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Abstract: For the characterization of multipliers of Lp(Rd) or more generally, of Lp(G) for some
locally compact Abelian group G, the so-called Figa-Talamanca–Herz algebra Ap(G) plays an impor-
tant role. Following Larsen’s book, we describe multipliers as bounded linear operators that commute
with translations. The main result of this paper is the characterization of the multipliers of Ap(G).
In fact, we demonstrate that it coincides with the space of multipliers of

(
Lp(G), ‖ · ‖p

)
. Given a

multiplier T of (Ap(G), ‖ · ‖Ap(G)) and using the embedding (Ap(G), ‖ · ‖Ap(G)) ↪→
(
C0(G), ‖ · ‖∞

)
,

the linear functional f 7→ [T( f )(0)] is bounded, and T can be written as a moving average for
some element in the dual PM p(G) of (Ap(G), ‖ · ‖Ap(G)). A key step for this identification is another
elementary fact: showing that the multipliers from

(
Lp(G), ‖ · ‖p

)
to
(
C0(G), ‖ · ‖∞

)
are exactly the

convolution operators with kernels in
(

Lq(G), ‖ · ‖q
)

for 1 < p < ∞ and 1/p + 1/q = 1. The proofs
make use of the space of mild distributions, which is the dual of the Segal algebra

(
S0(G), ‖ · ‖S0

)
, and

the fact that multipliers T from S0(G) to S′0(G) are convolution operators of the form T : f 7→ σ ∗ f
for some uniquely determined σ ∈ S′0. This setting also allows us to switch from the description
of these multipliers as convolution operators (by suitable pseudomeasures) to their description
as Fourier multipliers, using the extended Fourier transform in the setting of

(
S′0(G), ‖ · ‖S′0

)
. The

approach presented here extends to other function spaces, but a more detailed discussion is left to
future publications.

Keywords: Fourier multipliers; Herz algebra; Herz–Figa-Talamanca space; pseudomeasures; quasimeasures;
mild distributions; Feichtinger algebra

1. Introduction

According to Larsen ([1]), whenever one has two translation invariant Banach spaces
of functions (B1, ‖ · ‖(1)) and (B2, ‖ · ‖(2)) over some LCA (locally compact Abelian) group
G (following a general suggestion of H. Reiter, a theorem should not be trivial when
specialized to the Euclidean case, i.e., to the case G = Rd), it is natural to ask for a
characterization of all the “multipliers”, i.e., bounded linear operators that commute with
translations. The translation operators Tx, x ∈ G are defined by Tx f (z) = f (z− x) for
ordinary functions, and are extended to spaces of distributions by duality.

Given two Banach spaces (B1, ‖ · ‖(1)) and (B2, ‖ · ‖(2)), we write

HG(B1, B2) := {T ∈ L(B1, B2) | T ◦ Tx = Tx ◦ T, ∀x ∈ G}

where

L(B1, B2) := {T : (B1, ‖ · ‖(1))→ (B2, ‖ · ‖(2)), bounded and linear}

Clearly, L(B1, B2) is a Banach space with the usual operator norm

|‖T|‖B1→B2 = sup
‖ f ‖B1 ≤1

{‖T f ‖B2}
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and the convention of writing |‖T|‖B for the case B1 = B = B2.
In order to make the definition of HG(B1, B2) ↪→ L(B1, B2) (as a closed subspace)

meaningful, we assume of course that both spaces (B1, ‖ · ‖(1)) and (B2, ‖ · ‖(2)) are trans-
lation invariant, i.e., that TxB1 ⊆ B1 and TxB2 ⊆ B2 for any x ∈ G. As usual, we write L(B)
instead of L(B, B) and, correspondingly, HG(B) for HG(B1, B2) for the case B1 = B = B2.
For B = Lp, the symbol CVp(G) is found in the literature (for “convolutors”) instead of
HG(Lp) (see [2,3]).

The goal of this paper is to show that elementary arguments with the potential for
significant generalizations (to be discussed elsewhere) allow the identification of the multi-
pliers of the so-called Herz-algebra (Ap(G), ‖ · ‖Ap(G)) with its dual space. By establishing
the connection to multipliers of

(
Lp(G), ‖ · ‖p

)
, we show that these two multiplier spaces

coincide, thus providing an alternative approach to the well-known characterization of
the convolutors of

(
Lp(G), ‖ · ‖p

)
. In the context of mild distributions (which work well

for general LCA groups), their Fourier transforms are simply the Fourier multipliers of(
Lp(G), ‖ · ‖p

)
.

The word “multiplier” refers to the typical description of such operators as “Fourier
multipliers”, i.e., as pointwise multipliers on the Fourier transform side:

F (T( f )) = h · f̂ or T( f ) = F−1[h · F ( f )]. (1)

Let us mention that one must be careful with such a description, because it requires
that both sides of the equation are interpreted properly: The Fourier transform of f as well
as that of T( f ) have to be meaningful, but the pointwise product must also be well defined.

Although the general setting for such a question are Banach spaces of distributions
over LCA (locally compact Abelian) groups G, we will illustrate this problem mostly in the
(typical) Euclidean context (G = Rd), and restrict our attention to the unweighted case.

A natural starting point for such a discussion is the analysis of HG(Lp), for 1 ≤ p < ∞
over G = Rd. Here, the case p = ∞ is excluded for good reasons, because there are “exotic”
operators in HG(L∞(Rd)) that cannot be represented as convolution operators, not even in
the distributional setting.

Even if one restricts the attention to the space Cb(Rd) of bounded, continuous functions,
i.e., if one replaces the problem by considering HG(Cb(Rd)), this problem persists, as it
is explained in a series of papers by I. Sandberg (mentioned in [4]; see [5–7]). One can
argue that the main reason is the fact that the closure of the test functions (S(Rd) or S0(Rd))
in the given space is strictly contained in Cb(Rd), and thus the Hahn–Banach theorem
allows the creation of non-trivial exotic, translation invariant functionals that vanish on the
test functions.

We start the discussion with the few cases where a full characterization of HG(Lp)
can be given, namely, the cases p = 1 and p = 2. Following the presentation of [1] (or with
different notations [2]), they read as follows:

Theorem 1 (Wendel’s Theorem). There is a natural isomorphism between HG(L1(Rd)) and
(Mb(Rd), ‖ · ‖Mb), which identifies the space of multipliers with the space of convolution operators
by bounded measures, i.e.,

T ∈ HG(L1(Rd))↔ T( f ) = µ ∗ f , f ∈ L1(Rd)

for a uniquely determined µ ∈ Mb(Rd). Moreover, we have

|‖T|‖L1→L1 = ‖µ‖Mb .

Correspondingly, we have F (T( f )) = µ̂ · f̂ , for f ∈ L1(Rd), i.e., the operator is described as a
pointwise multiplier of f̂ ∈ C0(Rd) with the (uniformly continuous and bounded) Fourier–Stieltjes
transform µ̂ ∈ Cub(Rd).
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In the theorem above, the space Mb(Rd) is understood as the Banach space of bounded,
regular Borel measures on Rd. They correspond to bounded linear functionals on(
C0(Rd), ‖ · ‖∞

)
(the space of continuous complex-valued functions on Rd, vanishing

at infinity) via

µ( f ) :=
∫
Rd

f (t)dµ(t), f ∈ C0(Rd).

This convention (fully developed in [4]) is justified by the Riesz Representation the-
orem (in its locally compact version). Moreover, the natural norm (the total variation
norm) coincides with the norm of the corresponding functional. Since Cc(Rd) := {k ∈
Cb(Rd) | supp(k) compact} is dense in

(
C0(Rd), ‖ · ‖∞

)
, this means that for µ ∈ Mb(Rd),

one has
‖µ‖TV = sup

f∈Cc(Rd),‖ f ‖∞≤1
|µ( f )|.

Another clear-cut case appears for p = 2, as a consequence of Plancherel’s Theorem.
Once the usual Fourier transform defined on L1(Rd) has been extended from L1 ∩ L2(Rd)
to a unitary automorphism of the Hilbert spaceH =

(
L2(Rd), ‖ · ‖2

)
, we can formulate the

characterization of HG(L2(Rd)) as follows:

Theorem 2. There is a natural identification of HG(L2(Rd)) with
(

L∞(Rd), ‖ · ‖∞
)
, the space of

essentially bounded (equivalence classes of) measurable functions on Rd = R̂d, via

F (T( f )) = h · F ( f ), f ∈ L2(Rd). (2)

This correspondence between T and h defines an isometric isomorphism between HG(L2(Rd))
and the Banach space of all pointwise multipliers of

(
L2(Rd), ‖ · ‖2

)
; hence, we have

|‖T|‖L2→L2 = ‖h‖∞.

Remark 1. The two characterizations correspond quite well to the two concepts used for the
description of TILS ( time-invariant linear systems) in introductory engineering courses on “systems
theory”. It appears as Theorem 4.1.1 in [1], or as Theorem 1 in Section 1.3 of [2] for general LCA
groups. The relevance of this viewpoint for applications is also communicated in [8].

Remark 2. In the context of (mild or) tempered distributions (see [9] and or [10] respectively [11]),
one can form PM(Rd) := F−1(L∞(Rd)) and call this (by transfer of the norm) the space of
pseudomeasures. This space plays an important role for spectral analysis (see the book [12] by
J. Benedetto). Note that the natural pointwise multiplication structure (which is equivalent to the
Banach algebra properties of HG(L2(Rd)) obtained via composition of operators) corresponds to
a natural form of convolution for pseudomeasures. However, one must be warned that even in
the case of regular pseudomeasures, corresponding to continuous bounded functions on Rd, this
does not mean that convolution is meaningful in the pointwise sense. The standard example are
the chirp functions ψα(t) = exp(iαt2). The general version of such a chirp or linear frequency
sweep is obtained from ψ1 by dilation. This particular case has the remarkable property of being an
eigenvector of the Fourier transform (the eigenvalue depends on the normalization of the Fourier
transform). Since ψ1 ∈ Cb(R) ⊂ L∞(R), these function represent pseudomeasures.

Remark 3. What is called the convolution kernel µ in Wendel’s Theorem is described as the
“impulse response” of the system T, while the Fourier multiplier h is called the transfer function of T.
It describes essentially the resonance behavior of the system, i.e., how the joint eigenvectors of such
systems, namely the pure frequencies, are amplified (or damped) by the system. However, there are
many problems if one tries to put such statements into a correct mathematical setting, since, a priori,
a bounded operator on any of the spaces

(
Lp(Rd), ‖ · ‖p

)
with p < ∞ cannot have pure frequencies

of the form χs(t) = exp(2πist) as eigenvectors in the strict sense.
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Remark 4. Let us mention that the proof of Wendel’s Theorem is similar to the engineering approach.
It starts by observing that the convolution algebra

(
L1(Rd), ‖ · ‖1

)
has bounded approximate units

or Dirac sequences of norm one, obtained typically by applying the isometric compression operator
Stρ, given by

Stρ(g)(x) = ρ−dg(x/ρ), ρ > 0

to any function with
∫
Rd g(x)dx = ĝ(0) = 1. Applying an operator T ∈ HG(L1(Rd)), one obtains

a bounded family in
(

L1(Rd), ‖ · ‖1
)
↪→ (Mb(Rd), ‖ · ‖Mb) (isometrically), which allows one select

a w∗-convergent subsequence with some limit µ ∈ Mb(Rd). Then, it is shown that T( f ) = µ ∗ f
for f ∈ L1(Rd).

The Fourier transform intertwines Stρ with its adjoint operator, given by Dρh(x) = h(ρx).
In other words, F (Stρ f ) = Dρ( f̂ ), f ∈ L1(Rd). The family (Dρh)ρ→0 defines a bounded
approximate unit in the Fourier algebra

(
FL1(Rd), ‖ · ‖FL1

)
.

Remark 5. Engineering students are then told that “by experience” one observes that (somehow!)
there is a limit µ = limρ→0 T(Stρg), which will be called the impulse response, thus suggesting
that one has, using the fact that T commutes also with convolutions,

T( f ) = lim
ρ→0

T(Stρg ∗ f ) = [lim
ρ→0

T(Stρg)] ∗ f = µ ∗ f . (3)

Usually, g is chosen to be either the boxcar function 1[−1/2,1/2], or a standard Gaussian (which
is invariant under the Fourier transform).

Remark 6. The discussed two cases (p = 1, 2) indicate that any T ∈ HG(L1(Rd)) extends to a
multiplier for

(
Lp(Rd), ‖ · ‖p

)
, in particular for p = 2 (with transfer function h = µ̂), since we

have for 1 ≤ p ≤ ∞ (see Remark 8 below):

‖µ ∗ f ‖Lp(Rd) ≤ ‖µ‖Mb‖ f ‖Lp(Rd) , f ∈ Lp(Rd). (4)

The case p = ∞ is obvious since L∞(Rd) is the dual space of L1(Rd), and for 1 ≤ p < ∞ the spaces(
Lp(Rd), ‖ · ‖p

)
are homogeneous Banach spaces; thus, one can obtain the estimate (14) using the

approach outlined in [13] (cf. [2], Chap.1.2).

Remark 7. Most classical books on Fourier analysis (notably [14] respectively [15]) during the last
century give the impression that integration theory is the basis for harmonic analysis. After all, the
Banach space

(
L1(Rd), ‖ · ‖1

)
(or
(

L1(G), ‖ · ‖1
)
, for a LCA group) appears as the natural domain

for the Fourier transform, viewed as an integral transform. In fact, even the pointwise definition of
convolution appears to require (via Fubini’s theorem) the integrability of the factors. From there, it
is quite natural to study

(
L1(Rd), ‖ · ‖1

)
as a Banach algebra with respect to convolution, and to

derive the convolution theorem, in which convolution is turned into pointwise multiplication by the
Fourier transform. This is one of the key properties of the Fourier transform, along with the fact that
it defines a unitary automorphism of

(
L2(Rd), ‖ · ‖2

)
(by Plancherel’s theorem).

The key result of [4] provides an alternative approach (which has been tested in various courses
in the last decades by the author) to convolution, starting from translation invariant linear operators
T on

(
C0(Rd), ‖ · ‖∞

)
, which commute with translations. One can argue that these operators model

so-called BIBOS systems, because one assumes that (up to some constant) the upper bound of the
output signal can be controlled by the upper bound of the input signal. In addition, finite duration
input signals f ∈ Cc(Rd) are assumed to produce output signals T( f ), which decay at infinity.

2. Characterization of TILS as Convolution Operators

We now come to the first main result directly connected with the title of this paper.
It provides a characterization of translation invariant operators on

(
C0(Rd), ‖ · ‖∞

)
. For

this purpose, let us briefly remind readers of the flip-operator given by fX(z) = f (−z)
and, correspondingly, µX( f ) := µ( fX). This is the natural way to extend the inversion at
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the group level to the set of all (first discrete, then general) bounded measures, since one
obviously has δx

X = δ−x, x ∈ Rd.

Definition 1. Given µ ∈ Mb(Rd), we define the convolution operator Cµ by

Cµ f (z) = Cµ( f )(z) := µ(Tz fX) = µ((T−z f )X) = Tz(µ
X)( f ). (5)

Any convolution operator can be viewed as a moving average by setting ν := µX:

Cµ f (z) = [Tzν]( f ), f ∈ C0(Rd). (6)

This convention allows us to characterize HG(C0(Rd)) (see [4] for details):

Theorem 3 (Characterization of TILSs on C0(Rd)). There is a natural isometric isomorphism
between the Banach space HG(C0(Rd)), endowed with the operator norm, and (Mb(Rd), ‖ · ‖Mb),
the dual of

(
C0(Rd), ‖ · ‖∞

)
, by the following pair of mappings:

1. Given a bounded measure µ ∈ Mb(Rd), we define the operator Cµ via (5) above;
2. Conversely, we define for T ∈ HG(C0(Rd)) the linear functional µ = µT by

µT( f ) = [T( fX)](0). (7)

The mappings C : µ 7→ Cµ and T 7→ µT are linear, non-expansive, and inverse to each other.
Consequently, they establish an isometric isomorphism between the two Banach spaces with

‖µT‖Mb = ‖T‖L(C0(Rd)) and ‖Cµ‖L(C0(Rd)) = ‖µ‖Mb . (8)

As pointed out in [4], this identification can be used as a basis for the definition of
convolution in Mb(Rd) by transferring the composition law for operators to the measures
generating them. The use of the flip-operator within this identification has the advantage
that Cδx = Tx, i.e., convolution by a Dirac measure corresponds to ordinary translation.
One can argue that the rule introduced in Definition 1 is the most natural way to extend
the basic composition law

δx ∗ δy = δx+y, x, y ∈ Rd

to general measures because it is possible to approximate a general convolution operator
by finite linear combinations of translation operators, i.e., by a convolution by some finite,
discrete measure (see [4]).

The same principle is used then in [13] in order to demonstrate that (not only L1(Rd)
or more generally L1(G), but in fact) (Mb(Rd), ‖ · ‖Mb), viewed as a (commutative) Banach
algebra with respect to convolution acts in a natural way, often called integrated group
action on so-called homogeneous Banach spaces. From an abstract point of view, these are
Banach spaces on which a given group G (we restrict our attention to G = Rd here) acts
in an isometric and strongly continuous way. This concept has its roots in the book of Y.
Katznelson [16], where they are defined as Banach spaces (B, ‖ · ‖B) of locally integrable
functions, with a norm that is isometrically translation invariant and with the additional
property that limx→0 ‖Tx f − f ‖B = 0 for all f ∈ B.

Just for the convenience of the reader we provide the abstract statement of Theorem 2
of [13] below, but without describing the technical details because we only want to use it for
(B, ‖ · ‖B) =

(
Lp(G), ‖ · ‖p

)
or (Ap(G), ‖ · ‖Ap(G)). For simplicity, we restrict our attention

to the familiar regular representation of the additive group (Rd,+) on
(

Lp(Rd), ‖ · ‖p
)
:

ρ(x)( f ) = Tx f , x ∈ Rd. (9)

This is, in fact, a representation of the group (due to the trivial law Tx ◦ Ty =

Tx+y, x, y ∈ Rd). In the notation of [2], Section 1.2, this corresponds to the choice ρ = λ
p
Rd .
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For 1 ≤ p < ∞, the space Cc(Rd) is dense in
(

Lp(Rd), ‖ · ‖p
)

and, hence, in this case,
translation is strongly continuous, or equivalently

lim
x→0
‖ f − Tx f ‖Lp(Rd) = 0, f ∈ Lp(Rd). (10)

The abstract version of the general principle derived in [13] reads as follows:

Theorem 4. Any abstract homogeneous Banach space (B, ‖ · ‖B) with respect to a given strongly
continuous and isometric representation ρ of a locally compact group G is also a Banach module
over the Banach algebra (Mb(G), ‖ · ‖Mb) (with respect to convolution). This claim includes the
validity of following associativity law:

ρ(µ1 ? µ2) = ρ(µ1) ◦ ρ(µ2), µ1, µ2 ∈ Mb(G). (11)

The mapping (µ, f ) 7→ µ•ρ f = ρ(µ) f is the natural extension of the action of discrete
measures given by δx•ρ f = ρ(x) f , and satisfies the norm estimate

‖µ•ρ f ‖B ≤ ‖µ‖M‖ f ‖B, µ ∈ Mb(G), f ∈ B. (12)

We are only interested in the following corollary (cf. Scholium 3 (p. 47) of [2]):

Corollary 1. For 1 ≤ p < ∞, we have:
(

Lp(Rd), ‖ · ‖p
)

is a Banach module over the Banach
algebra (Mb(Rd), ‖ · ‖Mb) with respect to convolution. In particular, it is a Banach module over the
Banach convolution algebra

(
L1(Rd), ‖ · ‖1

)
, in fact, an essential one. Since

(
L1(Rd), ‖ · ‖1

)
has

bounded approximate units (so-called Dirac sequences), we even have L1(Rd) ∗ Lp(Rd) = Lp(Rd)
by the Cohen–Hewitt Factorization Theorem, and also

lim
ρ→0
‖ f − Stρg ∗ f ‖Lp(Rd) = 0, f ∈ Lp(Rd),

for any g ∈ L1(Rd) with ĝ(0) =
∫
Rd g(x)dx = 1.

The above corollary includes the well-known estimate as a special case:

‖g ∗ f ‖Lp(Rd) ≤ ‖g‖L1(Rd) ‖ f ‖Lp(Rd) , g ∈ L1(Rd), f ∈ Lp(Rd). (13)

Remark 8. These two extreme cases already indicate that any T ∈ HG(L1(Rd)) extends to a
multiplier for

(
Lp(Rd), ‖ · ‖p

)
, in particular for p = 2 (with transfer function h = µ̂), since we

have for 1 ≤ p < ∞:

‖µ ∗ f ‖Lp(Rd) ≤ ‖µ‖Mb‖ f ‖Lp(Rd) , f ∈ Lp(Rd). (14)

Remark 9. Once we define (Mb(Rd), ‖ · ‖Mb) as the Banach dual of
(
C0(Rd), ‖ · ‖∞

)
, we have

to introduce
(

L1(Rd), ‖ · ‖1
)

in the context provided by [4]. Given k ∈ Cc(Rd), we define the
(absolutely continuous) measure using a simple Riemann integral:

µk( f ) :=
∫
Rd

f (x)k(x)dx, f ∈ C0(Rd). (15)

Once this is verified, one has

‖µk‖Mb(Rd) = ‖k‖L1(Rd) :=
∫
Rd
|k(x)|dx,

It is not difficult to recognize that
(

L1(Rd), ‖ · ‖1
)

can be characterized as the norm clo-
sure of Cc(Rd) (with the identification of k ∈ Cc(Rd) with µk ∈ Mb(Rd)) in the Banach space
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(Mb(Rd), ‖ · ‖Mb). Alternatively, it can be characterized as the set of all bounded measures having
continuous shifts, i.e.,

L1(Rd) = {µ ∈ Mb(Rd) | ‖Txµ− µ‖Mb(Rd) → 0 for x→ 0}. (16)

This characterization also implies that it is a closed ideal inside of Mb(Rd) and, thus, a Banach
algebra of its own right, under convolution. Moreover, it has bounded approximate units.

3. Fourier Multipliers between Lp-Spaces

The fact that any of the spaces
(

Lp(Rd), ‖ · ‖p
)

is isometrically invariant under the re-
flection operator f 7→ fX combined with the observation that the adjoint operator of a convo-
lution operator T( f ) = µ ∗ f on

(
Lp(Rd), ‖ · ‖p

)
is just T′(h) = µX ∗ h, h ∈

(
Lq(Rd), ‖ · ‖q

)
(the dual space of

(
Lp(Rd), ‖ · ‖p

)
, with 1/p + 1/q = 1), implies that there is a natural

isometric isomorphism between HG(Lp(Rd)) and HG(Lq(Rd)) for 1 < p < ∞ (see [2],
Theorem 5 of Chap.1.4). By the method of complex interpolation of Banach spaces
(see [17,18]), one can derive the following result:

Theorem 5. Given p ∈ (1, 2) and T ∈ HG(Lp(Rd)), then T (restricted e.g., to L1(Rd) ∩
L2(Rd) ⊂ Lp(Rd)) extends to a bounded linear operator on

(
Lr(Rd), ‖ · ‖r

)
for any r ∈ [p, 2]

(or in fact r ∈ [p, q]), with 1/q + 1/p = 1 and with uniform control of the norms of all
these extensions.

This result implies that any multiplier for
(

Lp(Rd), ‖ · ‖p
)

(with 1 < p < ∞) also
defines a multiplier on

(
L2(Rd), ‖ · ‖2

)
, and thus has a representation as a pointwise multi-

plier by a uniquely determined h ∈ L∞(Rd). Finding sufficient conditions for a bounded
and continuous function to define a bounded operator on one of the spaces

(
Lp(Rd), ‖ · ‖p

)
is a delicate question beyond the scope of this note. Taking the distributional description of
the situation, one can describe the operator as

T( f ) = σ ∗ f , with σ = F−1(h). (17)

Since
(

L∞(Rd), ‖ · ‖∞
)
↪→ S′0(Rd) ↪→ S ′(Rd) , we can invoke the inverse Fourier

transform, which is an automorphism in the setting of mild respectively tempered distribu-
tions; thus, F−1(FL∞(Rd)) = F (FL∞(Rd)) is a well-defined Banach space of tempered
distributions with the norm ‖σ‖FL∞(Rd) = ‖h‖∞, providing the obvious embedding

(Mb(Rd), ‖ · ‖Mb) ↪→
(
FL∞(Rd), ‖ · ‖FL∞(Rd)

)
. (18)

The verbal description of this continuous embedding is the plausible statement that
any bounded measure is also a pseudomeasure.

Simple cases show that the situation changes drastically if the target space is different
from the domain of a multiplier. In such a case, one may have plenty of multipliers that are
not represented as pseudomeasures. A typical result reads as follows:

Lemma 1. For 1 < p ≤ ∞, we have the following isometric identification:

HG(L1, Lp(Rd)) = Lp(Rd), via T(g) = f ∗ g, g ∈ L1(Rd), f ∈ Lp(Rd). (19)

Remark 10. Obviously, any f ∈ L2(Rd) defines a transfer function mapping FL1(Rd) ⊂ C0(Rd)
into L2(Rd) (in a bounded way), but since there are clearly unbounded functions in L2(Rd), it
becomes clear that it is not true that multipliers from Lp(Rd) to Lq(Rd) (for different values
of p, q) can be represented as convolutions by pseudomeasures. This lead, during the study of
the multiplier problem, to the introduction of the so-called quasimeasures by Garth I. Gaudry
(see [19]). We do not repeat the complicated definition here (which was well-motivated by the
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studies of the multiplier problem in different settings at that time) but recall an important result by
M. Cowling [20], who obtained the following characterization: Q(Rd) can be defined as the dual
space of Cc(Rd) ∩ FL1(Rd), endowed with the inductive limit topology. In other words, a linear
mapping σ from Cc(Rd) ∩ FL1(Rd) defines a quasimeasure if one has the following continuity
property: for any given compact set K ⊂ Rd and any sequence of compactly supported functions
(kn)n≥1 with supp(kn) ⊂ K and k̂n ∈ L1(Rd), with limn→∞‖kn‖L1 = 0, one has σ(kn) → 0.
Obviously one can view Q(Rd) as a subspace of all distributions on Rd (in the sense of L. Schwartz),
but unfortunately, it is not a subspace of the space S ′(Rd) of tempered distributions and, thus, a
priori quasimeasures may fail to “have a Fourier transform”, even in the context of distributions or
ultra-distributions.

Nevertheless, one can summarize the results found in [1] as follows (we are not stating
the most general version here):

Proposition 1. Given two parameters p, q ∈ (1, ∞) and T ∈ HG(Lp, Lq), there exist two
quasimeasures σ and τ, such that one has

T( f ) = σ ∗ f , f ∈ Cc(Rd) ∩ FL1(Rd),

and
F (T( f )) = τ · f̂ , f ∈ F−1(D(Rd)) ⊂ S(Rd).

Note that in the above proposition p, q are not related by duality. Also, the statement
does not say anything about the (expected) relationship between σ and τ, which would be
τ = F (σ). gfei: This problem arises because, as has been mentioned, a general quasimea-
sure may not have a Fourier transform, even in the sense of tempered distributions.

However, at least both formulas are meaningful in the following sense. The convo-
lution of σ ∈ Q(Rd) with a test function f ∈ Cc(Rd) ∩ FL1(Rd) is well-defined in the
pointwise sense, namely, as σ ∗ f (x) = σ(Tx fX), x ∈ Rd.

Furthermore, T( f ) ∈ Lq(Rd) ⊂ S ′(Rd) has a well-defined Fourier transform in
S(Rd) ↪→ D′(Rd). The pointwise product of τ ∈ Q(Rd) with f̂ ∈ D(Rd) ⊂ Cc(Rd) ∩
FL1(Rd) is also well defined in the usual way, as τ · f̂ (g) = τ( f̂ · g) for g ∈ Cc(Rd) ∩
FL1(Rd), thanks to the pointwise algebra properties of

(
FL1(Rd), ‖ · ‖FL1

)
; hence, τ · f̂ is

also a well-defined distribution on Rd.

Remark 11. It is an important observation by Hörmander (see [21]) that there is no non-trivial
multiplier from

(
Lp(Rd), ‖ · ‖p

)
to
(

Lq(Rd), ‖ · ‖q
)

for 1 ≤ q < p < ∞. Roughly speaking, this
fact corresponds to the basic properties of convolution operators. Such operators can be used to
increase the smoothness of a given function, but they are not suited to improve the decay. Thus,
the simple fact that

(
Lp(Rd), ‖ · ‖p

)
contains poorly decaying, non-negative functions that do not

belong to
(

Lq(Rd), ‖ · ‖q
)

for q < p indicates that there may be problems. The actual proof uses
a somewhat different argument, making use of the global properties of Lp-spaces (which are quite
different, by the above argument).

4. The Herz–Figa-Talamanca Algebra

Starting from the 60ths, A. Figa-Talamanca and G.I. Gaudry have undertaken detailed
studies of the multiplier problem for Lp(G). Their findings have been published in a series
of papers [19,22–27]. The key player in this characterization of the space of multipliers (one
could also call them convolutors) is a certain space (Ap(G), ‖ · ‖Ap(G)), which was been
introduced by Figa-Talamanca in [23]. Every linear functional on this Banach space defines
a convolution kernel and vice versa. It is also known as Herz algebra because C. Herz has
shown that it is a Banach algebra with respect to pointwise multiplication [28], but we will
not make use of any of these considerations and present a self-contained approach to our
main question, namely, the identification of the multiplier space of (Ap(G), ‖ · ‖Ap(G)).
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Given a LCA group G and p ∈ [1, ∞), we write q for the dual index, with 1/p + 1/q = 1.

Definition 2. Given 1 < p < ∞, the Herz–Figa-Talamanca space, as defined by

Ap(G) =

{
f ∈ Cb(G) | f = ∑

n≥1
fn ∗ gn, fn ∈ Lp, gn ∈ Lq, with ∑

n≥1
‖ fn‖p‖gn‖q < ∞

}
.

Any such representation, for suitable sequences ( fn)n≥1 in Lp(G) and (gn)n≥1 in Lq(G), is called
an admissible representation of f ∈ Ap(G). The natural norm is given by

‖ f ‖Ap(G) = inf

{
∑
n≥1
‖ fn‖p‖gn‖q

}
, (20)

where the infimum is taken over all admissible representations.

From the definition, it is not difficult to verify the following facts (see [2]):

Lemma 2. Let G be a LCA group, and 1 < p < ∞. Then one has:

1.
(

Ap(G), ‖ · ‖Ap(G)

)
is continuously embedded into

(
C0(G), ‖ · ‖∞

)
;

2.
(

Ap(G), ‖ · ‖Ap(G)

)
is a Banach space;

3. The compactly supported functions, in fact, even FL1 ∩ Cc(G) and hence
S0(G), are a dense subspace of

(
Ap(G), ‖ · ‖Ap(G)

)
;

4. Translation and modulation act isometrically on
(

Ap(G), ‖ · ‖Ap(G)

)
;

5. limx→0‖Tx f − f ‖Ap(G) = 0 for every f ∈ Ap(G);
6.

(
Ap(G), ‖ · ‖Ap(G)

)
is a homogeneous Banach space, and thus

an essential Banach module over
(

L1(G), ‖ · ‖1
)

with respect to convolution;
7.

(
Ap(G), ‖ · ‖Ap(G)

)
is a pointwise Banach module over (FL1(G), ‖ · ‖FL1(G));

8. The reflection operator f 7→ fX is an isometry on
(

Ap(G), ‖ · ‖Ap(G)

)
.

Proof. We only provide the argument for claim (3). Recall that Plancherel’s theorem
combined with the Cauchy–Schwarz inequality implies that we have, for f , g ∈ Cc(G), that
F ( f ∗ g) = f̂ · ĝ ∈ L2 · L2 ⊆ L1, or f ∗ g ∈ FL1 ∩ Cc(G), but since the local structure of
S0(G) coincides with that of FL1, we have Cc(G) ∗ Cc(G) ⊂ S0(G).

Remark 12. It is much less obvious that
(

Ap(G), ‖ · ‖Ap(G)

)
is a Banach algebra with respect

to pointwise multiplication, the so-called Herz algebra. However, we will not need this fact here.
In addition, it is not clear to what extent this property extends to similar constructions, e.g., with(

Lp(G), ‖ · ‖p
)

replaced by corresponding Lorentz spaces L(p, q)(G).

Remark 13. Note that one may assume that the convolution factors fn and gn are taken from a
dense subspace of

(
Lp(G), ‖ · ‖p

)
resp.

(
Lq(G), ‖ · ‖q

)
such as FL1 ∩ Cc(G), or from the Segal

algebra S0(G), which is a dense subspace of
(

Lp(G), ‖ · ‖p
)
, with corresponding modifications for

the norm on Ap(G).

5. The Banach Gelfand Triple

We describe the material for G = Rd and start from the Banach Gelfand Triple
(S0, L2, S′0)(Rd), consisting of the Banach algebra

(
S0(Rd), ‖ · ‖S0

)
of test functions, the

Hilbert space
(

L2(Rd), ‖ · ‖2
)

and the ambient space (S′0(Rd), ‖ · ‖S′0
) of mild distributions,

endowed with both the norm and the w∗-topology. A point of departure for our note is
the simple observation that Lp-spaces, their Fourier transforms, and also their Fourier
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multipliers, etc., can be well described in this context (see [29]). For any 1 ≤ p ≤ ∞,
one has (

S0(Rd), ‖ · ‖S0

)
↪→
(

Lp(Rd), ‖ · ‖p
)
↪→ (S′0(Rd), ‖ · ‖S′0

). (21)

One of the basic results of our study is the observation (already formulated as Theorem
C2 in [30] and then published, among others, as Theorem 8.4 in [9]), showing that any
multiplier from S0(Rd) to S′0(Rd) is a convolution operator by some σ ∈ S′0(Rd):

T( f )(x) = TxσX( f ) = (T−xσ)X( f ) = T−xσ( fX) = σ(Tx fX) ∀ f ∈ S0(Rd), x ∈ Rd, (22)

In compact form, it is given in the pointwise sense by

T f (x) = σ(Tx( fX)), x ∈ Rd, f ∈ S0(Rd). (23)

Combining these two observations, one easily verifies that any bounded linear opera-
tor on any of the spaces

(
Lp(Rd), ‖ · ‖p

)
with 1 ≤ p < ∞, can be realized as a convolution

operator (in the sense of (23)) for a uniquely determined σ ∈ S′0(Rd). In engineering
terminology, the “convolution kernel” (or distribution) σ is called the impulse response of
the linear, translation invariant system T. This is most often the case for p = 2, or p = 1,
or equivalently, BIBOS (Bounded Input giving Bounded Output systems) systems, with(

L∞(Rd), ‖ · ‖∞
)

replaced by
(
C0(Rd), ‖ · ‖∞

)
, see [4]. Combined with the Fourier trans-

form, which is well-defined on (S′0(Rd), ‖ · ‖S′0
) via the usual rule (based on the Fourier

invariance of
(
S0(Rd), ‖ · ‖S0

)
!)

σ̂( f ) = σ( f̂ ), f ∈ S0(Rd), (24)

It is clear that these operators can also be viewed as Fourier multipliers with h = σ̂
as transfer function of the operator/system T. Since (24) defines the extended Fourier
as the transpose of the classical Fourier transform, which leaves S0(Rd) invariant, it is a
w∗-w∗-continuous operator on S′0(Rd). The w∗−density of S0(Rd) in S′0(Rd) then implies
that it the unique extension of this classical Fourier transform with this property.

The elements of S′0(Rd), the so-called mild distributions, are members of the dual of
a decent Segal algebra (see [31–33]), whose local structure is that of the Fourier Algebra(
FL1(Rd), ‖ · ‖FL1

)
. Thus, it is clear how to define the support supp(σ), and, consequently,

the spectrum of σ ∈ S′0: simply as supp(σ̂).
The following theorem is key for the main results of this manuscript for LCA groups.

For simplicity, we only reproduce a direct proof for the case G = Rd.

Theorem 6. For any LCA group G, there is a natural isomorphism between HG(S0, S′0)(G) and
S′0(G) given by the following linear isometries, which are inverse to each other (here the symbol
Tx fX stands for Tx( fX)):

σ 7→ Cσ : Cσ( f )(x) = σ(Tx fX), x ∈ G, (25)

and
T 7→ σT : σT( f ) = [T fX)](0), f ∈ S0(G). (26)

Moreover, the ultra-weak convergence (this concept will be explained below, see Definition 4) of
a (bounded) net of operators Cσα corresponds in a one-to-one way to the w∗-convergence of the
corresponding distributional kernels (σα) in S′0(G), which generate these convolution operators. In
compact form, this claim can be summarized as

HG(S0, S′0) = HG(S0, Cb) and |‖T|‖S0→S′0
≈ ‖σ‖S′0

. (27)

Proof of Theorem 6. Due to the Fourier invariance of S0(Rd), we have: f ∈ S0(Rd) if
and only if f̂ ∈ S0(Rd) = W(FL1, `1)(Rd). This means that for some (any) function
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ψ ∈ FL1 ∩ Cc(Rd) that generates a so-called BUPU, i.e., which satisfies ∑k∈Zd ψ(x− k) ≡ 1,
f̂ can be written as an absolutely convergent series in

(
FL1(Rd), ‖ · ‖FL1

)
of the form

f̂ = ∑
k∈Zd

(Tkψ) · f̂ ,

However, since functions in FL1(Rd) define pointwise multipliers of W(FL1, `1)(Rd),
it is easy to show that the sum is actually absolutely convergent in

(
S0(Rd), ‖ · ‖S0

)
. Choos-

ing any ψ∗ ∈ S0(Rd) (e.g., ψ∗ ∈ S(Rd)) with ψ(s) · ψ∗(s) = ψ(s) for all s ∈ Rd, one
finds that

‖Tkψ · f̂ ‖S0(Rd) = ‖Tkψ∗ · Tkψ · f̂ ‖S0(Rd) ≤ ‖Tkψ∗‖S0‖Tkψ · f̂ ‖FL1

and, consequently, one has for any f ∈ S0(Rd):

∑
k∈Zd

‖(Tkψ) · f̂ ‖S0 ≤ ‖ψ
∗‖S0 ∑

k∈Zd

‖(Tkψ) · f̂ ‖FL1 ≤ C‖ψ∗‖S0‖ f ‖S0 .

Note that ϕ∗ := F−1 ψ∗ also belongs to S0(Rd) and that we have now

f = ∑
k∈Zd

Mk ϕ∗ ∗Mk ϕ ∗ f .

Given T ∈ L(S0, S′0), a bounded linear operator that commutes with translation and
hence with convolution by Mk ϕ∗ for each k ∈ Zd, we obtain:

T( f ) = ∑
k∈Zd

Mk ϕ∗ ∗ T[Mk ϕ ∗ f ], (28)

and further
‖T( f )‖∞ ≤ ‖ϕ∗‖S0 |‖T|‖S0→S′0 ∑

k∈Zd
∑

n∈Zd

‖Mk ϕ ∗ f ‖S0 , (29)

or altogether; for some constant C > 0, one has

‖T( f )‖∞ ≤ C|‖T|‖S0→S′0
‖ f ‖S0 , ∀ f ∈ S0. (30)

Since we have ‖Tx f − f ‖S0(Rd) → 0 for x → 0 for any f ∈ S0(Rd), this also implies the
uniform continuity of T f for each f ∈ S0(Rd) by the following argument:

‖Tx(T f )− T f ‖∞ = ‖T(Tx f − f )‖∞ → 0, as x → 0.

The rest of the argument now follows the usual procedure. We just have to check that
σ( f ) := T( fX)(0) is a well-defined linear function on

(
S0(Rd), ‖ · ‖S0

)
and, in fact, can be

used to represent the linear operator. We leave the details to the interested reader.

As an immediate corollary to this result, we have the following consequences for
multipliers between (potentially different) Lp-spaces over Rd.

Theorem 7. Given p ∈ [1, ∞) and r ∈ [1, ∞], any bounded linear operator T from
(

Lp(Rd), ‖ · ‖p
)

to
(

Lr(Rd), ‖ · ‖r
)

that commutes with all translations Ty, y ∈ Rd is a convolution operator by a
uniquely determined σ ∈ S′0(Rd), meaning that

T f (x) = σ ∗ f (x) = σ(Tx fX), f ∈ S0(Rd), x ∈ Rd. (31)

Equivalently, T can be represented as Fourier multiplier: T̂ f = τ · f̂ , f ∈ S0(Rd), for
τ = σ̂ ∈ S′0(Rd) and vice versa (with σ = F−1(τ)).
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Note that we do not claim that (31) is valid for all f ∈ Lp(Rd). Of course, it is enough
to explicitly describe the action of a bounded linear operator on a dense subspace, while
the extension to the full Banach space is carried out by approximation (S0(Rd) is dense in(

Lp(Rd), ‖ · ‖p
)

for p < ∞).
An important example for a non-trivial Fourier multiplier is the chirp signal ch(t) =

exp(iπx2) ∈ Cb(R). It has the interesting property of being mapped onto itself by the
(generalized) Fourier transform. Although SINC := F−1(box) evidently belongs to L2(R)
but not to L1(R), it is not possible to describe the action of σ = ch via convolution on the
SINC function by a pointwise integral, because

∫
R ch(t)Tx(SINC)(t)dt does not exist (in

the Lebesgue sense) for any x ∈ R.
We can take the definition of Ap(G) or Ap(Rd) as usual (a so-called convolution tensor

product) and find immediately that this is a Banach space with the usual quotient norm
(infimum over all possible representations). In fact, one could use any homogeneous Banach
space in the spirit of Y. Katznelson, ref. [16] (or the abstract version by H.S. Shapiro; see [34]).

6. The Multipliers of the Herz Algebra

The following elementary lemma plays a crucial role in our approach. It might be
given as a good exercise to students, but due to its role for the approach presented and
for the convenience of the readers, we include a detailed argument. It also provides the
basis of future extensions. Let us mention immediately that an important feature is the
fact that the target space consists of continuous functions; hence, point evaluations make
sense. In this way, one of the key steps in the proof of [4], namely, the identification of the
convolution kernel τ via the simple choice τ( f ) = T( fX)(0), makes sense.

Lemma 3. For 1 < p < ∞ and 1/p + 1/q = 1, one has the following isometric identifications:

HRd(Lp(Rd), C0(Rd)) ≡ Lq(Rd), (32)

and
HRd(Ap(Rd), Cb(Rd)) ≡ Ap(Rd)

′
=: PMp(Rd). (33)

Proof. We have to verify two inclusions. The first inclusion is the obvious one, namely, the
claim that functions g ∈ Lq(Rd) define multipliers into C0(Rd). For this, we observe that
for f ∈ Lp(Rd) and g ∈ Lq(Rd)

Lp(Rd) ∗ Lq(Rd) ⊂ C0(Rd), and ‖ f ∗ g‖∞ ≤ ‖ f ‖Lp(Rd) ‖g‖Lq(Rd) . (34)

This results from the following easy observation. First of all, Hölder’s inequality
provides us with the (pointwise) estimation

‖ f ∗ g‖∞ = sup
x∈Rd
| f ∗ g(x)| ≤ ‖ f ‖Lp(Rd) ‖g‖Lq(Rd) , x ∈ Rd, (35)

and the fact that Tx( f ∗ g) = Tx f ∗ g, x ∈ Rd, which implies, in conjunction with (35), that

‖Tx( f ∗ g)− f ∗ g‖∞ ≤ ‖Tx f − f ‖Lp ‖g‖Lq → 0 for x → 0. (36)

The density of Cc(Rd) in both
(

Lp(Rd), ‖ · ‖p
)

and
(

Lq(Rd), ‖ · ‖q
)

justifies, on the
one hand, that ‖Tx f − f ‖Lp(Rd) for x → 0, thus showing that f ∗ g is in fact uniformly
continuous, i.e., belongs to Cub(Rd). On the other hand, it implies, again using the norm
estimate (34), that functions in Cc(Rd) ∗ Cc(Rd) ⊂ Cc(Rd) ⊂ C0(Rd) can be used to approxi-
mate f ∗ g in

(
Cb(Rd), ‖ · ‖∞

)
in the given situation. Since

(
C0(Rd), ‖ · ‖∞

)
is the closure of

Cc(Rd) in
(
Cb(Rd), ‖ · ‖∞

)
, the first inclusion is realized.

Let us now address the converse relation. Given T ∈ HRd(Lp(Rd), C0(Rd)) ⊂ HRd(S0(Rd),
S′0(Rd)), we know that the linear functional τ given by τ( f ) = T( fX)(0) defines the convolu-
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tion operator T, at least on S0(Rd) ⊂ Lp(Rd) via convolution, or T f (x) = τ(Tx fX), x ∈ Rd.
Since S0(Rd) is dense in

(
Lp(Rd), ‖ · ‖p

)
, we can use the pointwise estimate

|τ( f )| ≤ ‖T( fX)‖∞ ≤ |‖T|‖Lp(Rd)→C0(Rd) ‖ f ‖Lp(Rd) ,

to verify that τ is, in fact, a regular distribution realized by some function
g ∈ Lq(Rd) according to the standard duality result (

(
Lp(Rd), ‖ · ‖p

)
)′ ≡

(
Lq(Rd), ‖ · ‖q

)
.

This concludes the proof of the first statement. The second one follows along
similar lines.

We now come to the main result of this paper. Since all the ingredients needed are
available in the setting of LCA groups, we formulate it in the context of LCA groups.

Theorem 8. For any LCA group G and 1 < p < ∞, one has equality of spaces with a natural
isometry of the corresponding (operator) norms:

HG(Lp(G)) = HG(Ap(G)) = HG(Ap(G), C0(G)) = HG(Ap(G), Cb(G)). (37)

Proof. The proof will proceed by providing a chain of inclusions between the spaces listed
in (37), finishing at the end with the inclusion HG(Ap(G), Cb(G)) ↪→ HG(Lp(G)).

Since both
(

Ap(G), ‖ · ‖Ap(G)

)
and

(
Lp(G), ‖ · ‖p

)
contain S0(G) as a dense subspace

and all the involved spaces (including
(
Cb(G), ‖ · ‖∞

)
) are continuously embedded into(

S′0(G), ‖ · ‖S′0

)
, one can treat any multiplier space in the chain as a subspace of HG(S0, S′0)

resp. S′0(G), via the identification described in Theorem 6. The main task is therefore to
show that continuity of such a convolution operator in one way (defined on the common
domain S0(Rd)) implies continuity in the subsequent one (and the last one implies the
continuity in the sense of

(
Lp(Rd), ‖ · ‖p

)
). Recall that for any σ ∈ S′0(Rd), the convolution

product is given by σ ∗ f (x) = σ(Tx fX) for f ∈ S0(Rd), and thus generates a bounded and
(uniformly) continuous function on Rd.

(a) Let us first assume that T is defined on S0(G) and continuous with respect to the
Lp(G)-norm. Given ε > 0 and h ∈ Ap(G), we find an admissible representation of h

h = ∑
n≥1

fn ∗ gn with ∑
n≥1
‖ fn‖p‖gn‖q < ‖h‖Ap(G) + ε.

Since T( f ) = σ ∗ f and the series is absolutely convergent in
(

Ap(G), ‖ · ‖Ap(G)

)
,

we have
T(h) = ∑

n≥1
T( fn ∗ gn) = ∑

n≥1
σ ∗ ( fn ∗ gn) = ∑

n≥1
(σ ∗ fn) ∗ gn,

using the associativity of convolution. Consequently, T(h) ∈ Ap(G) with

‖T(h)‖Ap(G) ≤ ∑
n≥1
‖σ ∗ fn‖p‖gn‖q ≤ |‖T|‖p (1 + ε) ‖h‖Ap(G).

In other words, T is also bounded on
(

Ap(G), ‖ · ‖Ap(G)

)
and

|‖T|‖Ap(G) ≤ |‖T|‖Lp(G) . (38)

(b) The inclusion HG(Ap(G)) ⊆ HG(Ap(G), C0(G)) ⊆ HG(Ap(G), Cb(G)) follows
from the continuous embedding

(
Ap(G), ‖ · ‖Ap(G)

)
↪→
(
C0(G), ‖ · ‖∞

)
↪→
(
Cb(G), ‖ · ‖∞

)
.

(c) Let us assume now, conversely, that T : f 7→ σ ∗ f , f ∈ S0(G), defines a bounded
convolution operator from

(
Ap(G), ‖ · ‖Ap(G)

)
to
(
Cb(G), ‖ · ‖∞

)
.

Using the fact that
(

Ap(G), ‖ · ‖Ap(G)

)
is isometrically invariant under the flip operator,

due to the elementary equation

( f ∗ g)X = fX ∗ gX, (39)
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implying
‖hX‖Ap(G) = ‖h‖Ap(G) , h ∈ Ap(G), (40)

we have

|σ(h)| =
∣∣∣[T(hX)](0)∣∣∣ ≤ ‖T(hX)‖∞ ≤ |‖T|‖Ap(G)→Cb(G) ‖h‖Ap(G) , (41)

which, in turn, gives us
‖σ‖A′p(G) ≤ |‖T|‖Ap(G)→Cb(G) . (42)

(d) Finally let us assume that Cσ : f 7→ σ ∗ f defines a bounded convolution operator
from S0(G), endowed with the norm of

(
Ap(G), ‖ · ‖Ap(G)

)
) to

(
Cb(G), ‖ · ‖∞

)
(or equiv-

alently, according to Lemma 3 that we have σ ∈ A′p(G)). Our goal is to show that Cσ

defines a bounded linear operator on
(

Lp(G), ‖ · ‖p
)
, which obviously also commutes with

translations.
Applying the estimate (41) to h = f ∗ g, with f , g ∈ S0(G) and using the identity

σ ∗ ( f ∗ g) = (σ ∗ f ) ∗ g ∈ Cb(G) (43)

we come up with the following estimate:

‖(σ ∗ f ) ∗ g‖∞ ≤ ‖σ‖A′p(G) ‖ f ∗ g‖Ap(G) ≤ ‖σ‖A′p(G) ‖ f ‖p‖g‖q, f , g ∈ S0(G). (44)

Since 1 < q < ∞ Lemma 3 implies that σ ∗ f ∈ Lp(Rd), with the estimate

‖σ ∗ f ‖p ≤ ‖σ‖A′p(G) ‖ f ‖p, f ∈ S0(G), (45)

or expressed in terms of the operator norm

|‖Cσ|‖Lp(G) ≤ |‖Cσ|‖Ap(G)→Cb(G) = ‖σ‖A′p(G) . (46)

Combined with the estimate (38) we arrive at the following chain of isometries (of course
by identifying operators with the joint dense domain Lp(G) ∩ Ap(G)):

|‖Cσ|‖Lp(G) = |‖Cσ|‖Ap(G) = ‖σ‖A′p(G) . (47)

The following corollary shows that the above theorem immediately implies an iden-
tification of HG(Lp(G)) with the dual of

(
Ap(G), ‖ · ‖Ap(G)

)
(in [2], the symbol CVp(G)

is used):

Corollary 2. There is an natural isometric identification of operators T ∈ HG(Lp(G)) with the
corresponding convolution kernel σ ∈ A′p(G), i.e.,

HG(Ap(G)) = HG(Ap(G), Cb(G)) ≡ A′p(G). (48)

Proof. We only need to point to item (c) in the above proof.

Combining our results, we have the following key result concerning the Herz algebras:

Corollary 3. There is an isometric isomorphism between the space CVp(G) = HG(Lp(G)) of
convolutors of

(
Lp(G), ‖ · ‖p

)
and PM p(G), the dual space of

(
Ap(G), ‖ · ‖Ap(G)

)
. Under the

(extended) Fourier transform, this space can be identified with the space of p-Fourier multipliers,
i.e., the pointwise multipliers on

(
FLp(G), ‖ · ‖p

)
.
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The pointwise module structure of Ap(G) can be used by duality to transfer it to the
dual space. In the context of convolution operators, we can describe it as follows (for
simplicity, we choose G = Rd for the illustration of the principle).

Corollary 4. For any ϕ ∈ FL1(Rd), we have for any σ ∈ Ap(Rd)
′:

‖(ϕ · σ) ∗ f ‖Lp ≤ ‖ϕ‖FL1 ‖σ‖A′p
‖ f ‖Lp , (49)

or, in other words,
‖ϕ · σ‖A′p

≤ ‖ϕ‖FL1 ‖σ‖A′p
. (50)

Proof. We have stated in Lemma 2 (7.) that Ap is a pointwise module over the Fourier
algebra

(
FL1(Rd), ‖ · ‖FL1

)
. Since the adjoint operator on the dual space is just the natural

variant of a multiplication operator on such a space, the estimates follow from the corre-
sponding natural estimates for

(
A′p(Rd), ‖ · ‖A′p(Rd)

)
. Technically, they can be derived from

the main result of [13] using the fact that s 7→ Ms is a strongly continuous representation of
Rd (respectively the dual group) on the Banach spaces

(
Ap(Rd), ‖ · ‖Ap(Rd)

)
.

For the last result of this paper, we need slightly more, namely, the fact that the
usual approximate units for

(
FL1(Rd), ‖ · ‖FL1

)
(obtained by dilation) act accordingly in

this context.

Lemma 4. Given any τ ∈ S0(Rd) with τ(0) = 1, and σ ∈ A′p(Rd), we have for any f ∈ Lp(Rd):

‖(Dρτ · σ) ∗ f − σ ∗ f ‖Lp → 0, for ρ→ 0, ∀ f ∈ Lp(Rd). (51)

Proof. Since the dilation operator Dρ is isometric on
(
FL1(Rd), ‖ · ‖FL1

)
, the family of

convolution operators (Dρτ · σ), ρ ∈ (0, 1] is uniformly bounded on
(

Lp(Rd), ‖ · ‖p
)
. Hence,

we may assume that F (τ) is compactly supported and F (Dρτ) = Stρ(τ̂) has small support.
The fact that the Fourier inversion theorem allows to write

τ(t) =
∫
Rd

τ̂(s)e2πitsds

as an absolutely convergent Riemann integral allows to identify (τ · σ) ∗ f as a vector-valued
integral in

(
Lp(Rd), ‖ · ‖p

)
:

(τ · σ) ∗ f =
∫
Rd

τ̂(s)(Msσ ∗ f )ds. (52)

Leaving out some (easy) technical details, we can argue that for f ∈ Lp(Rd)

s 7→ (Msσ) ∗ f = Ms(σ ∗M−s f )

is a continuous mapping on Rd with values in
(

Lp(Rd), ‖ · ‖p
)

and, thus, (51) is valid.

Remark 14. Since the family of convolution operators f 7→ (Dρτ · σ) ∗ f , with ρ ∈ (0, 1], is
uniformly bounded and pointwise convergent on

(
Lp(Rd), ‖ · ‖p

)
, it follows that (51) is not only

valid for individual functions f ∈ Lp(Rd), but holds uniformly for relatively compact subsets of(
Lp(Rd), ‖ · ‖p

)
.

Finally let us briefly mention the connections to quasimeasures. Originally introduced
by G. Gaudry in a complicated fashion, Cowling was able to show (see [20]) that they are
just locally pseudomeasures; in symbols Q(G) = FL∞

loc(G) one has the obvious chain of
inclusions: A′p(G) ⊂ S′0(G) ⊂ Q(G). However, the Fourier image of A′p(G) under the
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Fourier isomorphism from S′0(G) onto S′0(Ĝ) (i.e., the space of Fourier multipliers) also
ensures that F (A′p(G)) ⊂ S′0(Ĝ) ⊂ Q(Ĝ).

In other words, we have (using engineering terminology) two statements that can
be found in the book of Larsen [1] describing the embedding of HG(Lp, Lq) for 1 < p <
q < ∞ into Q(Ĝ)). The need to go beyond the space of pseudomeasures is expressed by
Corollary 5.

Corollary 5. Given 1 ≤ p < ∞, one has: Any multiplier of Lp(G) can be described as a
convolution operator by some quasimeasure σ, but also as a pointwise multiplier of the form
f 7→ F−1(τ · f̂ ) for a suitable quasimeasure τ on Q(Ĝ).

7. The Link to p-Pseudomeasures

Inspired by [2], which distinguishes between CVp(G) and the PM p(G) (which is first
identified with the dual space to

(
Ap(G), ‖ · ‖Ap(G)

)
), while trying to avoid the technical

details, we present a result that is closely related to Theorem 6 in Section 4.1 of [2]. For the
formulation of this result, we need the following terminology:

Definition 3. Given 1 < p < ∞, a bounded net (Sα)α∈I of operators in L(Lp(G)) is ultra-weakly
convergent to some operator T ∈ L(Lp(G)) if one has

lim
α→∞
〈Sα f , h〉 → 〈T f , h〉, ∀ f ∈ Lp(G), h ∈ Lq(G).

The following definition is also taken from [2]:

Definition 4. Let G be a locally compact group and 1 < p < ∞. The closure of λ
p
G(M1(G)) in

L(Lp(G)) with respect to the ultra-weak topology is denoted by PM p(G).

The following result justifies the identification of PM p(G) with the dual of space
A′p(G).

Theorem 9. For any p ∈ [1, ∞), the convolution operators by elements of S0(Rd) form an ultra-
weak dense subspace of CVp(Rd) = HG(Lp(Rd)).

Proof. Let f , h be given as in Definition 3 and ε > 0. For a given T ∈ CVp(Rd), we know
that T f = σ ∗ f for f ∈ S0(Rd), for a suitable distribution σ ∈ A′p(Rd) ⊂ S′0(Rd). We can
expect that regularized versions of σ will do the job, i.e., f 7→ hρ ∗ f , for hρ of the form
hρ = Stρg ∗ (Dρg · σ) provide such an ultra-weak approximation, where one can choose
g to be the Gauss function (or any g ∈ S0(Rd) with ĝ(0) = 1, thus more or less with any
classical summability kernel; see [35]). Without loss of generality, we may assume gX = g
and g(x) ≥ 0; hence ‖g‖1 = 1.

First, we note that the convolution relations for Wiener amalgam spaces in [36] imply

hρ ∈ S0(Rd) ∗ (S0(Rd) · S′0(Rd)) ⊂W(FL1, `1) ∗W(FL∞, `1) ⊂W(FL1, `1) = S0(Rd).

The family of operators Tρ : f 7→ f ∗ hρ is uniformly bounded on
(

Lp(Rd), ‖ · ‖p
)

because we have for f ∈ S0(Rd) using ‖Dρg‖FL1 = ‖Stρ ĝ‖1 = ‖ĝ‖1 = ‖g‖1 and using (50):

‖hρ ∗ f ‖p = ‖[(Dρg · σ) ∗ Stρg] ∗ f ‖p = ‖[Dρg · σ] ∗ (Stρg ∗ f )‖p ≤ ‖Dρg · σ‖A′p
‖ f ∗ Stρg‖p (53)

∗ ≤ ‖Dρg‖FL1‖σ‖A′p
‖Stρg‖1‖ f ‖p = ‖σ‖A′p

‖ f ‖p = |‖T|‖Lp→Lp ‖ f ‖p. (54)

This estimate can also be reformulated as

‖hρ‖A′p
≤ ‖σ‖A′p

, ρ ∈ (0, 1]. (55)
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We are going to show that for every f ∈ Lp(Rd), one has

‖σ ∗ f − hρ ∗ f ‖Lp → 0, for ρ→ 0. (56)

First, we rewrite the term to be estimated:

σ ∗ f − hρ ∗ f = σ ∗ f − [(Dρτ · σ) ∗ Stρg] ∗ f = σ ∗ f − (Dρτ · σ) ∗ (Stρg ∗ f ). (57)

Taking the norm on both sides and splitting the difference into two parts, we arrive at

I + I I := ‖σ ∗ f − σ ∗ (Stρg ∗ f )‖Lp + ‖(σ−Dρτ · σ) ∗ (Stρ ∗ f )‖Lp . (58)

For the first term, we have

I = ‖σ ∗ f − σ ∗ (Stρg ∗ f )‖Lp ≤ ‖σ‖A′p
‖ f − Stρg ∗ f ‖Lp < ε/2, (59)

Hence, for some ρ1, one finds that (59) is valid for ρ ∈ (0, ρ1).
The second term can be estimated with the help of our technical lemma, observing

that the set {Stη g ∗ f , η ∈ (0, 1]} is a compact subset of
(

Lp(Rd), ‖ · ‖p
)
. We are thus in a

situation to conclude the argument for (56) by first choosing ρ2 ∈ (0, 1] such that, according
to Remark 14, following Lemma 4 implies that

‖(σ−Dρτ · σ) ∗ (Stη ∗ f )‖Lp ≤ ε/2 for ρ ∈ (0, ρ2], η ∈ (0, 1]. (60)

By choosing ρ0 = min(ρ1, ρ2) we can thus guarantee I + I I < ε for ρ ∈ (0, ρ0).
Taking the scalar product against the given h ∈ Lq(Rd), we obtain

lim
ρ→0
〈T( f )− hρ ∗ f , h〉 = 0, (61)

thus completing the proof.

Remark 15. One can compare the ultra-weak convergence of a bounded net of operators with the
w∗−convergence of the corresponding kernels of the operators, in the sense of the Banach–Gelfand
triple of operators with distributional kernels in (S0, L2, S′0)(R2d). Giving details here would take
too much space and should be the subject of subsequent publications.

As an immediate consequence of the above theorem, we have

Corollary 6. CVp(Rd) = PMp(Rd) ≡ A′p(Rd).

Proof. Let us recall that HG(Lp) consists of the operators that commute with translation.
Obviously, convolution operators by ordinary functions (e.g., from Cc(Rd), S0(Rd) or even
bounded measures) have this property. Now, we assume that we have a net of such
convolution operators (Tα)rα ∈ I with ultra-weak limit T0. Then, it is clear that the identity

〈(TαTx) f − (TxTα) f , h〉, α ∈ I, ∀ f , h ∈ S0(G). (62)

implies that the same relationship is valid for the limit T0, which implies that T0 ∈
HG(Lp(G)). This implies that PM p(G) ⊆ HG(Lp(G)).

The proof then shows the following corollary (see (60)):

Corollary 7. The subspace of convolution operators f 7→ hρ ∗ f , with hρ ∈ S0(Rd), is dense in
HG(Lp(Rd)) in the strong operator topology.
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8. Tempered Elements in
(

Lp(G), ‖ · ‖p
)

Let us conclude this paper with a hint to two related questions, concerning the
algebra of tempered elements in Lp(Rd), which also has the same multiplier algebra as(

Lp(Rd), ‖ · ‖p
)
. Relevant references are the author’s paper [37] and a series of papers by

K. McKennon (and coauthors) such as [38–42].
Essentially, the results of these papers imply (for the LCA case) that the multiplier

space HG(Lp(G)) coincides with the space of multipliers of Lt
p(G) := Lp(G) ∩ CVp(G)

(defined appropriately). Elements of this space (defined properly, without reference to the
pointwise existence of convolution integrals) are called tempered elements of Lp(G).

This raises another question (which we cannot answer at the moment): what can be
said about the multipliers of Bp := Lp(G) ∩ Ap(G), with its natural norm? We have clearly

HG(Lp(G)) ↪→ HG(Bp). (63)

However, is this inclusion a proper one?

9. Conclusions and Summary

In this paper, we have shown that the identification of the multiplier space of the Herz–
Figa-Talamanca space with its dual space can be derived easily by direct methods. We pro-
vide arguments showing that this multiplier algebra coincides with that of

(
Lp(G), ‖ · ‖p

)
.

The setting of mild distributions helps to avoid the cumbersome setting of quasimeasures.
It behaves better under the Fourier transform and allows views that are closer to that of
engineers. The ultra-weak approximation of convolutors on

(
Lp(G), ‖ · ‖p

)
can be shown

to follow by means of standard regularization arguments for mild distributions.
We should also mention that our methods are more concrete than the very general

approach provided by M. Rieffel ([43]), which uses more abstract concepts from the theory
of Banach modules.

The approach taken also immediately extends to the context of Lorentz spaces
(see [44–46]) or Orlicz spaces, as treated in recent papers [47–49].
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