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Abstract: The number of random fields required to capture the spatial variability of soil properties
and their impact on the performance of geotechnical systems is often varied. However, the number
of random fields required to obtain higher-order statistical moments of model outputs has not yet
been studied. This research aims to investigate the number of Monte Carlo simulations needed to
achieve stationary higher-order statistics of a pore pressure head in an unsaturated soil slope under
steady-state infiltration. The study recommends using at least 500 Monte Carlo samples for the
probabilistic analysis of geotechnical engineering models. A more conservative choice for up to
second-moment analysis is 1000 samples. The analysis reveals significant variations in skewness,
which become stationary for all mesh grids when the number of samples exceeds 15,000. Kurtosis
stabilizes only when the number of samples reaches 25,000. The pore pressure head in the unsaturated
zone is less uncertain. Additionally, the probability density function of the pore pressure head follows
a leptokurtic distribution.

Keywords: random field; spatial variability; statistical moments; probabilistic analysis; geotechnical
engineering; uncertainty qualification
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1. Introduction

Probabilistic analysis is a very important topic in engineering modelling [1–3]. Geotech-
nical engineering deals with the behavior and properties of soil and rocks, which are
inherently complex and variable materials [4–7]. Therefore, there is always uncertainty
associated with geotechnical engineering analyses and design. By understanding and
quantifying these uncertainties and the reliability index, geotechnical engineers can make
more informed decisions about design, construction, and risk management.

Geotechnical engineering problems are often complex and involve non-linear relation-
ships between inputs and outputs, making it difficult to obtain explicit relationships or
closed-form solutions (e.g., [8–11]). Therefore, numerical methods, such as finite element or
finite difference methods, are commonly used to solve geotechnical engineering problems.
Because of the complexity and non-linearity of geotechnical engineering problems, it is
often difficult to directly compute the uncertainty and reliability of model outputs. Monte-
Carlo-based probabilistic analysis is, therefore, widely used to evaluate the probability of
failure or performance of geotechnical structures and systems under uncertain conditions
(e.g., [12–14]). The Monte Carlo simulation is a computational technique that uses random
sampling and probability distributions to simulate the potential outcomes of a complex
system or process. In a Monte Carlo simulation, a large number of samples are generated
from probability distributions of the uncertain inputs, and the model is evaluated for each
set of input samples. The resulting output samples are used to estimate the probability
distribution of the model output and the probability of failure or success of the system.
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This approach allows for the quantification of uncertainty and risk in geotechnical engineer-
ing problems, even when explicit relationships between inputs and outputs are difficult
to obtain [15].

The convergence of the Monte Carlo method implies obtaining a reasonably accurate
estimator. This convergence is guaranteed by the law of large numbers, which indicates
that repeated sampling in the Monte Carlo method will result in the average outcome
converging towards the expected value. There are currently two widely used approaches
to assess the level of convergence.

The first approach is based on the strong law of large numbers and central limit
theorem. The formula provided by Fenton and Griffiths [16] to determine the minimum
number of simulations needed to achieve a given estimation error with a confidence level
(1 − α) is

n =
( zα/2σ

e

)2
(1)

where zα/2 is the value of the standard normal variable with a cumulative probability level
(1 − α/2), σ is the standard deviation of the mode output for uncertainty analysis, and
e is the desired estimation error. For example, if an estimation error is allowed to be as
large as 0.1σ (e = 0.1σ) and the confidence level is 95% (α = 0.05), the required minimum
number of simulations is 384. Therefore, many studies set the number of 500 for Monte
Carlo simulations. It is evident from this that Monte Carlo convergence occurs gradually
since to attain ten times the accuracy we would need to amplify our sampling by a hundred
times, as per the well-known

√
N-rule.

The second approach is based on the weak law of large numbers. As the sample size
grows larger, the sample statistics will tend toward the population statistics. This is a more
practical approach for determining the minimum number of simulations required in a
Monte Carlo simulation. The method involves monitoring the variation of the statistics
of model outputs as the number of simulations increases, and stopping the simulation
once the variation becomes stationary. Specifically, the method involves calculating the
statistics of interest (such as mean, variance, or quantiles) using a progressively increasing
number of simulation samples, and plotting these statistics against the number of samples.
As the number of samples increases, the statistics will initially show high variability due
to the limited sample size but eventually converge to a stable range as the sample size
increases. The minimum number of simulations required to achieve stable results can then
be determined by observing the point at which the statistics become stationary.

Up until now, many scholars have conducted probabilistic analysis using Monte Carlo
simulations for the interests of geotechnical problems. The random fields are used to repre-
sent the spatial variability and uncertainty of soil properties in a Monte Carlo simulation. A
random field is a stochastic function that assigns a random value to each point in a spatial
domain, such as a soil deposit. The values assigned to neighboring points are correlated, re-
flecting the fact that soil properties tend to vary smoothly in space. In the literature, there are
several examples of researchers employing Monte Carlo simulations to analyze geotechnical
problems using different numbers of random fields. Zevgolis and Bourdeau [17] performed
Monte Carlo simulations 3000 times for assumed probability distributions of the backfill
and foundation material engineering properties. Zhu et al. [18] studied how the variability
of the permeability function propagates to the variability of hydraulic conditions based on
1000 random fields. Peng et al. [19] investigated wave-induced oscillatory response in a
spatially random heterogeneous porous seabed, considering cross-correlated multiple soil
properties based on 500 random fields. Gong et al. [20] probabilistically analyzed tunnel
longitudinal performance with 5000 conditional random fields using the Monte Carlo sim-
ulation. Liu et al. [21] examined the necessity of three-dimensional analysis when dealing
with slope with full randomness in soil properties, using 600 random fields. Chen et al. [22]
integrated the Karhunen–Loève expansion method and the coupled Eulerian–Lagrangian
method to simulate the large deformation behavior of slopes with spatially varied shear
strengths characterized using 200 random fields. Shen et al. [23] investigated the effect of
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soil spatial variability on failure mechanisms and capacities of strip foundations under
uniaxial loading on marine clay deposits with linearly increasing undrained shear strength
using 100,000 random fields. Deng et al. [24] conducted a probabilistic analysis of land
subsidence due to pumping using Biot’s poroelasticity and 500 random fields. By using
random fields to represent soil variability, Monte Carlo simulations can provide a more
realistic and comprehensive analysis of geotechnical systems, accounting for the spatial
variability of soil properties and its influence on the performance of the system. However,
the number of random fields used in Monte Carlo simulations is not universally agreed
upon and varies widely, ranging from 100 to 100,000. Determining the number of samples
required in a Monte Carlo simulation to achieve convergence is not a straightforward
task, and there is no consensus on the best approach [25–27]. The choice of the number of
random fields depends on various factors such as the specific problem being analyzed, the
desired level of detail, and available computational resources. Generally, increasing the
number of random fields leads to more precise and reliable results, but it also demands
more computational effort and resources. Nonetheless, higher-order statistical moments
such as skewness and kurtosis can offer valuable insights into the distribution and shape of
the response. These moments can also help to identify possible sources of non-linearity or
non-normality in geotechnical behavior. Interestingly, the number of random fields needed
to obtain higher-order statistical moments of model outputs has not been explored yet.

It is reported that the models used to simulate the infiltration of unsaturated soil
face significant non-linearity issues, primarily due to the exponential changes in the soil–
water characteristic curve (SWCC) and permeability function with water content [11].
Therefore, this study investigates the number of Monte Carlo simulations required to
achieve stationary higher-order statistics of the pore pressure head based on an unsaturated
soil slope under steady-state infiltration, using the second approach that is based on the
weak law of large numbers.

2. Stochastic Model of Unsaturated Soil Slope under Infiltration

The governing equation for steady-state infiltration in unsaturated soil is described
as [28]

∂

∂x

(
kx

∂H
∂x

)
+

∂

∂z

(
kz

∂H
∂z

)
= 0 (2)

where H is the total hydraulic head, which is the sum of the elevation head z and pore–water
pressure head h. The unsaturated coefficient of permeability is represented by kx and kz in
the x and z direction, respectively. For simplicity, we assume that the soil permeabilities are
identical in both directions, that is kx = kz = k.

The exponential form of the unsaturated coefficient of the permeability function
proposed by Leong and Rahardjo [29] is used:

k = ks

(
θw

θs

)b
(3)

where ks is the saturated coefficient of permeability; θw is the volumetric water content;
θs is the saturated water content; and b is a constant parameter signifying soil type. The
volumetric water content θw of SWCC summarized in Fredlund [30] is used:

θw = θs

{
ln

[
exp(1) +

(
ua − uw

a f

)n f
]}−m f

(4)

where ua and uw represent the pore–air pressure and the pore–water pressure, respectively,
and af, nf, and mf are the fitting parameters. For this study, we assume that the soil is
sand, and the SWCC parameters are af = 5, nf = 2, and mf = 1. The permeability function
parameter b is set to 3 to represent sand soil.
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Figure 1 illustrates a numerical representation of a slope of unsaturated soil subjected
to rainfall. The upper boundary is subjected to a vertical flux of q = 2 × 10−7 m/s to
simulate rainfall infiltration. The boundary conditions on the left and right sides are set as
constant hydraulic heads of 10 and 20 m, respectively, representing the underground water
table. The lower boundary is considered impermeable and no flow boundary condition
is applied.

Axioms 2023, 12, x FOR PEER REVIEW 4 of 13 
 

ln exp(1)

f
f

mn

a w
w s

f

u u
a

θ θ

−
   −  = +           

(4)

where ua and uw represent the pore–air pressure and the pore–water pressure, respec-
tively, and af, nf, and mf are the fitting parameters. For this study, we assume that the soil 
is sand, and the SWCC parameters are af = 5, nf = 2, and mf = 1. The permeability function 
parameter b is set to 3 to represent sand soil. 

Figure 1 illustrates a numerical representation of a slope of unsaturated soil subjected 
to rainfall. The upper boundary is subjected to a vertical flux of q = 2 × 10−7 m/s to simulate 
rainfall infiltration. The boundary conditions on the left and right sides are set as constant 
hydraulic heads of 10 and 20 m, respectively, representing the underground water table. 
The lower boundary is considered impermeable and no flow boundary condition is ap-
plied. 

(a) 

 
(b) 

Figure 1. Numerical model: (a) Mesh and boundary conditions; (b) Initial conditions (pore pressure 
head: m). 
Figure 1. Numerical model: (a) Mesh and boundary conditions; (b) Initial conditions (pore pressure
head: m).

The saturated hydraulic conductivity ks is taken as a spatially varied soil parameter
following log-normal distribution, with a mean of 2 × 10−5 and standard deviation of
1.6 × 10−5 m/s [31]. The covariance function C is used to simulate the spatial correlation
of log(ks):

C(x1, x2) = σ2e
−[ (x1−x2)

2

l2x
+

(z1−z2)
2

l2z
]

1
2

(5)

where x1 = (x1, z1) and x2 = (x2, z2) represent two coordinates in the model domain; σ2 is
the variance of log(ks); and lx and lz are the horizontal and vertical correlation lengths, with
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lx set to 50 m and lz set to 10 m, as reported by Yang et al. [32]. Table 1 summarizes the
parameters used in this study.

Table 1. Parameters for stochastic numerical model.

Parameters Definition Value Unit

q Vertical flux 2 × 10−7 m/s

θs Saturated volumetric water content 0.4

af SWCC parameter 5

nf SWCC parameter 2

mf SWCC parameter 1

b Permeability function parameter 3

µks Mean of ks 2 × 10−5 m/s

σks Standard deviation of ks 1.6 × 10−5 m/s

lx Correlation length in horizontal direction 50 m

lz Correlation length in vertical direction 10 m

3. Random Field Simulation

This study utilizes the Karhunen–Loève expansion method to generate the spatial
random field ks(x) random field with a mean µ(x) and covariance function C(x1, x2). The
covariance function C(x1, x2) can be decomposed as

C(x1, x2) =
∞

∑
i=1

λi ϕi(x1)ϕi(x2) (6)

where λi and ϕi(x) are the ith eigenvalues and eigenfunctions (eigenvectors) of the covari-
ance function, respectively. By utilizing singular value decomposition, the eigenvalues and
eigenfunctions can be determined.

Utilizing the Karhunen–Loève expansion, the spatial random variable ks(x) can be
further decomposed as

log ks(x) = µ(x) +
∞

∑
i=1

√
λiθi ϕi(x) (7)

where θi is a Gaussian random variable with θi ~ N(0,1) and is independently and identically
distributed.

Practically, the spatial variability representing by the random field is approximated by
truncating the Karhunen–Loève expansion:

log ks(x) = µ(x) +
n

∑
i=1

√
λiθi ϕi(x) (8)

where the value of n represents the truncation level, which involves disregarding the
small-scale variation of the field in the Karhunen–Loève expansion. The selection of the
truncation level is dependent on both the covariance function of the random field and the
desired accuracy of total variability. Typically, a value of n is chosen to preserve 95% of the
total variance (Yang et al., 2019):

n
∑

i=1
λi

∞
∑

i=1
λi

= 0.95. (9)
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4. Calculation of Statistical Moments

The results of a Monte Carlo simulation are the samples of the model outputs. The
mean µ and variance σ2 can be estimated to illustrate the central tendency and variability
of the stochastic model output.

Skewness is a measure of the degree of asymmetry of a probability distribution around
its mean. A negative skewness value indicates that the distribution is skewed to the left,
meaning that the tail of the distribution extends more to the left of the mean than to the
right. On the other hand, a positive skewness value indicates that the distribution is skewed
to the right, meaning that the tail of the distribution extends more to the right of the mean
than to the left. In more practical terms, a negative skewness value indicates that there are
more extreme values on the left-hand side of the distribution, while a positive skewness
value indicates that there are more extreme values on the right-hand side of the distribution.
The skewness of a distribution is defined as

s =
E(x− µ)3

σ3 (10)

where x represents the values of the model output; E represents the expectation operator.
Kurtosis is a statistical measure that quantifies the degree of peakedness and tail

heaviness of a probability distribution, relative to the normal distribution. The normal
distribution has a kurtosis value of 3. Distributions with a kurtosis greater than 3 are more
prone to outliers than the normal distribution, while distributions with a kurtosis less
than 3 are less prone to outliers. In other words, a high kurtosis value indicates that the
distribution has more extreme values (outliers) than the normal distribution, while a low
kurtosis value indicates that the distribution has fewer extreme values. The skewness of a
distribution is defined as

k =
E(x− µ)4

σ4 . (11)

In this study, the mean, variance, skewness, and kurtosis are used to represent the first,
second, third, and fourth statistical moments, respectively.

5. Results and Discussions
5.1. Results of Simulation

In Figure 2, a comparison is made between the simulated pore pressure head from
the determinist model and stochastic model. Figure 2a,b displays the pore pressure head
of homogeneous and spatially varied ks, respectively. For comparison purposes, only one
realization of spatially varied ks is generated. Both figures indicate that the matric suction
in the shallow depth begins to dissipate. In the unsaturated zone, there are significant
differences in the contours of the pore pressure head, which gradually become more
apparent as rainfall continues. For spatially varied ks, the matrix suction is relatively small.
Therefore, the spatial variation of ks has a significant impact on the pore pressure head,
highlighting the need to consider the spatial variability of ks in engineering practice.

5.2. Results of Statistical Moments

Figure 3 displays the variation in the mean pore pressure head (µ) with an increase
in the number of samples taken along the A–A′ mesh grid section. It can be observed
that the mean pore pressure head becomes stationary quickly. In order to accurately
characterize the mean pore pressure head, a total of 100 Monte Carlo samples are sufficient.
Figure 4 represents the first moment of the mean pore pressure head in the entire slope,
which indicates that there is only a slight difference in the mean pore pressure head in the
unsaturated zone. Specifically, the mean suction head (negative pore pressure head) in the
unsaturated zone is approximately 3 m, which is comparable to the results obtained from
the deterministic model.



Axioms 2023, 12, 481 7 of 13

Figure 2. Simulated pore pressure head (m): (a) Deterministic result; (b) One realization of
stochastic results.
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Figure 5 displays the variation in the variance (σ2) with an increase in the number of
samples taken along the A–A′ mesh grid section. The plot indicates that the variation be-
comes stable when the number of samples exceeds 500. Figure 6 demonstrates the variance
based on different numbers of samples. The distribution of variance based on different
numbers of samples is generally similar, with only slight differences in the variance around
the right boundary. However, when the number of samples exceeds 1000, this difference
becomes insignificant. In geotechnical engineering, researchers typically use the second
moment of variance as a useful statistical measure to represent certain aspects of model
outputs. Therefore, it is recommended to use at least 500 samples for Monte-Carlo-based
probabilistic analysis for geotechnical engineering models, while 1000 samples is a more
conservative choice. The suggested number aligns with the estimation of the strong law of
large numbers. However, it is important to note that this approach may not be appropriate
in all cases, and further research is needed to determine its effectiveness and limitations.
Additionally, the variance is larger in areas far from hydraulic boundaries because the fixed
hydraulic boundaries constrain the variation of the pore pressure head. Furthermore, it was
observed that the pore pressure head in the unsaturated zone experienced less uncertainty,
with a variance of around 0.8 m2.

Figure 7 displays the variation in skewness with an increase in the number of samples
taken along the A–A′ mesh grid section. The plot indicates significant variations in skew-
ness, which become stationary for all mesh grids when the number of samples exceeds
15,000. Figure 8 shows the skewness based on different numbers of samples. For the pore
pressure head, the skewness sign is roughly separated by the water table and x = 60 m,
which is close to the middle part of the model. This may be due to the constant hydraulic
heads on the left and right boundaries, and the skewness sign is hard to change. In the
left part of the model, the skewness values are predominantly negative, indicating that
the probability density function (PDF) is left-skewed. At the slope toe of the model, the
skewness is almost positive and can be up to 1, indicating a significantly right-skewed PDF.
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The variation in kurtosis with an increase in the number of samples taken along the
A–A′ mesh grid section is presented in Figure 9, indicating significant fluctuations as the
number of samples increases. It is only when the number of samples reaches 25,000 that the
variation in kurtosis stabilizes. Figure 10 illustrates the kurtosis based on different numbers
of samples. The kurtosis of the entire slope is greater than 3, indicating a leptokurtic
distribution for the probability density function of the pore pressure head. However, the
kurtosis around the underground water table is relatively small, suggesting that the degree
of tailedness around the water table is more closely approximated by normal distributions.
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Figure 9. Variation of kurtosis with increasing number of samples at mesh grid along A–A′ section.
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6. Conclusions

This study investigates the number of Monte Carlo simulations required to achieve
stationary higher-order statistics of a pore pressure head based on an unsaturated soil slope
under steady-state infiltration. The major conclusions are summarized below:

1. It is recommended to use at least 500 samples for Monte Carlo-based probabilistic anal-
ysis for geotechnical engineering models, while 1000 samples is a more conservative
choice for up to second-moment analysis.

2. The pore pressure head in the unsaturated zone experiences less uncertainty, with
a variance of around 0.8 m2. The skewness sign is roughly separated by the water
table and x = 60 m. The probability density function of the pore pressure head is a
leptokurtic distribution.

3. Significant variations are observed in skewness, which become stationary for all mesh
grids when the number of samples exceeds 15,000. It is only when the number of
samples reaches 25,000 that the variation in kurtosis stabilizes.

It is important to note that this study has some limitations. Firstly, the investigation
only covers one geotechnical model with one soil type, and the required number of Monte
Carlo simulations may vary with different models. Secondly, the convergence assessment
is based on the weak law of large numbers, where statistics are only calculated against
increased samplings, which may not be mathematically rigorous. Nevertheless, as it is a
high non-linear model, the conclusions drawn are representative of engineering practice.
Future studies could explore different models and focus on selecting some aggregate
quantities of interest, such as L2-norm, while referencing the results of an extremely large
number of simulations.
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