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Abstract: Probability models are frequently used in numerous healthcare, sports, and policy stud-
ies. These probability models use datasets to identify patterns, analyze lifetime scenarios, predict
outcomes of interest, etc. Therefore, numerous probability models have been studied, introduced,
and implemented. In this paper, we also propose a novel probability model for analyzing data in
different sectors, particularly in biomedical and sports sciences. The probability model is called a new
modified exponential-Weibull distribution. The heavy-tailed characteristics along with some other
mathematical properties are derived. Furthermore, the estimators of the new modified exponential-
Weibull are derived. A simulation study of the new modified exponential-Weibull model is also
provided. To illustrate the new modified exponential-Weibull model, a practical dataset is analyzed.
The dataset consists of seventy-eight observations and represents the recovery time after the injuries
in different basketball matches.

Keywords: Weibull distribution; heavy-tailed models; family of distribution; healthcare; recovery
time; statistical modeling

MSC: 62N01; 62N02

1. Introduction

The development and introduction of novel statistical methodologies is an interesting
area of research [1]. Numerous statistical models have been extended and proposed for
data modeling in different sectors. For example, (i) Ref. [2] implemented statistical models
in the epidemiology sector, (ii) Ref. [3] used the Weibull model for data modeling in the
energy sector, (iii) Refs. [4,5] used the Gumbel distribution in the hydrological sector, (iv)
Ref. [6] implemented a new version of the Lomax model in the engineering and medical
sectors, (v) Ref. [7] introduced an updated form of the Pareto distribution distribution for
analyzing the fire insurance dataset, (vi) Ref. [8] used the inverse Rayleigh model in the
industrial sector, (vii) Ref. [9] applied the Gamma distribution in the engineering sector,
(viii) Ref. [10] applied the uniform distribution in chemical engineering, (ix) Ref. [11]
implemented the uniform distribution in the material sciences, and (x) Ref. [12] applied a
new version of the logistic model in the actuarial sciences, among others.

Among the above sectors, the statistical distributions have wider applications in the
medical, sports, and other related sectors. For example, (i) Ref. [13] used an updated form
of the inverse Weibull model for analyzing a breast cancer dataset, (ii) Ref. [14] used the odd
Weibull inverse Topp-Leone model for analyzing COVID-19 data, (7ii) Ref. [15] introduced
a novel statistical model for analyzing COVID-19 data in China, (iv) Ref. [16] provided a
comparison of different statistical models for leukemia data, (v) Ref. [17] used a new alpha
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power Weibull model for analyzing the waiting time till the first goal in different football
matches, and (vi) Ref. [18] implemented a double Poisson model to predict football results.

Among the abovementioned statistical / probability models, the Weibull distribution
holds a special place [19]. The Weibull distribution has been implemented by many
researchers for data modeling in different fields. For example, (i) Ref. [20] used the Weibull
distribution to describe precipitation; (ii) Ref. [21] used the g-Weibull distribution for
analyzing dielectric breakdown data (for more applicabilities of the q-Weibull distribution,
we refer to [22-24]; (iii) Ref. [25] found that the Weibull distribution is one of the most
popular distributions to describe wind speed; and (iv) Ref. [26] introduced a system
of distributions that generalize the exponential and Weibull distributions suitable for
hydroclimatic variables.

Let T(x; A) be the CDF of the Weibull random variable, say X, with ¢ (shape parame-
ter) and ¢, (scale parameter). Then, the CDF of X ~ T(x;A), is given by

T(A) =1—e %" x>0,¢1,¢ >0, ey

where A = (¢1,¢2)7.
Corresponding to T(x;A), the PDF t(x; A) and hazard function (HF) h(x; A) of the
Weibull model are given by

HxA) = drgox? e 2 % py, 0 >0,

and
h(x;A) = gb1¢2x4’1_1, X, 1,42 >0, 2)

respectively.
From h(x; A) of the Weibull model in Equation (2), it is obvious that /#(x; A) has three
possible shapes, including

* Increasing, if ¢; > 1;
*  Decreasing, if ¢1 < 1;
e Constant, if ¢; = 1.

From Equation (2), it is obvious that the Weibull distribution has three possible shapes.
To improve the characteristics of the Weibull model, numerous statistical methodologies
have been proposed. For example, Ref. [27] proposed the logarithmic-U (Log-U) method.
The CDF F(x;4,A,A) of the Log-U family is

. J
F(x;6,\,A) =1 — (1 -5 —?1%?181\)]) , x€R,

where § € RT,A € RT, A is a parameter vector, and U(x; A) represents the CDF of the
baseline model associated with the Log-U family of distributions.

Ref. [28] suggested another approach, called a new modified-G (for short “NM-G”)
family. The CDF F(x;x,A) of the NM-G family is

F(x;x,A) = @

[k —14+G(x;A)], xR,

where x > 1,k < —1, and G(x; A) is the CDF of the baseline distribution associated with
the NM-G family of distributions.

Another useful approach for updating the characteristics of the statistical models
is called a new modified exponential-X (NME-X) family [29]. The CDF F(x;«, A) of the
NME-X family is
W2T(x; A)

Foa ) =1 = e oA

x €R, 3)
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where w > 0, T(x;A) = 1—T(x;A), and T(x; A) is the CDF of the baseline distribution
associated with the NME-X family.
The PDF f(x;a, A) corresponding to Equation (3) is expressed by

a?t(x; )

Flxia A) = [ + T(x;A)]3

[ 4+2—T(x;A)], 4)
where %T(x;A) =t(x;A).

Furthermore, corresponding to Equations (3) and (4), the survival function (SF)
S(x;a,A) = 1 —F(x;a,A) and hazard function (HF) h(x;a,A) = Sad) e given,

1—-F(xa,A)
respectively, by
279 o
S(x;0,A) = L'A)Z, (5)
[a 4+ T(x;A)]
and HA)
x; )
h(x;a, A) = T A o+ TG A)] [ +2—T(x;A)].

In this paper, we incorporate the NME-X approach to introduce a novel extended
version of the Weibull model, called a new modified exponential-Weibull (NME-Weibull)
distribution. The NME-Weibull is a more flexible form of the Weibull model. This fact is
shown by plotting the shapes of its HF and applying it to a healthcare-related dataset.

2. An NME-Weibull Model
Suppose X has an NME-Weibull model, if CDF F(x;a, A) is

a2e— 02"
Fx;a,A) =1— x> 0. (6)

e

Corresponding to Equation (6), the PDF f(x;a, A) of the NME-Weibull model is

FlxaA) = 0624)1472x4’1*13*¢2x¢1 [‘X ol (1 _ e,(pzxs”l )} ‘ @)

o (1)

Some possible shapes of f(x; a, A) of the NME-Weibull model are provided in Figure 1.
From the plots in Figure 1, we can see that f(x;«, A) of the NME-Weibull model has four
shapes, including (i) decreasing, (ii) positively skewed, (iii) symmetrical, and (iv) nega-
tively skewed.

Furthermore, plots of the SF S(x;«, A), HF h(x;«, A), and cumulative HF H(x; a, A)
of the NME-Weibull model are given by

. B w2e= 925"
S(x;a,A) = [a B (1 - e*‘i’zx‘l’l)r,
o) = Il san (1))
and s
H(x;a,A) = —log re ,

o (et

respectively.
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Figure 1. Some possible shapes of f(x; &, A) of the NME-Weibull model.

Some possible shapes of 11(x; «, A) of the NME-Weibull model are sketched in Figure 2.
The plots in Figure 2 reveal that h(x;a, A) of the NME-Weibull model has four shapes,
including (7) decreasing, (ii) unimodal, (ii)) modified unimodal, and (iv) increasing.

— 0=0.3, ¢;=1.0, ¢,=0.6
a=0.4, ¢;=1.0, ¢,=1.3
-« 0a=1.0, ¢;=1.0, =10
a=3.2, ¢;=1.0, ¢,=0.1
— a=3.9, ¢;=1.0, ¢,=0.8
a=4.3, ¢;=1.0, =15

— 0=0.3, ¢,=1.2, ¢,=0.75

a=0.4, ¢;=1.6, ¢,=1.60
-« - 0=1.2, ¢,=0.9, ¢,=1.00
« = 0=3.9, ¢,=0.5, ¢,=0.80
a=9.0, ¢,;=1.4, ¢,=1.50
a=9.0, ¢;=5.0, ¢,=0.50

6 8 0 1 2 3 4 5

X
x

Figure 2. Some possible shapes of i(x; a, A) of the NME-Weibull model.

3. Properties

This section offers different properties of the NME-Weibull model, including the
(i) shapes of NME-Weibull PDF and HF, (i) heavy-tailed (HT) characteristic, (iii) quantile
function (QF), (iv) rth mean, and (v) moment generator function (MGF).

3.1. Shapes of NMEE-Weibull PDF and HF

The behaviors of the PDF of the NME-Weibull distribution when x — 0 and x — o
are, respectively, given by

[ee) 1f471 <1,
lim f(x;a,A) = (222)¢2 if g1 =1,
0 if 1 > 1,

lim f(x;a,A) =0.

X—r00

This clearly appears in Figure 1.
Similarly, the behaviors of the HF when x — 0 and x — oo are, respectively, given by

00 ifp1 <1,
limh(x;a,A) = S (222) g, if ¢y =1,

x—0 @

0 ifp; > 1,
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0 if¢r1 <1,
xlgrc)\oh(x;oc,A) = 4)2 if 471 = 1,
oo ifp > 1.

This clearly appears in Figure 2.

3.2. The HT Characteristic

The probability distributions that posses the HT property/characteristic are competent
for modeling data in applied sciences. The HT distributions are especially very prominent
in the financial sectors and extreme value theory [30]. However, there are only a few
probability distributions that possess the HT property [31]. Therefore, researchers have
been trying to develop new probability distributions that possess the HT property.

Here, we derive the HT characteristic of the NME-Weibull model. The HT probability
models possess a very useful characteristic called a regular variation property (RVP). The
regularly varying function (RVF) is a function of a real variable that behaves similar to a
power law function at infinity (i.e., x — o0). For more detail, we refer the reader to [32].
According to Karamata’s theorem of [33], using the SE, we have

Theorem 1. If T(x; A) =1 — T(x; A) is the SF of the reqularly varying probability model, then
S(x;a, A) =1 —F(x;a,A) is also a regularly varying probability model.

T(tx;A)
T(xA)
Then, using Equation (5), we have

Proof. Suppose that limy_, = p(7) is a finite and nonzero function V. 7 > 0.

a?T(tx;A)
S(t;a,A) _ [a+T(txA)
S(x;a,A)  _a2T(xA)
[a+T(x;A)]

CT(txA) et T(x;A))?
[+ T(tx;A)]? w?T(x;A)
_ a?T(tx;A) L et T(x;A))

?T(;A) * [a+4 T(tx; A)]?
T(tx;A) " [+ T(x;A))?
T(;A) a4 T(tx;A)P*

Then,
: F A2
lim S(txa,A) lim T_(Tx,A) o [oc—l—T(x,A)]2 im
r—eo S(, ) x—e T(GA) (a4 T(tA))? ¥
A2
— p(r) x lim (AT TEA ®)

x—0 [y 4 T(tx; A)*

Using T(x;A) = 1 — e~92*"! in Equation (8), we obtain

. S(tx;e, A , a4+ (1= e " 2
o m ~r [£+ (E _ e‘Pz(Tx)"’?%r

S

[ (1= timy o e*sz(T-x)‘pl)r.

= p(7) %
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Now, since T, ¢1, ¢2 > 0, then

lim e~ = lim ! ! = .1 — 0,
X—00 X—500 ezpzx‘f’l limy—se0 o291 b2 limy o0 x71
and
1 1 1
lim e~ 2(T)" = jim = . — 0.
x—00 x—00 oo (T x)‘Pl 1M o0 eh2(Tx)%1 P2 limy 00 (T.%) %1
Thus,
) 12
I S(tx;a, A) p(7) % [a+ (1 0)]2,
x—eo S(x;a,A) [+ (1—-0)]
a + 1)
= p(0) x 21
[ +1]
= p(7). )
This function in Equation (9) shows that limy,_,c SS((TX x““f)) is finite and a nonzero

function V' 7 > 0. Therefore, the function S(x; «, A) satisfies the RVP. It is important to note
that by Karamata’s characterization theorem, the function p has the form p(t) = 17, where
o € R is called the index of regular variation, and T > 0. O

3.3. The Quantile Function

The quantile function (QF) of the NME-Weibull distribution), say Q(u), where
0 < u < 1, can be obtained by solving the equation F(Q(u)) = u in Equation (6) for
Q(u) in terms of u, and this implies

Qu) = <¢21 og

) 2y
3.4. The rth Moment

This subsection offers the computation of the rth moment of the NME-Weibull dis-
tribution. Suppose that X has the NME-Weibull model with PDF f(x;,A), then the rth
moment of X, expressed by y/, is derived as

2@+ Du—ala+2) —2—ay/(a +2)2—4(a+1)u
2 +1)2(u—1)

i, = E[X'] :/ ¥ f(xa,A)dx; r=0,1,2,... (10)
0

Substituting f(x;«, A), defined in Equation (7), into Equation (10), we obtain

= 2 P1—1,—ppx1
b f;fl?i’il;xqf}r[wz—<1—e-¢zx%>]dx

-1 $ox1
B Prae” -1 {(a +1)+ e_‘sz(pl} dx. (11)

3
0 1 + oc—l — 9N )}

By using the generahzed binomial expansion for negative exponent when |¢| < 1, and
binomial expansion for positive exponent, respectively,

(141" - i("+l.1>ti

I
g
~—
—_
~—
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(148" = i (':)tl (12)

i=0

Usingn = 3and t = a1 (1 - e*‘/’l"%) for the negative exponent, and n = i and

t = —e= " for the positive exponent in Equation (12), we obtain
(1+a7(1- e*q’ﬂ"’l))_S — Y (1) (i - 2) a1 e*sbﬂ“’l)i
i=0 !

- i i (Z +2) (1) (—1) gl 9271 (13)

provided thata > 1 — e~ 922" for all x,¢1,¢$2 > 0.
Using Equation (13) in Equation (11), we obtain

. o 142\ (i it —im1 [ i1, —(j+1)pax
pr= e DY (7)) ot et "

i=0j=0 0

0 i [ / . . . 00 .
4 ¢1¢2 Z Z (l—:2> (;) (71)14—]“—1—1 / xr+¢1_1€_(]+2>¢2x¢1dx,
i=0j=0

J0

:“;1F(42+1>zi0(:)]:)<1+2>(]>m
+¢21r<r+1)li)g(z+z>(j)w,

$1
i N\ (—1)it
(1472)(%)( 1),{ “+1L+1+ ! H}r( +1> (14)
N TSN g LG ()7 P
3.5. The MGF
Here, we derive the MGF Mx () of the NME-Weibull distribution. If X has the NME-

Weibull distribution, then by using the Maclaurin series and Equation (14), the MGF of X
can be written as

[e9)
=L
i=0

Mx(t) = E[e X],

I
g

2
=
F

(o)

- Sl (i+2 (=) x+1 1
V;Ol;];() ( >(])txl+lr'gb {(]4‘1)4)1 +(j+2)‘;1+1}

xl"((;l +1> tr].

4. Estimation and Simulation

In this section, we use the ML (maximum likelihood) estimation approach to obtain
the ML estimators &, 431, and (ﬁz of the NME-Weibull parameters «, ¢1, and ¢», respectively.

Suppose that Xj,Xp,..., Xy is a set of RS (random sample) of size, say w, taken
from f(x;a, A). Then, linking to f(x;a, A), the LF (likelihood function), say ®(x;a,A), is
given by

D(x;a,A) Hf (x;;a,A), (15)
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Using Equation (7) in Equation (15), we have

w 2 ‘.Plfl —(sz:»pl ®
D(x;a,A)=]] L RE {zx +2— <1 — eq’zxil)} (16)
i=1 {a + <1 — 2! )}

Corresponding to Equation (16), the log LF, say ¥ (x; a4, A), is given by
w w
¥(x;0,A) = 2wloga + wlog s + wlog s + (¢1 — 1) Y logx; — o Y x"

i=1 i=1

- $1 w 21
+210g[1x+2 (1e_¢2xi )] 3210g[0¢+ (1(3—‘/’2?& )}

i=1 i=1

With respect to «, ¢1, and ¢, the partial derivatives of ¥(x;a, A) are given by

w w
i‘~I’(x;zx,A) :2—w+2 L -3), L

dn = {tx +2- (1 e ﬂ =1 [a + <1 e ﬂ

1
w ©  (logx; P ,—ox;
i‘{f(x/ “,A) — ﬂ + Z log xX; — 4)2 Z 1ng Z Og xl)(szz e )
a(Pl (Pl i=1 i=1 i=1 |:a + 2 — (1 —e (]72](;’)1 >:|

¢
(log xi)cpzx?ble_‘/’zxil

w
)
i=1 x + 1_e¢2x,’

and
$1
w a2
ai (Ga,A)=— Y -} :
$2 ¢ i=1 i=1 |:06 +2— (] e~ P2 1 )]
¢1 7(/)23{901
w xte i
-3 2 i ,
Bl (o)
respectively.

Setting 0 ¥ (xa, A), 2 3

obtain the MLEs & g, $1 MLE, and $> MLE/ respectively
After obtaining the MLEs (oc MLE, 1 MLE- é» ML E) of the NME-Weibull parameters, the
next step is to investigate the performances of &1, 471 MLE, and <p2 MLE Via a simulation

Y(x;a,A), and a%‘i’(x; a,A) to zero and solving them, we

study (SS).
The SS to evaluate &p g, $1 MmLg, and é» MLE is carried by three different combina-
tions of «, ¢1, and ¢,. The combination values of &, ¢, and ¢, are given by (i) « = 0.5,

¢1 = 1.0,¢o =08, () a =0.8,¢1 =1.0,¢p =1.2,and (fil) « = 1.4,¢y =1.0,¢p = 0.4. It
is important to note that there are no hard and fast rules to select the initial values of the
parameters to carry out the simulation studies. We can choose any values of the parameters
within their range.

The SS is carried out by selecting an RS, say w = 30, 60,90, ...,600 from f(x;a,A),
using the inverse CDF method.
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Finally, some statistical measures such as (i) MSEs, (ii) biases, and (iii) absolute biases

are selected to see the performances of &pg, $1 Mg, and ¢ mre- The values of these
statistical measures are, respectively, obtained as

N 1 &

MSE(%) = 600 Z(’)’ - '7)2,
i=1
. 1 &

Bias(§) = — Y (4 —7),
600 =
and
1 w

Absolute Bias(%)

@;('3’—7)

where § = (a, ¢1, $2).

Corresponding to () « = 0.5,¢1 = 1.0,¢o = 0.8, (b)) a = 0.8,¢; = 1.0,¢pp = 1.2, and
(c)a =14,¢1 = 1.0,¢p = 0.4, the results of the SS of the NME-Weibull model are presented
in Tables 1-3. The results of the SS of the NME-Weibull model are also illustrated visually
in Figures 3-5. From the numerical illustration (i.e., Tables 1-3) and visual illustration (i.e.,

Figures 3-5) of the simulation studies, we can easily observe that as the size of the samples
increases, the

e MLEsapmrE, 4)1MLE, and ‘PZMLE tend to stable.
e  MSEs of ucMLE,cleLE, and 4>2MLE decrease.
Biases of D‘MLEf‘PlMLE/ and 4>2MLE tend to zero.

Plot of Estimated Parameters vs w Plot of MSEs vs w Plot of Absolute Biases vs w
o ] e 8
e 2 e
o - 8 4 -
& 01=05 B 01=05 S 0-05
0,=1.0 S e or=1.0 o 02=1.0
w =08 2 g4y =08
o [ =08 s,
© o
o | s & &84 )
& w \ e ° 1
= \ 3 e \
w <« 5 2
E T S 1} 2 s \
% ° \
W 2 080 e-0—e ¢ 0-0-0 600 0-0-0 - 0-0-0 \ S 7 3
0-0-00099 6 600000960 ] \ Q
Sx Yy 2 Ay
w 1 8 e
] XY ° Y., _ o
®-o. ~o-0°® o o -
. s ® 8695900 9-0-9 0-0-c-0-9 SN VO s 00s S35~ 0 L)
s - T T T T T T T T T T T T < T T T T T T
100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600
w w w
Plot of Biases vs w
S 4 01=05
? 02=1.0
o =08
\
S %
] \
o \
\
S
q b
o=
%% 00040 o
24 \vkg_.ﬁ-w-o ooy -8

T T T T T T
100 200 300 400 500 600

w

Figure 3. Visual display of the numerical results of the SS of the NME-Weibull model for « = 0.5,
(Pl = 1.0, and (Pz =0.8.
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Table 1. The numerical results of the SS of the NME-Weibull model for « = 0.5,¢; = 1.0, and

¢ =0.8.
w Parameters MLEs MSEs Biases

¢1 0.5139448 0.0072890 0.01394476

30 ¢ 1.0768346 0.1812394 0.07683460
o 1.0823500 0.7523786 0.28234996

¢ 0.5079046 0.0036778 0.00790461

60 ¢ 1.0476758 0.1027139 0.04767583
o 0.9957742 0.3549299 0.19577419

¢1 0.5026137 0.0019558 0.00261367

90 ¢ 1.0079573 0.0623915 0.00795731
o 0.8800715 0.1439712 0.08007147

P1 0.5013730 0.0011332 0.00137297

150 ¢ 1.0079531 0.0394922 0.00795305
o 0.8587196 0.0792510 0.05871963

¢1 0.5023244 0.0008397 0.00232438

240 ¢ 1.0035047 0.0237148 0.00350473
o 0.8204144 0.0362713 0.02041444

¢1 0.5003512 0.0005781 0.00035115

330 ¢ 1.0023157 0.0164310 0.00231569
o 0.8199299 0.0263909 0.01992986

¢1 0.5016130 0.0004197 0.00161304

420 ¢ 1.0015546 0.0134669 0.00155455
o 0.8155559 0.0208359 0.01555592

¢1 0.5004310 0.0003417 0.00043099

480 ¢ 1.0029297 0.0111818 0.00292967
o 0.8151855 0.0171838 0.01518546

¢1 0.5007776 0.0003414 0.00077761

510 ¢ 1.0087698 0.0123862 0.00876977
o 0.8199280 0.0177454 0.01992804

¢1 0.5001925 0.0002944 0.00019245

570 ¢ 1.0036629 0.0096804 0.00366289
o 0.8173364 0.0148489 0.01733639

¢1 0.5010761 0.0002891 0.00107609

600 ¢ 1.0066832 0.0099113 0.00668317
o 0.8141210 0.0147306 0.01412103

Table 2. The numerical results of the SS of the NME-Weibull model for &« = 0.8,¢; = 1.0, and

¢ =1.2.
w Parameters MLEs MSEs Biases
$1 0.8373597 0.0228400 3.7359 x 1072
30 ¢ 1.0329687 0.0864116 0.03296874
% 1.6122330 1.6492961 0.41223290
o3t 0.8081282 0.0101249 8.1282 x1073
60 ¢ 1.0124301 0.0579791 0.01243010
o 1.5015600 1.1045864 0.30155973
o3t 0.8085094 0.0067330 8.5094 x10~3
90 [ 1.0075127 0.0390573 0.00751267
o 1.3942850 0.5915042 0.19428471
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Table 2. Cont.

w Parameters MLEs MSEs Biases
¢1 0.8045268 0.0043708 45268 x1073

150 ¢ 1.0174312 0.0221428 0.01743116
o 1.3490600 0.3230241 0.14906040

¢1 0.8000402 0.0025746 4.0247 x107°

240 ¢z 1.0037466 0.0144882 0.00374658
% 1.2938500 0.1780648 0.09384972

¢1 0.8052871 0.0019428 5.2870 x1073

330 ¢ 0.9942357 0.0099813 —0.00576426
o 1.2201170 0.0896011 0.02011655

o1 0.8019934 0.0014204 1.9934 x103

420 ¢ 1.0032499 0.0078325 0.00324990
o 1.2382960 0.0781596 0.03829620

¢1 0.7994154 0.0014117 —5.8456 x10~4

480 ¢ 1.0062147 0.0074068 0.00621474
o 1.2558040 0.0751255 0.05580425

¢1 0.8006431 0.0012915 6.4306 x10~4

510 ¢ 1.0016868 0.0061642 0.00168683
o 1.2396020 0.0571275 0.03960178

¢1 0.8020553 0.0011090 2.0552 x1073

570 ¢ 1.0010832 0.0055488 0.00108320
o 1.2283470 0.0559610 0.02834659

1 0.8033656 0.0010878 3.3655 x1073

600 ¢ 0.9938832 0.0058198 —0.00611684
o 1.2028430 0.0499104 0.00284281

Table 3. The numerical results of the SS of the NME-Weibull model for « = 1.4,¢; = 1.0, and

¢ = 04.
w Parameters MLEs MSEs Biases
P 1.5381320 0.0709285 0.13813181
30 ¢ 1.3184280 0.3618016 0.31842754
o 0.6172510 0.2377404 0.21725102
P 1.5084680 0.0347465 0.10846768
60 ¢ 1.2875990 0.1957131 0.28759929
o 0.5387065 0.0493668 0.13870647
P1 1.4935920 0.0258712 0.09359157
90 ¢ 1.2668450 0.1543403 0.26684505
o 0.5257774 0.0433562 0.12577736
91 1.4664260 0.0184980 0.06642592
150 ¢ 1.1884770 0.1125613 0.18847743
o 0.4881762 0.0285109 0.08817621
¢ 1.4522380 0.0129707 0.05223845
240 ¢ 1.1416120 0.0839058 0.14161192
o 0.4640379 0.0185309 0.06403786
¢ 1.4337810 0.0087992 0.03378078
330 ¢ 1.0936430 0.0581037 0.09364311

o 0.4428418 0.0110310 0.04284176
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Table 3. Cont.
w Parameters MLEs MSEs Biases
P 1.4280080 0.0080039 0.02800806
420 ¢ 1.0881280 0.0561704 0.08812753
o 0.4412527 0.0112033 0.04125268
P 1.4210270 0.0068960 0.02102729
480 o) 1.0638800 0.0469817 0.06387966
a 0.4321181 0.0088733 0.03211808
P1 1.4241980 0.0072342 0.02419761
510 ¢ 1.0672880 0.0488379 0.06728819
a 0.4326815 0.0094359 0.03268150
P 1.4262490 0.0064656 0.02624945
570 P2 1.0720440 0.0471651 0.07204448
1% 0.4335796 0.0092925 0.03357964
P 1.4193270 0.0052698 0.01932710
600 ¢ 1.0558220 0.0365956 0.05582239
o 0.4270003 0.0069440 0.02700025
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- S S S
% :7 371‘ """" a=12 'y \‘ =1
g 2" o000, @ 00000909 ) e “ E 7 \b\
& e —:-oo-o-oo—o-o-ﬁo—o-o o-o—o-po—o: - “ _ \o},\
- | ! \“"c\ 3 \eq
3 . oo, . N bo V««(A*M\
Plot of Biases vs w
=+ /e — =08
= e
: B ‘b\
S ¥ \B,O-o\
e’ %, Py
s | ‘\l FA ; ° ®e

100 200 300 400 500 600

w

Figure 4. Visual display of the numerical results of the SS of the NME-Weibull model for « = 0.8,

(Pl = 1.0, and 4)2 =1.2.
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Figure 5. Visual display of the numerical results of the SS of the NME-Weibull model for « = 1.4,
¢1 =1.0,and ¢, = 0.4.

5. Practical Application

Here, we provide a practical application/illustration of the NME-Weibull distribution by
analyzing the recovery time of the basketball players after an injury. Some basic measures (BMs)
of the recovery time of the basketball players’ dataset are range = 15.47, variance = 15.93316, me-
dian = 8.710, minimum = 1.170, mean = 8.488, skewness = —0.00871759, 1st quartile = 6.240,
kurtosis = 2.230146, 3rd quartile = 11.440, and maximum = 16.640. A visual display of the
behavior of the recovery time of the basketball players’ dataset is provided in Figure 6.
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Figure 6. A visual display of the behavior of the recovery time of the basketball players” dataset.

The numerical results (fitting power) of the NME-Weibull distribution are compared
with the

*  Weibull distribution with CDF, given by

T(x;A) =1—e ", x>0,¢1,¢ > 0.
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*  Exponentiated Weibull (E-Weibull) distribution with CDEF, expressed by
T
T(x;T,A) = (1 - e_¢2x¢1) , x2>0,¢1,¢2,T>0.

¢ Marshall Olkin Weibull (MO-Weibull) distribution with CDEF, given below:

1— 9"
T(x’ U’A) = X 2 O/(Pl/ 4)2/;7 > O

i e

*  Flexible Weibull (F-Weibull) distribution with CDF, provided below:

(4’1"*%2)
T(X,A) =1- Eie s X 2 01471/4)2 > 0.

We select four information criteria (IC) to see the best fitting power of the NME-Weibull
and other competing distributions. The values of these IC are computed as

AIC =2[w —¥(x;a,A)],

BIC = wlog(n) —2¥(x;a, A),
CAIC = wlog(n) —2¥(x;a, A),

and
HQIC = 2wlog(log(n)) — 2¥(x; &, A),

respectively.

Using the recovery time of the basketball players, the values of the MLEs &1, (ﬁl MLE”
¢ MLE IMLE, and Ty e are presented in Table 4, whereas the values of the IC of the fitted
models are provided in Table 5. As a rule of thumb, a probability model with the lowest
values of the IC quantities is called the best competing model. Based on the numerical
illustration in Table 5, it is clear that the NME-Weibull distribution is the best-suited model
for analyzing the considered recovery time of the basketball players” dataset.

Table 4. The values of &MLEIQI;lMLE/ (,52MLE, fimLE, and TarE of the models.

A

Dist. 114 4’)\1 4’7\2 i T
NME-Weibull 12.36747 2.24515 0.00583 - -
Weibull - 2.20768 0.00721 - -
Exponentiated Weibull - 2.42247 0.00365 - 0.83154
Marshall Olkin Weibull - 1.83785 0.02456 2.47454 -
Flexible Weibull - 0.105291 8.14488 - -

Table 5. The values of the IC of the competitive models.

Dist. AIC CAIC BIC HQIC
NME-Weibull 431.3646 431.6889 438.4347 434.1949
Weibull 438.8245 438.9845 443.5379 440.7114
E-Weibull 439.5629 439.8872 446.6330 442.3932
MO-Weibull 438.8344 439.1587 445.9045 441.6647
F-Weibull 445.5514 4457114 450.2648 447.4382

Furthermore, the fitting results of the fitted distributions are compared visually in
Figure 7. For this purpose, the plots of the fitted PDF, fitted CDE fitted SE, and QQ (quantile—
quantile) function are considered. The plots in Figure 7 reveal the best fitting capability of
the NME-Weibull distribution as it closely follows the plots of the fitted PDF, CDF, and SF.
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Figure 7. A visual display of the fitted results of the NME-Weibull and other competing distributions.

6. Concluding Remarks

The prime goal of this research was to propose a novel probability model for analyzing
datasets in the sports and healthcare sector. The new model was named NME-Weibull
distribution. Several properties along with the HT characteristics were calculated. The
MLE:s of the NME-Weibull distribution were also obtained. To illustrate the NME-Weibull
distribution, a practical application was presented. The dataset represented the recovery
time after the injuries in different basketball matches. The comparison of the NME-Weibull
distribution was made with four other competing probability models. Based on four IC
quantities, it was observed that the NME-Weibull distribution was the best competing
model for analyzing the recovery time after the injuries in different basketball matches.

Since the proposed model is continuous-type distribution, it can only be applied to
continuous phenomena. In the future, we are motivated to introduce a discrete version of
the NME-Weibull distribution for analyzing the discrete datasets. We are also committed
to introducing the bivariate version of the NME-Weibull distribution for analyzing the
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bivariate datasets. Furthermore, a regression model based on the NME-Weibull distribution
can also be considered in the future.
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