) and vi(t) represent the position and velocity of train i at time t, respectively.
M is the total number of trains. mi is the mass of train i and Fi(t) is the control force of
train i. f denotes the resistance, which includes ramp resistance, curve resistance, tunnel
resistance and aerodynamic resistance, etc. For simplicity, we assume f is a constant.

2.2. Operation Constraints

In practice, train i cannot depart from station j before the scheduled departure time
ti,j,out. This constraint is expressed as

xi(ti,j,out) ≤ lj, i = 1, 2, . . . , M, j = 1, 2, . . . , J, (2)

where lj denotes the position of station j and xi(ti,j,out) represents the actual position of
train i at time ti,j,out. J is the number of stations.
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The speed constraint of train i is expressed as

0 ≤ vi(t) ≤ vmax, i = 1, 2, . . . , M, (3)

where vmax represents the maximum speed of the trains.
The control force constraint is expressed as

Fmin ≤ Fi(t) ≤ Fmax, i = 1, 2, . . . , M, (4)

where Fmin and Fmax represent the minimum and maximum allowed control force, respectively.
In train operations, a train has to keep a minimum safe distance from the preceding

train, which is determined by the reaction time and the braking performance of the train.
By Newton’s second law, the minimum safe distance constraint is expressed as

xi−1(t)− xi(t) ≥ vi(t)ds +
v2

i (t)
2amax

, i = 2, . . . , M, (5)

where ds is the reaction time to start braking and amax is the maximum deceleration of a
train. Constraint (5) is a nonlinear inequality because of the term v2

i (t). In practice, for
simplicity, we usually replace constraint (5) with a linear inequality constraint

xi−1(t)− xi(t) ≥ vi(t)ds +
vmaxvi(t)

2amax
, i = 2, . . . , M. (6)

2.3. Optimization Objective

The objective is formulated as follows

Ψ = min
M

∑
i=1

J

∑
j=1

(ai(xi(ti,j,in)− lj)
2 + bi(v2

i (ti,j,in))) +
M

∑
i=1

ci

∫ tl

t=t0

F2
i (t)dt, (7)

where t0 denotes the time that the first train begins to operate and tl denotes the time that
the last train finishes operating. ai, bi, and ci are positive penalty factors. xi(ti,j,in) and
vi(ti,j,in) represent the actual position and the actual speed of train i at the scheduled arrival
time ti,j,in to station j, respectively. Note that we assume that the length of each station is
small compared to the segment between stations, such that it can be treated as zero. The
first term in (7) penalizes deviations of xi from station j at the scheduled arrival time ti,j,in.
The second term in (7) penalizes large values of the velocity vi at the scheduled arrival
time ti,j,in, which should be zero in the ideal case. These two terms are used to promote the
punctuality of train i arriving at station j. The third term in (7) is included to generate an
energy-efficient optimal trajectory.

3. Discrete-Time Optimal Control Problem

For numerical calculation purposes, the above continuous-time optimization problem
will be transformed into a discrete-time form. Suppose d is the sampling period. Then,
Equation (1) can be transformed as xi(k + 1)− xi(k) = vi(k)d + d2

2mi
(Fi(k)− f ),

vi(k + 1)− vi(k) =
d

mi
(Fi(k)− f ), i = 1, 2, . . . , M,

(8)
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and constraints (2)–(6) can be, respectively, transformed as

xi(ki,j,out) ≤ lj, i = 1, 2, . . . , M, j = 1, 2, . . . , J, (9)

0 ≤ vi(k) ≤ vmax, i = 1, 2, . . . , M, (10)

Fmin ≤ Fi(k) ≤ Fmax, i = 1, 2, . . . , M, (11)

xi−1(k)− xi(k) ≥ vi(k)ds +
vmaxvi(k)

2amax
, i = 2, . . . , M. (12)

Furthermore, the objective function (7) can be transformed into a discrete-time form
as follows:

Ψ = min
M

∑
i=1

J

∑
j=1

(ai(xi(ki,j,in)− lj)
2 + bi(v2

i (ki,j,in))) +
M

∑
i=1

N−1

∑
k=0

qiF2
i (k), (13)

where xi(ki,j,in) and vi(ki,j,in) represent the actual position and the actual speed of train
i at the scheduled arrival time ki,j,in to station j, respectively. qi = cid is a positive
penalty factor and N represents the time horizon of the optimal control problem. Let
xi = [xi(1), xi(2), . . . , xi(N)]T denote the position information of train i at all sampling
times. Let yi =

[
yT

i (1), yT
i (2), . . . , yT

i (N)
]T , i = 2, 3, . . . , M, where y1(k) = x1(k) and

yi(k) = [xi−1(k), xi(k)]
T , i = 2, 3, . . . , M. Then, we have

yi = Eiz, (14)

where z = [xT
1 , xT

2 , . . . , xT
M]T and Ei is a 0–1 matrix which can be expressed as

Ei =


[

IN , ON×(M−1)N

]
, i = 1,[

O2N×(i−2)N , H, O2N×(M−i)N

]
, i = 2, 3, . . . , M,

(15)

H =


B1 O · · · O B2 O · · · O
O B1 · · · O O B2 · · · O
...

...
. . .

...
...

...
. . .

...
O O · · · B1 O O · · · B2

, (16)

B1 =

[
1
0

]
, B2 =

[
0
1

]
. (17)

We also have xi(k) = Yiyi(k), where Yi = 1 if i = 1, and Yi = [0, 1] if i = 2, 3, . . . , M.
The problem (13), with the constraints (8)–(12), can be reformulated as

Ψ = min
M

∑
i=1

J

∑
j=1

(ai(Yiyi(ki,j,in)− lj)
2 + bi(v2

i (ki,j,in))) +
M

∑
i=1

N−1

∑
k=0

qiF2
i (k) (18)

subject to
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yi = Eiz, (19)

Yi(yi(k + 1)− yi(k)) = vi(k)d +
d2

2mi
(Fi(k)− f ), (20)

vi(k + 1) = vi(k) +
1

mi
(Fi(k)− f )d, (21)

Yiyi(ki,j,out) ≤ lj, (22)

0 ≤ vi(k) ≤ vmax, (23)

Fmin ≤ Fi(k) ≤ Fmax, (24)[
1 −1

]
yi(k) ≥ vi(k)ds +

vi(k)vmax

2amax
, i = 2, . . . , M. (25)

To deal with the optimal control problem (18) via a symmetric alternating direction
method of multipliers, we need to transform constraints (19)–(25) to linear matrix con-

straints. Defining ξi(k) =
[

yi(k)
vi(k)

]
, from Equations (20) and (21), we obtain

Ciξi(k + 1) = Giξi(k) + DiFi(k) + Pi, k = 0, 1, . . . , N − 1, (26)

where the matrices of Ci, Gi, Di, Pi, and ξi(k) are given by

Ci =


[

1 0
0 1

]
, i = 1,[

0 1 0
0 0 1

]
, i = 2, 3, . . . , M,

Gi =


[

1 d
0 1

]
, i = 1,[

0 1 d
0 0 1

]
, i = 2, 3, . . . , M,

(27)

Di =

[
d2

2mi
d

mi

]
, Pi =

[
− f d2

2mi

− f d
mi

]
, . (28)

Here, Fi(0), . . . , Fi(N − 1) and ξi(1), ξi(2), . . . , ξi(N) are the optimization variables
of the problem, and the initial state ξi(0) is given. Then, we define the overall opti-
mization variable wi as wi =

[
Fi(0), . . . , Fi(N − 1), ξT

i (1), . . . , ξT
i (N)

]T and reformulate
constraint (26) as Aiwi = φi, where

Ai =



−Di O O · · · O Ci O · · · O O
O −Di O · · · O −Gi Ci · · · O O

O O −Di · · · O O −Gi
. . . O O

...
...

...
. . .

...
...

...
. . . . . .

...
O O O · · · −Di O O · · · −Gi Ci

, (29)

φi =


Pi + Giξi(0)

Pi
Pi
...

Pi

. (30)
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It can be seen that A1 ∈ R2N×3N , Ai ∈ R2N×4N , i = 2, 3, . . . , M, φi ∈ R2N . Inequal-
ity (25) can be transformed as Υwi ≥ 0, where

Υ =


O O · · · O Z O · · · O
O O · · · O O Z · · · O
...

...
. . .

...
...

...
. . .

...
O O · · · O O O · · · Z

 ∈ RN×4N , (31)

Z =

[
1,−1,−ds −

vmax

2amax

]
. (32)

Constraints (22) and (23) are, respectively, equivalent to O ≤ ξi(k) ≤ Li,j, where

Li,j =

{ [
lj, vmax

]T , i = 1[
lJ , lj, vmax

]T , i = 2, . . . , M
and (ki,j−1,out + 1) ≤ k ≤ ki,j,out. Next, let Ui,j

and Ui,j denote the lower bound and upper bound of the variable ξi(k) for (ki,j−1,out +

1) ≤ k ≤ ki,j,out, respectively. Here, Ui,j = [Li,j, . . . , Li,j]
T , Ui,j = [Oi, . . . , Oi]

T , U1,j ∈
R2κi,j , U1,j ∈ R2κi,j , Ui,j ∈ R3κi,j , Ui,j ∈ R3κi,j , i = 2, . . . , M, κi,j = ki,j,out − ki,j−1,out,

∑J
j=1 κi,j = N. Then, constraints (22)–(24) can be reformulated into a box constraint of

wi, expressed as Wi ≤ wi ≤ Wi, where Wi =
[
Fmax, . . . , Fmax, Ui,1, Ui,2, . . . , Ui,J

]
, Wi =[

Fmin, . . . , Fmin, Ui,1, Ui,2, . . . , Ui,J
]
.

By using wi instead of the variables (Fi, yi, vi) in the objective function, the optimal
problem (18) is reformulated as

min Ψ =
M

∑
i=1

(wi − pi)
TQi(wi − pi) (33)

subject to Kiwi = Eiz, (34)

Aiwi = φi, (35)

Υwi ≥ 0, i = 2, . . . , M, (36)

Wi ≤ wi ≤Wi, (37)
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where

Qi =


Ri O O · · · O
O Qi1 O · · · O
O O Qi2 · · · O
...

...
...

. . .
...

O O O · · · Qi J

 ∈
{
R3N×3N , i = 1
R4N×4N , i 6= 1

(38)

Ri =


qi 0 · · · 0
0 qi · · · 0
...

...
. . .

...
0 0 · · · qi

 ∈ RN×N , Qij =

Oαi O O
O Ji O
O O Oβij

, (39)

Ji =



[
ai 0
0 bi

]
, i = 1,0 0 0

0 ai 0
0 0 bi

, i 6= 1,
βij =

{
2(ki,j,out − ki,j,in), i = 1,
3(ki,j,out − ki,j,in), i 6= 1,

(40)

Ki =


O · · · O Vi O · · · O
O · · · O O Vi · · · O
...

. . .
...

...
...

. . .
...

O · · · O O O · · · Vi

 ∈
{
R2N×3N , i = 1,
R2N×4N , i 6= 1,

(41)

Vi =


[

1 0
0 1

]
, i = 1,[

1 0 0
0 1 0

]
, i 6= 1,

(42)

pi =

{ [
O1×N , l1, Ok1,out−k1,in

]
, i = 1, . . . , M− 1,

(Kiwk+1
i )2`, i = M,

(43)

The optimization problem (33) could be further formulated as

min
M

∑
i=1

(wi − pi)
TQi(wi − pi) (44)

subject to Kiwi = Eiz, (45)

wi ∈ Di, (46)

where Di denotes constraints (35)–(37).

4. Symmetric Alternating Direction Method of Multipliers
4.1. The Algorithm Framework for the Control Problem

Consider the constrained optimization problem (44)–(46). The augmented Lagrangian
associated with the equation constraint is given by

Lρ(wi, z, λi) =
M

∑
i=1

[
fi(wi) + λT

i (Kiwi − Eiz) +
ρ

2
‖Kiwi − Eiz‖2], (47)
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where fi(wi) = (wi − pi)
TQi(wi − pi). Using the method in [19], the scaled form of

SADMM for this problem is

wk+1
i = arg min

wi
(wk

i )
T(Qi +

ρ

2
KT

i Ki)wk
i − (2pT

i Qi + ρ(zk)TKi − (λk)TKi)wk
i , (48)

λ
k+ 1

2
i = λk

i + ρ(Kiwk+1
i − Eizk), (49)

zk+1 = arg min
z

M

∑
i=1

(−(λk+ 1
2

i )TEizk +
ρ

2
‖Kiwk+1

i − Eizk‖2), (50)

λk+1
i = λ

k+ 1
2

i + ρ(Kiwk+1
i − Eizk+1). (51)

SADMM consists of a wi-minimization step (48), a z-minimization step (50), and dual
variable update steps (49) and (51). The dual variable update step (51) uses a step size
equal to the augmented Lagrangian parameter ρ, which ensures dual feasibility in each
SADMM iteration.

4.1.1. wi-Minimization Step

The wi-minimization step (48) solves a quadratic program subject to linear con-
straints (46). The interior-point approach performs well on this type of problem [25].

4.1.2. z-Minimization Step

A necessary and sufficient condition for zk
opt to be the optimal value of (50) is

∂Lρ

∂zk
opt

= 0, (52)

which can be expressed as

M

∑
i=1

ET
i (λ

k+ 1
2

i + ρ(Kiwk+1
i − Eizk

opt)) = 0. (53)

Let zi,` denote the ((i− 1)N + `)-th component of the vector z, where i = 1, 2, · · · , M
and ` = 1, 2, · · · , N. We have

zk+1
i,` =


(Eizk

opt)` = (Ei+1zk
opt)2`−1, i = 1,

(Eizk
opt)2` = (Ei+1zk

opt)2`−1, i = 2, . . . , M− 1
(Eizk

opt)2`, i = M,
(54)

Combining (50) and (53), we have

zk+1
i,` =

 1
2ρ ξ̄

k+ 1
2

i,` + 1
2 ω̄k+1

i,` , i = 1, . . . , M− 1,
1
ρ ξ̄

k+ 1
2

i,` + ω̄k+1
i,` , i = M,

(55)

where

ξ̄
k+ 1

2
i,` =


(λ

k+ 1
2

i )` + (λ
k+ 1

2
i+1 )2`−1, i = 1,

(λ
k+ 1

2
i )2` + (λ

k+ 1
2

i+1 )2`−1, i = 2, . . . , M− 1,

(λ
k+ 1

2
i )2`, i = M,

(56)

ω̄k+1
i,` =


(Kiwk+1

i )` + (Ki+1wk+1
i+1 )2`−1, i = 1,

(Kiwk+1
i )2` + (Ki+1wk+1

i+1 )2`−1, i = 2, . . . , M− 1,
(Kiwk+1

i )2`, i = M.
(57)
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(λ
k+ 1

2
i )2` denotes the 2`-th component of the vector λ

k+ 1
2

i .
Furthermore, the dual variable update step (51), which contains zk+1

i,` , could be ex-
pressed as

(λk+1
i )2` = (λ

k+ 1
2

i )2` + ρ((Kiwk+1
i )2` − zk+1

i,` ). (58)

We also have

(λk+1
i+1 )2`−1 = (λ

k+ 1
2

i+1 )2`−1 + ρ((Ki+1wk+1
i+1 )2`−1 − zk+1

i,` ). (59)

where i = 2, . . . , M− 1. By adding Equations (58) and (59), we have

ξ̄k+1
i,` =

 ξ̄
k+ 1

2
i,` + ρω̄k+1

i,` − 2ρzk+1
i,` , i = 1, . . . , M− 1,

ξ̄
k+ 1

2
i,` + ρω̄k+1

i,` − ρzk+1
i,` , i = M,

(60)

where

ξ̄k+1
i,` =


(λk+1

i )` + (λk+1
i+1 )2`−1, i = 1

(λk+1
i )2` + (λk+1

i+1 )2`−1, i = 2, . . . , M− 1,
(λk+1

i )2`, i = M,
(61)

Substituting Equation (55) into Equation (60), we can find ξ̄k+1
i,` = 0, i.e., the sum of

the dual variable entries that correspond to any given global index i, ` of variable z is zero.
Thus, in the next iteration, the dual variable update step could be written as

ξ̄
(k+1)+ 1

2
i,` =

{
ρω̄k+1

i,` − 2ρzk+1
i,` , i = 1, . . . , M− 1,

ρω̄k+1
i,` − ρzk+1

i,` , i = M,
(62)

Substituting (62) into Equation (55) of the next iteration, we have

z(k+1)+1
i,` = ω̄k+1

i,` − zk+1
i,` . (63)

Furthermore, we have

zk+1
i =

{
T1Kiwk+1

i+1 + T2Kiwk+1
i − zk

i , i = 1, 2, . . . , M− 1,
2T2Kiwk+1

M − zk
i , i = M,

(64)

where

zk+1
i =

[
zk+1

i,1 , zk+1
i,2 , . . . , zk+1

i,N

]T
, (65)

T1 =


BT

1 O · · · O
O BT

1 · · · O
...

...
. . .

...
O O · · · BT

1

 ∈ RN×2N , (66)

T2 =


BT

2 O · · · O
O BT

2 · · · O
...

...
. . .

...
O O · · · BT

2

 ∈ RN×2N . (67)
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4.2. Convergence of the SADMM and Stopping Criterion

A necessary and sufficient condition for (w∗i , z∗, λ∗) to be the convergent point of the
solution sequence (wk

i , zk, λk) is

0 ∈ ∂ f (w∗i ) + KT
i λ∗i , (68)

0 ∈ −ET
i λ∗i , (69)

Kiw∗i − Eiz∗ = 0. (70)

If (w∗i , z∗) satisfy the optimal conditions (68)–(70), then the algorithm of SADMM
converges to an optimal point of the problem (18) [20].

A practical termination criterion for SADMM is that the primal and dual residuals
must be smaller than the values εpri and εdual , respectively. That is

‖rk
i ‖2 ≤ εpri and ‖sk‖2 ≤ εdual , (71)

where rk
i is the primal residual and sk is the dual residual at iteration k, defined as follows:

‖rk
i ‖2 =

1
ρ
‖λk

i − λk−1
i ‖2, (72)

‖sk‖2 = MNρ2‖zk−1 − zk‖2, (73)

εpri =
√

MNεabs + εrelmax{‖yk‖2, ‖zk‖2} and εdual =
√

MNεabs + εrel‖λk‖2. The value
εabs is an absolute tolerance and εrel is a relative tolerance. They may be chosen as εrel =
10−3 or 10−4 [16]. The proposed SADMM algorithm for optimal control problem (44) is
given in Algorithm 1. The dual variable λi-updates and the wi-updates can be carried out
for each i. Algorithm 1 decomposes a large optimal control problem into several smaller
optimal control problems that can be computed in parallel, thus could improve the overall
computation performance.

Algorithm 1 Proposed SADMM for Problem (44)–(46)

1: Initialize λ = 0, z = 0 and ρ = 1
2 ;

2: repeat
3: wk+1

i := arg min
wi

wkT
i (Qi +

ρ
2 KT

i Ki)wk
i − (2pT

i Qi + ρzTKi − λkTKi)wk
i ,

4: λ
k+ 1

2
i = λk

i + ρ(Kiwk+1
i − Eizk) .

5: zk+1
i =

{
T1Kiwk+1

i+1 + T2Kiwk+1
i+1 − zk

i , i = 1, 2, . . . , M− 1,
2T2Kiwk+1

M − zk
i , i = M,

6: λk+1
i = λ

k+ 1
2

i + ρ(Kiwk+1
i − Eizk+1) .

7: until ‖rk
i ‖2 ≤ εpri and ‖sk‖2 ≤ εdual .

5. Numerical Simulations

In this section, we give a numerical experiment to illustrate the efficiency of our
proposed algorithm. Our experiments are all executed on a computer with an Intel(R) Core
(TM) i5-11300H processor (Intel Corporation, Santa Clara, CA, USA)CPU 3.10 GHz and
16 GB memory. The source code is available from the GitHub repository on 14 May 2023
(https://github.com/ShanMa1/operation-control-of-trains.git).

The railway line in our experiment includes six stations and five trains. The speed
limit of the trains is 300 km/h (83.3 m/s). The five trains are numbered G1001, G1003,
G1005, G1007, and G1009. We assume that the distance between two adjacent stations is
135 km, the operation time of the trains between two adjacent stations is 30 min, and the
headway buffer between two adjacent trains is 5 min. The planned timetable is shown
in Table 1 and the train parameters are listed in Table 2. The weights ai, bi, and qi in the

https://github.com/ShanMa1/operation-control-of-trains.git
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experiment are chosen as 107, 107, and 10, respectively. By using the proposed algorithm,
our aim is to generate the optimal operation trajectories of trains while guaranteeing the
safety and punctuality of trains.

Table 1. Scheduled timetable.

Train
Station State S1 S2 S3 S4 S5 S6

G1001 arrive 8:00 8:28 8:58 9:28 9:58 10:28
depart 8:00 8:30 9:00 9:30 10:00 10:30

G1003 arrive - 8:33 9:03 9:33 10:03 10:33
depart 8:05 8:35 9:05 9:35 10:05 10:35

G1005 arrive - 8:38 9:08 9:38 10:08 10:38
depart 8:10 8:40 9:10 9:40 10:10 10:40

G1007 arrive - 8:43 9:13 9:43 9:13 10:43
depart 8:15 8:45 9:15 9:45 10:15 10:45

G1009 arrive - 8:48 9:18 9:48 10:18 10:48
depart 8:20 8:50 9:20 9:50 10:20 10:50

Table 2. Parameters of high-speed trains [18].

Parameters Value Unit

The weight of trains, mi, i = 1, 2, . . . , 5 450 ton
Maximum acceleration, ai,max 0.56 N/kg
Maximum deceleration, ai,min 0.8 N/kg
Maximum control force, Fmax 500 kN
Minimum control force, Fmin −110 kN
Resistance force, f −110 kN
Sampled time period, d 60 s

By solving the optimal train operation control problem via SADMM, the optimal
operation trajectory of each train can be obtained as shown in Figure 1. Figure 2 shows
the optimal time-distance-speed profiles for 5 trains. Figure 3 shows the accumulated
energy consumptions for the five trains under the optimal trajectory. In this figure, the
blue lines denote the time-speed profiles, and the yellow lines denote the real-time energy
consumption profiles.
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Figure 1. Optimal trajectory for five high-speed trains.
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Figure 2. The optimal time–distance–speed profiles for five high-speed trains.

0 10 20 30 40 50 60 70 80

time(min)

0

20

40

60

80

100

V
e

lo
c
it
y
(m

/s
)

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
s
(k

w
h

)

×104

(a) Train G1001

0 10 20 30 40 50 60 70 80

time(min)

0

20

40

60

80

100

V
e

lo
c
it
y
(m

/s
)

0

0.4

0.8

1.2

1.6

2

2.4

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
s
(k

w
h

)

×104

(b) Train G1003

0 10 20 30 40 50 60 70 80

time(min)

0

20

40

60

80

100

V
e

lo
c
it
y
(m

/s
)

0

0.4

0.8

1.2

1.6

2

2.4

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
s
(k

w
h

)

×104

(c) Train G1005

0 10 20 30 40 50 60 70 80

time(min)

0

20

40

60

80

100

V
e

lo
c
it
y
(m

/s
)

0

0.4

0.8

1.2

1.6

2

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
s
(k

w
h

)

×104

(d) Train G1007

0 10 20 30 40 50 60 70 80

time(min)

0

20

40

60

80

100

V
e

lo
c
it
y
(m

/s
)

0

0.4

0.8

1.2

1.6

2

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
s
(k

w
h

)

×104

(e) Train G1009

Figure 3. Energy consumption for five high-speed trains.

Next, we consider the case that an emergency occurs, such that the first train receives a
sudden speed limitation commend between stations S2 and S3. The speed of the first train
is limited to 30 m/s. The duration of the emergency is assumed to be 15 min. By using our
proposed algorithm, the optimal distance-time profile is obtained, as shown in Figure 4. In
this figure, the dotted line represents the train operation profile without speed limitation,
while the black line and red line denote the actual operation profile of the first train and the
second train under the emergency, respectively. Since the speed of train G1001 is limited
to 30 m/s, train G1003 has to slow down to keep a safe headway between train G1001. In
this case, the minimum headway between train G1001 and train G1003 is 3 km. When the
state of emergency is lifted, the speed of train G1001 will increase to achieve punctuality. In
Figure 4, we can also find that the solution calculated by our proposed algorithm indicates
that the trains could keep at least a minimum safe headway under the emergency.

Finally, we compare the computation effectiveness between SADMM and ADMM.
The convergences of ADMM and SADMM are given as shown in Figure 5. Figure 6 shows
the primal residual versus iterations. In this figure, we can see that SADMM can solve
the optimal problem in 4 iterations, while ADMM can solve the optimal problem in 41
iterations. This means that SADMM converges faster than ADMM in our distributed
control problem.
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Figure 4. Rescheduling solutions of first train and second train.
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Figure 5. Convergence curves of ADMM and SADMM.
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6. Conclusions

In this paper, for the dynamics of multiple trains with headway constraints and punc-
tuality constraints, a distributed optimal control problem has been formulated to obtain the
energy-efficient optimal train operation trajectories. The problem has been transformed
into an optimization problem with several constraints. Then, we have proposed an effi-
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cient algorithm based on the framework of the symmetric alternating direction method
of multipliers (SADMM) to solve this optimization problem. SADMM includes solving
two convex optimization problems: the w-minimization problem and the z-minimization
problem. The w-minimization problem could be solved by using the interior-point method,
and the z-minimization problem could be solved via an analytical formula. Numerical
simulations show that SADMM can obtain the optimal train control sequence in fewer
iterative steps compared to the alternating direction multiplier method, thus illustrating
the effectiveness of the algorithm. The results developed in this paper may have potential
applications in the operational control of trains.

In particular, the results may find potential applications in future automatic train
operation systems, where trains operate automatically and no driver is needed. In this case,
the control inputs are generated according to algorithms, to ensure the punctuality and
safety of trains.
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