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Abstract: This manuscript includes certain results on fixed points under a generalized contraction
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1. Introduction

In the hypotheses of the Banach contraction principle (abbreviated as: BCP), underly-
ing mapping remains a class of continuous mapping, which is known as ‘contraction’. In
recent years, various types of functions have been introduced to generalize the contraction
condition such as control functions, comparison functions, (c)-comparison functions, alter-
ing distance functions, shifting distance function, Geraghty functions, simulation functions,
etc. On the other hand, Alam and Imdad [1] established a novel generalization of BCP,
where the metric space was equipped with a relation, and the involved mapping preserved
this relation. The result of Alam and Imdad [1] was further extended and improved by
various authors, e.g., ([2–19]). Indeed the relation-theoretic contraction condition remains
weaker as compared to the Banach contraction, as this holds for only those elements which
are related with respect to the given relation.

Following Khan et al. [20], a function θ : [0, ∞)→ [0, ∞) is called an altering distance
function if

(i) θ(s) = 0 if and only if s = 0,
(ii) θ is increasing and continuous.

Employing the idea of an altering distance function, Khan et al. [20] obtained a
generalization of the BCP, which runs as follows:

Theorem 1 ([20]). Let (D, σ) be a metric space and H : D → D a function. If ∃ an altering
distance function θ and a constant c ∈ [0, 1) satisfying

θ(σ(Hq,Hs)) ≤ cθ(σ(q, s)), ∀ q, s ∈ D, (1)

thenH has a unique fixed point.

Under the restriction θ = I, with the identity map on [0, ∞), Theorem 1 reduces to the
BCP. Berzig [21] generalized the concept of an altering distance function by introducing the
idea of a pair (θ, η) of shifting distance functions and utilized the same to extend Theorem 1,
wherein the authors replaced the function c.θ (in the right hand side of (1)) with another
appropriate mapping η.
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The intent of this manuscript is to establish the results of the existence and uniqueness
of fixed points under a contractivity condition employing a pair of shifting distance func-
tions in the setting of relational metric space. In proving our results, we employ a locally
H-transitive binary relation. To demonstrate our main results, some illustrative examples
are also provided. As an application of our results, we present a result on the existence and
uniqueness of a certain boundary value problem (abbreviated as, B.V.P.).

As mentioned earlier, a relatively weaker contraction condition is utilized compared
with those in the recent literature. Owing to the restrictive nature, the results proved
herein and similar results in future works can be applied in fields of matrix equations,
Fredholm integral equations, nonlinear elliptic problems, fractional differential equations,
and delayed hematopoiesis models in addition to the B.V.P.

2. Preliminaries

Throughout this article, N, N0, and R will denote the set of: natural numbers, whole
numbers, and real numbers, respectively. By a relation (or more precisely, a binary relation)
Γ on a set D, we mean any subset of D2. In what follows, D is a set, σ is a metric on D, Γ is
a relation on D, andH : D → D is a map.

Definition 1 ([1]). Two elements q, s ∈ D are said to be Γ-comparative, denoted by [q, s] ∈ Γ, if
(q, s) ∈ Γ or (s, q) ∈ Γ.

Definition 2 ([22]). Γ−1 := {(q, s) ∈ D2 : (s, q) ∈ Γ} is referred to as the transpose of Γ.

Definition 3 ([22]). By the symmetric closure of Γ, one means the relation Γs := Γ ∪ Γ−1.

Proposition 1 ([1]). (q, s) ∈ Γs ⇐⇒ [q, s] ∈ Γ.

Definition 4 ([22]). A relation on C ⊆ D defined by

Γ|C := Γ ∩ C2,

is called restriction of Γ on C.

Definition 5 ([1]). Γ is referred to asH-closed, if it satisfies

(Hq,Hs) ∈ Γ,

for each pair q, s ∈ D verifying (q, s) ∈ Γ.

Proposition 2 ([5]). Γ isHn-closed provided Γ remainsH-closed.

Definition 6 ([1]). A sequence {qn} ⊂ D verifying (qn, qn+1) ∈ Γ ∀ n ∈ N0 is said to be
Γ-preserving.

Definition 7 ([2]). If each Γ-preserving Cauchy sequence in the metric space (D, σ) remains
convergent, then one can state that (D, σ) is Γ-complete.

Definition 8 ([2]). H is called Γ-continuous at q ∈ D if it satisfies

H(qn)
σ−→ H(q)

for any Γ-preserving sequence {qn} ⊂ D verifying qn
σ−→ q. Further, by a Γ-continuous function,

we mean Γ-continuous at all points of D.

Definition 9 ([1]). Γ is σ-self-closed, if each Γ-preserving convergent sequence in (D, σ) admits a
subsequence whose terms are Γ-comparative with the convergence limit.
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Definition 10 ([23]). Given q, s ∈ D, a finite sequence {p0, p1, . . . , pl} ⊂ D is called a path of
length l ∈ N in Γ from q to s if the following hold:

(i) p0 = q and pl = s,
(ii) (pi, pi+1) ∈ Γ, 0 ≤ i ≤ l − 1.

Definition 11 ([5]). A subset C ⊆ D is said to be a Γ-connected set, if ∃ a path between each pair
of elements of C.

Definition 12 ([24]). Given k ∈ N0, k ≥ 2, Γ is termed k-transitive, if for any q0, q1, ..., qk ∈ D
satisfying (qj−1, qj) ∈ Γ, for 1 ≤ j ≤ k, one has

(q0, qk) ∈ Γ.

Definition 13 ([25,26]). Γ is said to be a finitely transitive relation if it is k-transitive, for some
k ≥ 2.

Definition 14 ([10]). Γ is termed as locally finitely H-transitive, if for each enumerable subset
C ⊆ H(D), there exists k = k(C) ≥ 2, such that Γ|C remains k-transitive.

The following notations are utilized in the upcoming text.

• F(H):=the set of all fixed points ofH,
• D(H, Γ) := {q ∈ D : (q,Hq) ∈ Γ}.

The following result investigated by Alam and Imdad [1] is known as the relation-
theoretic contraction principle.

Theorem 2 ([1,2,19]). Assume that (D, σ) is a metric space, and Γ is a relation on D, while
H : D → D is a function. Moreover,

(i) (D, σ) is Γ-complete,
(ii) D(H, Γ) is nonempty,
(iii) Γ isH-closed,
(iv) H is Γ-continuous or Γ is σ-self-closed,
(v) there exists c ∈ [0, 1) verifying

σ(Hq,Hs) ≤ cσ(q, s), ∀ q, s ∈ D with (q, s) ∈ Γ.

Then, H admits a fixed point. Moreover, if H(D) is Γs-connected, then H admits a unique
fixed point.

Finally, we indicate the following two known results, which are desirable to prove our
main results.

Lemma 1 ([27]). Let {qn} be a sequence in a metric space (D, σ). If {qn} is not Cauchy, then
there exists an ε > 0 and two subsequences {qnα} and {qmα} of {qn} verifying

(i) α ≤ mα < nα ∀ α ∈ N,
(ii) σ(qmα , qnα) ≥ ε,
(iii) σ(qmα , qsα) < ε, ∀ sα ∈ {mα + 1, mα + 2, ..., nα − 2, nα − 1}.
Further, if lim

n→∞
σ(qn, qn+1) = 0, then

lim
α→∞

σ(qmα , qnα+s) = ε, ∀ s ∈ N0.

Lemma 2 ([25]). Let Γ be a relation on a set D and {qn} ⊂ D be an Γ-preserving sequence. If Γ is
k-transitive on C = {qn : n ∈ N0}, then

(qn, qn+1+s(k−1)) ∈ Γ, ∀ n, s ∈ N0.
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3. Main Results

Let θ, η : [0, ∞) → [0, ∞) be two functions. Following Berzig [21], one says that the
pair (θ, η) forms a pair of shifting distance functions, if they enjoy the following properties:

(i) for w, z ∈ [0, ∞) with θ(w) ≤ η(z) =⇒ w ≤ z.
(ii) for {wn}, {zn} ⊂ [0, ∞) with θ(wn) ≤ η(zn), ∀ n ∈ N, and lim

n→∞
wn = lim

n→∞
zn = l =⇒

l = 0.

Proposition 3. Suppose that (D, σ) is a metric space, Γ is a relation on D, whileH : D → D is a
function. If (θ, η) are shifting distance functions, then the following are equivalent:

(I) θ(σ(Hq,Hs)) ≤ η(σ(q, s)), ∀ q, s ∈ D with (q, s) ∈ Γ,
(II) θ(σ(Hq,Hs)) ≤ η(σ(q, s)), ∀ q, s ∈ D with [q, s] ∈ Γ.

Proof. If (II) holds, then so does (I) trivially. Conversely, we assume that (I) holds. We take
q, s ∈ D with [q, s] ∈ Γ. In the case where (q, s) ∈ Γ, (I) implies (II). Otherwise, in the case
where (s, q) ∈ Γ, due to the symmetric property of σ and (I), we obtain

θ(σ(Hq,Hs)) = θ(σ(Hs,Hq)) ≤ η(σ(s, q)) = η(σ(q, s)).

This verifies that (I)⇒(II).

Theorem 3. Suppose that (D, σ) is a metric space, and Γ is a relation on D, whileH : D → D is
a function. Moreover,

(i) (D, σ) is Γ-complete,
(ii) D(H, Γ) is nonempty,
(iii) Γ isH-closed and locally finitelyH-transitive,
(iv) H is Γ-continuous or Γ is σ-self-closed,
(v) there exist shifting distance functions (θ, η) verifying

θ(σ(Hq,Hs)) ≤ η(σ(q, s)), ∀ q, s ∈ D with (q, s) ∈ Γ.

Then,H admits a fixed point.

Proof. By hypothesis (ii), if q0 ∈ D(H, Γ), then we have (q0,Hq0) ∈ Γ. We construct a
sequence {qn} ⊂ D verifying

qn = Hn(q0) = H(qn−1), ∀ n ∈ N. (2)

By assumption (iii) and Proposition 2, we obtain

(Hnq0,Hn+1q0) ∈ Γ.

Using (2), the above becomes

(qn, qn+1) ∈ Γ ∀ n ∈ N0, (3)

so that {qn} is Γ-preserving.
If there exists n0 ∈ N0 satisfying σ(qn0 , qn0+1) = 0, then using (2), we find that qn0 is a

fixed point of H. Otherwise, in the case where σn := σ(qn, qn+1) > 0, ∀ n ∈ N0, one uses
hypothesis (v) to obtain

θ(σ(qn+1, qn+2)) = θ(σ(Hqn,Hqn+1)) ≤ η(σ(qn, qn+1))

so that
θ(σn+1) ≤ η(σn), n ∈ N.
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By property (i) of the shifting distance functions, {σn} ⊂ [0, ∞) is a decreasing sequence.
Therefore, ∃ δ ≥ 0 satisfying lim

n→∞
σn = δ. Further, by property (ii) of the shifting distance

functions, one obtains δ = 0, i.e.,

lim
n→∞

σn = lim
n→∞

σ(qn, qn+1) = 0. (4)

Employing the contradiction method, we show that {qn} is a Cauchy sequence. If {qn}
is not Cauchy, then Lemma 1 ensures the existence of ε > 0 and two subsequences {qnα}
and {qmα} of {qn} verifying α ≤ mα < nα, σ(qmα , qnα) ≥ ε and σ(qmα , qsα) < ε wherein
sα ∈ {mα + 1, mα + 2, ..., nα − 2, nα − 1}. Moreover, by (4), one obtains

lim
n→∞

σ(qmα , qnα+s) = ε ∀s ∈ N0. (5)

Since {qn} ⊂ H(D), the range C = {qn : n ∈ N0} is an enumerable subset of H(D);
therefore, the locally finitelyH-transitivity of Γ ensures the existence of a natural number
k = k(C) ≥ 2, for which Γ|C is k-transitive.

Now, mα < nα and k− 1 > 0; therefore, by the division algorithm, one obtains

nα −mα = (k− 1)(µα − 1) + (k− ηα)
µα − 1 ≥ 0, 0 ≤ k− ηα < k− 1

⇐⇒
{

nα + ηα = mα + 1 + (k− 1)µα

µα ≥ 1, 1 < ηα ≤ k.

Here, µα and ηα are suitable numbers so that 1 < ηα ≤ k. Thus, we are able to choose
subsequences {qnα} and {qmα} of {qn}(satisfying (5)); so, ηα is a constant η. One has

m′α = nα + η = mα + 1 + (k− 1)µα. (6)

Using (5) and (6), one obtains

lim
α→∞

σ(qmα , qm′α) = lim
α→∞

σ(qmα , qnα+η) = ε. (7)

Using the triangular inequality, we have

σ(qmα+1, qm′α+1) ≤ σ(qmα+1, qmα) + σ(qmα , qm′α) + σ(qm′α , qm′α+1) (8)

and
σ(qmα , qm′α) ≤ σ(qmα , qmα+1) + σ(qmα+1, qm′α+1) + σ(qm′α+1, qm′α)

or

σ(qmα , qm′α)− σ(qmα , qmα+1)− σ(qm′α+1, qm′α) ≤ σ(qmα+1, qm′α+1). (9)

Letting α→ ∞ in (8) and (9) and using (4) and (7), we obtain

lim
α→∞

σ(qmα+1, qm′α+1) = ε. (10)

Due to the availability of (6) and Lemma 2, we obtain σ(qmα , qm′α) ∈ Γ. Further, by assump-
tion (v), one obtains

θ(σ(qmα+1, qm′α+1)) = θ(σ(Hqmα ,Hqm′α)) ≤ η(σ(qmα , qm′α)).

Using property (ii) of the shifting distance functions for {wα = σ(qmα , qm′α)}, {zα =
σ(qmα+1, qm′α+1) and l = ε, one finds that ε = 0, which is a contradiction. Thus, {qn} is

Cauchy; hence, the Γ-completeness of D provides the existence of r ∈ D verifying qn
σ−→ q.
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Finally by (iv), one can verify that q is a fixed point ofH. Firstly, we assume thatH is
Γ-continuous; then, we have

H(qn)
σ−→ H(q),

which by using (2), reduces to qn+1
σ−→ q implying thereby H(q) = q. Otherwise, we

suppose that Γ is σ-self-closed. As {qn} is a Γ-preserving sequence satisfying qn
σ−→ q, by

the σ-self-closedness of Γ, there exists a subsequence of {qnk} of {qn} satisfying [qnk , q] ∈ Γ,
∀ k ∈ N0. Making use of assumption (v), we obtain

θ(σ(qnk+1,Hq)) = θ(σ(Hqnk ,Hq)) ≤ η(σ(qnk , q))

which, using axiom (i) of the shifting distance functions, gives rise to

σ(qnk+1,Hq) ≤ σ(qnk , q), ∀ k ∈ N0. (11)

Due to the fact that qnk
σ−→ q and by the continuity of σ, one obtains σ(qnk , q)→ 0 as k→ ∞.

Letting k→ ∞ in (11), one has

σ(qnk+1,Hq)→ 0 as k→ ∞;

so,
qnk+1

σ−→ H(q).

Using the uniqueness of the convergence limit, we obtainH(q) = q.

Now, the corresponding uniqueness result is presented.

Theorem 4. Along with the hypothesis of Theorem 3, ifH(D) is Γs-connected, thenH admits a
unique fixed point.

Proof. By Theorem 3, there exists at least one fixed point ofH. If q and s remain two fixed
points ofH, then

Hn(q) = q andHn(s) = s ∀ n ∈ N0.

Clearly q, s ∈ H(D). By the Γs-connectedness ofH(D), there exists a path {p0, p1, p2, ..., pl}
between q to s; so,

p0 = q, pl = s and [pi, pi+1] ∈ Γ, ∀ i = 0, 1, . . . , l − 1. (12)

As Γ isH-closed, we have

[Hn pi,Hn pi+1] ∈ Γ, ∀ n ∈ N0 and ∀ i = 0, 1, . . . , l − 1. (13)

We denote

δi
n := σ(Hn pi,Hn pi+1) ∀ n ∈ N0 and ∀ i = 0, 1, . . . , l − 1.

We show that

lim
n→∞

δi
n = 0. (14)

For each fixed i, two cases arise. Firstly, one can assume that

δi
n0

= σ(Hn0 pi,Hn0 pi+1) = 0, for some n0 ∈ N0,

which implies thatHn0(pi) = Hn0(pi+1). Using (2), one obtainsHn0+1(pi) = Hn0+1(pi+1);
so, δi

n0+1 = 0. Thus, by induction, one finds δi
n = 0 ∀ n ≥ n0, implying thereby lim

n→∞
δi

n = 0.



Axioms 2023, 12, 478 7 of 13

Secondly, one may assume that δi
n > 0, ∀ n ∈ N0. Using (13) along with assumption (v),

we obtain

θ(δi
n+1) = θ(σ(Hn+1 pi,Hn+1 pi+1))

= θ(σ(H(Hn pi),H(Hn pi+1)))

≤ η(σ(Hn pi,Hn pi+1))

= η(δi
n);

so,

θ(δi
n+1) ≤ η(δi

n).

Applying the property (i) of shifting distance functions, the above inequality yields

lim
n→∞

δi
n = 0.

Hence, in both the cases, (14) has been proved. By the triangle inequality, one obtains

σ(q, s) = σ(Hn p0,Hn pk)

≤ δ0
n + δ1

n + · · ·+ δk−1
n

→ 0 as n→ ∞;

so, q = s. Thus,H admits a unique fixed point.

Under the universal relation (i.e., Γ = D2), Theorem 4 deduces to the following fixed
point result.

Corollary 1. Assume that (D, σ) is a complete metric space and H : D → D is a mapping. If
there exists a pair (θ, η) of shifting distance functions verifying

θ(σ(Hq,Hs)) ≤ η(σ(q, s)), ∀ q, s ∈ D,

thenH admits a unique fixed point.

4. Illustrative Examples

To demonstrate the earlier results, let us consider the following examples.

Example 1. Consider the set D = [0, 1] ∪N with a metric σ defined by

σ(q, s) =


|q− s|, if q, s ∈ [0, 1] and q 6= s;
q + s, if (q, s) /∈ [0, 1]× [0, 1] and q 6= s;
0, if q = s.

On D, we define a relation Γ by

Γ = {(q, s) ∈ D2 : q > s}.

Notice that (D, σ) is isometric to a closed subset A of the space l1 of the absolutely summable
sequences, whereas the set A consists of the sequences (q, 0, 0, · · · ) for q ∈ [0, 1] together with the
sequences with m (m = 2, 3, · · · ) in the mth coordinate place and zeros elsewhere. It follows that
the metric space (D, σ) is complete; hence, it is also Γ-complete.

We define the test functions θ, η : [0, ∞)→ [0, ∞) by

θ(z) =

ln
(

1
13 + 5z

13

)
, if 0 ≤ z ≤ 1

ln
(

1
13 + 4z

13

)
, if z > 1



Axioms 2023, 12, 478 8 of 13

and

η(z) =

ln
(

1
13 + 3z

13

)
, if 0 ≤ z ≤ 1

ln
(

1
13 + 2z

13

)
, if z > 1.

Next, we verify that (θ, η) are shifting distance functions. We take w, z ∈ [0, ∞) with θ(w) ≤
η(z). If 0 ≤ w ≤ 1 and 0 ≤ z ≤ 1, then ln

(
1

13 + 5w
13

)
≤ ln

(
1

13 + 3z
13

)
; so, ln

(
1+3z
1+5w

)
≥ 0

implying thereby w ≤ 3
5 z < z. If w > 1 and z > 1, then similar to the previous case, we obtain

w ≤ 2
4 z < z. In the case where 0 ≤ w ≤ 1 and z > 1, the conclusion is trivial. For the case

w > 1 and 0 ≤ z ≤ 1, the inequality θ(w) ≤ η(z) does not hold. Hence, in each of the cases,
one has w ≤ z. Again, if {wn}, {zn} ⊂ [0, ∞) are sequences with θ(wn) ≤ η(zn), ∀ n ∈ N and
lim

n→∞
wn = lim

n→∞
zn = l, then the continuity of the logarithm function gives rise to l = 0. Thus, we

conclude that (θ, η) forms a pair of shifting distance functions.
We assume thatH : D → D is a map defined by

H(q) =

{
q/6, if q ∈ [0, 1)
1/48, if q ∈ N.

We take q, s ∈ D with (q, s) ∈ Γ; then, q > s. Then, the following cases arise:

Case-I: If q ∈ [0, 1], then one has

θ(σ(Hq,Hs)) = ln
(

1
13

+
6
13

σ(Hq,Hs)
)

= ln
(

1
13

+
6
13
|Hq−Hs|

)
= ln

(
1

13
+

1
13
|q− s|

)
≤ η(σ(q, s)).

Case-II: If q ∈ N− {1}, then for s ∈ [0, 1), one has

θ(σ(Hq,Hs)) = ln
(

1
13

+
6

13
σ(Hq,Hs)

)
= ln

(
1

13
+

6
13
|Hq−Hs|

)
≤ ln

(
1

13
+

6
13

(
1

48
+

s
6

))
≤ ln

(
1

13
+

1
104

+
s

13

)
≤ η(σ(q, s)),

(
as

1
104

+
s

13
≤ 1

13
(q + s)

)
.

Otherwise, when s ∈ N, one obtains

θ(σ(Hq,Hs)) = ln
(

1
13

+
6
13

σ(Hq,Hs)
)

= ln
(

1
13

)
≤ η(σ(q, s)).

Therefore,H satisfies assumption (v) of Theorem 3. Moreover,H is Γ-continuous while Γ is locally
finitelyH-transitive as well asH-closed. The rest of the conditions of Theorems 3 and 4 are easily
verified. Hence,H possesses a unique fixed point (namely: q = 0).
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Example 2. Consider the setD = [2, 4] with Euclidean metric σ and a relation Γ = {(2, 2), (2, 3),
(3, 2), (3, 3), (0, 4)}. Then, (D, σ) is a Γ-complete metric space. Assume thatH : D → D is a map
defined by

H(q) =

{
2 if 2 ≤ q ≤ 3
3 if 3 < q ≤ 4.

Then, Γ is H-closed. Suppose that {qn} ⊂ D is a Γ-preserving sequence satisfying qn
σ−→ q

so that (qn, qn+1) ∈ Γ, for each n ∈ N. Note that (qn, qn+1) 6∈ {(2, 4)}, implying thereby
(qn, qn+1) ∈ {(2, 2), (2, 3), (3, 2), (3, 3)}, ∀ n ∈ N; so, {qn} ⊂ {2, 3}. As {2, 3} is closed, we
have [qn, q] ∈ Γ. It follows that Γ is σ-self-closed.

We define the test functions θ, η : [0, ∞)→ [0, ∞) by

θ(z) = z2 and η(z) =
z2

z2 + 1
.

Then, (θ, η) remains as the pair of shifting distance functions. Moreover, the contractivity condition
(v) of Theorem 3 holds for the pair (θ, η). The rest of the assumptions of Theorems 3 and 4 are also
satisfied. Consequently,H possesses a unique fixed point (namely: q = 2).

5. An Application to Boundary Value Problems

In the sequel, C[0, a] denotes the class of all real valued continuous functions on [0, a]
(where a > 0), and C1[0, a] denotes the class of all real valued continuously differentiable
functions on [0, a]. Let us consider the following BVP:{

µ′(s) = f (s, µ(s)), s ∈ [0, a]
µ(0) = µ(a)

(15)

where f : [0, a]×R→ R is a continuous function.

Definition 15 ([28]). We say that µ0 ∈ C1[0, a] is a lower solution of (15), if{
µ′0(s) ≤ f (s, µ0(s)), s ∈ [0, a]
µ0(0) ≤ µ0(a).

Now, we present the main result of this section.

Theorem 5. In addition to Problem (15), suppose that there exists β, λ > 0 verifying

β ≤

√
2λ(eλa − 1)
a(eλa + 1)

, (16)

such that ∀ r, t ∈ R with r ≤ t, one has

0 ≤ [ f (s, t) + λt]− [ f (s, r) + λr] ≤ β

√
(r− s)2

(r− s)2 + 1
. (17)

Further, if Problem (15) admits a lower solution, then it has a unique solution.

Proof. Problem (15) can be rewritten as{
µ′(s) + λµ(s) = f (s, µ(s)) + λµ(s), ∀ s ∈ [0, a]
µ(0) = µ(a).

(18)
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Further, (18) reduces to an integral equation of the form

µ(s) =
∫ a

0
L(s, ξ)[ f (ξ, µ(ξ)) + λµ(ξ)]dξ. (19)

Herein, L(s, ξ) is the Green function of the integral equation, defined by

L(s, ξ) =

{
eλ(a+ξ−s)

eλa−1 , 0 ≤ ξ < s ≤ a
eλ(ξ−s)

eλa−1 , 0 ≤ s < ξ ≤ a.

We denote D := C[0, a] and define a mappingH : D → D by

(Hµ)(s) =
∫ a

0
L(s, ξ)[ f (ξ, µ(ξ)) + λµ(ξ)]dξ, ∀ s ∈ [0, a]. (20)

Therefore, µ ∈ D is a fixed point of H, if and only if µ ∈ C1[0, a] is a solution of (19) and
hence of (15). On D, we define a metric σ and a relation Γ as follows:

σ(µ, ϑ) = sup
s∈[0,a]

|µ(s)− ϑ(s)|, ∀ µ, ϑ ∈ D (21)

and
Γ = {(µ, ϑ) ∈ D ×D : µ(s) ≤ ϑ(s), ∀ s ∈ [0, a]}. (22)

Now, we verify all the conditions mentioned in Theorems 3 and 4.
(i) As the metric space (D, σ) is complete, it is also Γ-complete.
(ii) Let µ0 ∈ C1[0, a] be a lower solution of (15), then we have

µ′0(s) + λµ0(s) ≤ f (s, µ0(s)) + λµ0(s), ∀ s ∈ [0, a].

Multiplying both sides by eks, we obtain

(µ0(s)eks)′ ≤ [ f (s, µ0(s)) + λµ0(s)]eks, ∀ s ∈ [0, a],

which yields

µ0(s)eks ≤ µ0(0) +
∫ s

0
[ f (ξ, µ0(ξ)) + λµ0(ξ)]eλξ dξ, ∀ s ∈ [0, a]. (23)

Due to µ0(0) ≤ µ0(a), we obtain

µ0(0)eλa ≤ µ0(a)eλa ≤ µ0(0) +
∫ a

0
[ f (ξ, µ0(ξ)) + λµ0(ξ)]eλξdξ;

so,

µ0(0) ≤
∫ a

0

eλξ

eλa − 1
[ f (ξ, µ0(ξ)) + λµ0(ξ)]dξ. (24)

Using (23) and (24), we obtain

µ0(s)eks ≤
∫ a

0

eλξ

eλa − 1
[ f (ξ, µ0(ξ)) + λµ0(ξ)]dξ +

∫ s

0
eλξ [ f (ξ, µ0(ξ)) + λµ0(ξ)]dξ

=
∫ s

0

eλ(a+ξ)

eλa − 1
[ f (ξ, µ0(ξ)) + λµ0(ξ)]dξ +

∫ a

s

eλξ

eλa − 1
[ f (ξ, µ0(ξ)) + λµ0(ξ)]dξ;
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so,

µ0(s) ≤
∫ s

0

eλ(a+ξ−s)

eλa − 1
[ f (ξ, µ0(ξ)) + λµ0(ξ)]dξ +

∫ a

s

eλ(ξ−s)

eλa − 1
[ f (ξ, µ0(ξ)) + λµ0(ξ)]dξ

=
∫ a

0
L(s, ξ)[ f (ξ, µ0(ξ)) + λµ0(ξ)]dξ

= (Hµ0)(s), ∀ s ∈ [0, a].

It follows that (µ0,Hµ0) ∈ Γ; so, D(H, Γ) is nonempty.
(iii) Let µ, ϑ ∈ D such that (µ, ϑ) ∈ Γ. Using (17), we obtain

f (s, µ(s)) + λµ(s) ≤ f (s, ϑ(s)) + λϑ(s), ∀ s ∈ [0, a]. (25)

Making use of (20) and (25), and owing to L(s, ξ) > 0, ∀ s, ξ ∈ [0, a], we obtain

(Hµ)(s) =
∫ a

0
L(s, ξ)[ f (ξ, µ(ξ)) + λµ(ξ)]dξ

≤
∫ a

0
L(s, ξ)[ f (ξ, ϑ(ξ)) + λϑ(ξ)]dξ

= (Hϑ)(s), ∀ s ∈ [0, a],

which making use of (22) reduces to (Hµ,Hϑ) ∈ Γ. Therefore, Γ isH-closed. Moreover, Γ
is locally finitelyH-transitive.

(iv) We take an Γ-preserving sequence {µn} ⊂ D converging to µ ∈ D. Then, for every
s ∈ [0, a], {µn(s)} ↑ µ(s) in R. Thus, ∀ n ∈ N and ∀ s ∈ [0, a], and we obtain µn(s) ≤ µ(s).
Now, by (22), we have (µn, µ) ∈ Γ, ∀ n ∈ N; hence, Γ is σ-self-closed.

(v) Let µ, ϑ ∈ D be two elements such that (µ, ϑ) ∈ Γ. Then using (17), (20), and (21),
we obtain

σ(Hµ,Hϑ) = sup
s∈[0,a]

|(Hµ)(s)− (Hϑ)(s)| = sup
s∈[0,a]

(
(Hϑ)(s)− (Hµ)(s)

)
≤ sup

s∈[0,a]

∫ a

0
L(s, ξ)[ f (ξ, ϑ(ξ)) + λϑ(ξ)− f (ξ, µ(ξ))− λµ(ξ)]dξ

≤ sup
s∈[0,a]

∫ a

0
L(s, ξ)β

√
[ϑ(ξ)− µ(ξ)]2

[ϑ(ξ)− µ(ξ)]2 + 1
dξ.

Making use of the Cauchy–Schwarz inequality in the last integral, the above inequality
reduces to

σ(Hµ,Hϑ) ≤ sup
s∈[0,a]

[∫ a

0
L(s, ξ)2dξ

]1/2
·
[∫ a

0
β2 [ϑ(ξ)− µ(ξ)]2

[ϑ(ξ)− µ(ξ)]2 + 1
dξ

]1/2

. (26)

The first integral in the right hand side of (26) gives rise to∫ a

0
L(s, ξ)2dξ =

∫ s

0
L(s, ξ)2dξ +

∫ a

s
L(s, ξ)2dξ

=
∫ s

0

e2λ(a+ξ−s)

(eλa − 1)2 dξ +
∫ a

s

e2λ(ξ−s)

(eλa − 1)2 dξ

=
1

2λ(eλa − 1)2 · (e
2λa − 1)

=
eλa + 1

2λ(eλa − 1)
. (27)

The second integral in the right hand side of (26) provides the following estimate:



Axioms 2023, 12, 478 12 of 13

∫ a

0
β2 [ϑ(ξ)− µ(ξ)]2

[ϑ(ξ)− µ(ξ)]2 + 1
dξ ≤ β2 sup

s∈[0,a]

|ϑ(s)− µ(s)|2
|ϑ(s)− µ(s)|2 + 1

· a

= β2 σ(µ, ϑ)2

σ(µ, ϑ)2 + 1
· a. (28)

Using (27) and (28), inequality (26) becomes

σ(Hµ,Hϑ) ≤ sup
s∈[0,a]

[
eλa + 1

2λ(eλa − 1)

]1/2

·
[

β2 σ(µ, ϑ)2

σ(µ, ϑ)2 + 1
· a
]1/2

=

[
eλa + 1

2λ(eλa − 1)

]1/2

· β ·
√

a ·
[

σ(µ, ϑ)2

σ(µ, ϑ)2 + 1

]1/2

;

so,

σ(Hµ,Hϑ)2 ≤ eλa + 1
2λ(eλa − 1)

· β2 · a · σ(µ, ϑ)2

σ(µ, ϑ)2 + 1
,

or equivalently,

2λ(eλa − 1)[σ(µ, ϑ)2 + 1]σ(Hµ,Hϑ)2 ≤ (eλa + 1)β2 · a · σ(µ, ϑ)2. (29)

Using assumption (17), inequality (29) reduces to

2λ(eλa − 1)[σ(µ, ϑ)2 + 1]σ(Hµ,Hϑ)2 ≤ (eλa + 1)
2λ(eλa − 1)
a(eλa + 1)

· a · σ(µ, ϑ)2,

i.e.,

σ(Hµ,Hϑ)2 ≤ σ(µ, ϑ)2

σ(µ, ϑ)2 + 1
. (30)

We define θ, η : [0, ∞)→ [0, ∞) as follows:

θ(z) = z2 and η(z) =
z2

z2 + 1
.

Then, (θ, η) are shifting distance functions. Therefore, (30) becomes

θ(σ(Hµ,Hϑ) ≤ η(σ(µ, ϑ))θ(z), ∀ µ, ϑ ∈ D, verifying (µ, ϑ) ∈ Γ.

Thus, the assumptions (i)–(v) of Theorem 3 have been satisfied. Now, we verify the
hypotheses of Theorem 4.

Let µ, ϑ ∈ D be arbitrary. We denote v := max{Hµ,Hϑ} ∈ D. As (Hµ, v) ∈ Γ and
(Hϑ, v) ∈ Γ, {Hµ, v,Hϑ} forms a path in Γs betweenH(µ) andH(ϑ). Therefore,H(D) is
Γs-connected. Consequently, by Theorem 4,H has a unique fixed point, which is indeed
the unique solution to Problem (15).

6. Conclusions

We have proved fixed point theorems for a relation-theoretic contraction mapping
using shifting distance functions. As future work, one can extend such results for a pair of
self-mappings by proving coincidence and common fixed point theorems.
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