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Abstract: In this work, we consider the Boiti–Leon–Manna–Pempinelli equation with the M-truncated
derivative (BLMPE-MTD). Our aim here is to obtain trigonometric, rational and hyperbolic solutions
of BLMPE-MTD by employing two diverse methods, namely, He’s semi-inverse method and the
extended tanh function method. In addition, we generalize some previous results. As the Boiti–Leon–
Manna–Pempinelli equation is a model for an incompressible fluid, the solutions obtained may be
utilized to represent a wide variety of fascinating physical phenomena. We construct a large number
of 2D and 3D figures to demonstrate the impact of the M-truncated derivative on the exact solution
of the BLMPE-MTD.

Keywords: Boiti–Leon–Manna–Pempinelli; M-truncated derivative; He’s semi-inverse approach;
exact solution
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1. Introduction

Mathematical models are the most accurate approach to describe nonlinear physical
events. Partial differential equations (PDEs) have been modeled in order to investigate and
learn more about the structure of physical phenomena. One of the most important physical
challenges for these models is the need to solve the issue of traveling waves. This has made
the development of mathematical techniques for generating accurate solutions to PDEs a
substantial and crucial endeavor in the field of nonlinear sciences. Recently, a wide range
of approaches, such as (G′/G)-expansion [1,2], the mapping method [3], Jacobi elliptic
function [4,5], Sardar-subequation method [6], Exp-function method [7], sine-Gordon
expansion [8], exp(−φ(ς))-expansion [9], extended trial equation [10], tanh-sech [11,12],
F-expansion approach [13], homotopy perturbation technique [14], He’s semi-inverse
method [15], etc., have been offered as potential solutions to the problem of PDEs.

On the other hand, a larger variety of physical problems needed more complicated
mathematical differentiation operators. A novel differentiation notion has emerged that
combines the ideas of fractional differentiation and fractal derivative. Therefore, different
forms of fractional derivatives were presented by several mathematicians. The most well-
known ones are the ones proposed by Riesz, Marchaud, Kober, Riemann–Liouville, Erdelyi,
Hadamard, Grunwald–Letnikov, and Caputo [16–19]. The majority of fractional derivative
kinds do not adhere to the traditional derivative formulae, such as the chain rule, quotient
rule, and product rule. Recently, a new derivative, referred to as the M-truncated derivative
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(MTD) which is a natural extension of the classical derivative, was presented by Sousa
et al. [20]. The MTD of order γ ∈ (0, 1] for u : [0, ∞)→ R is defined as:

Mγ,β
i,t u(t) = lim

h→0

u(tE β
i (ht−γ))− u(t)

h
,

where iEβ(z), for z ∈ C and β > 0, is the truncated Mittag-Leffler function and is defined as:

E β
i (z) =

i

∑
k=0

zk

Γ(βk + 1)
.

For any real numbers a and b, the following properties of the MTD are satisfying [20]:

(1) Mγ,β
i,z (au + bv) = aMγ,β

i,z (u) + bMγ,β
i,z (v),

(2) Mγ,β
i,z (u ◦ v)(z) = u

′
(v(z))Mγ,β

i,z v(z),

(3) Mγ,β
i,z (uv) = uMγ,β

i,z v + vMγ,β
i,z u,

(4) Mγ,β
i,z u)(z) = z1−γ

Γ(β+1)
du
dz ,

(5) Mγ,β
i,z (zν) = ν

Γ(β+1) zν−γ.

Recently, a large number of authors have examined several forms of evolution equa-
tions with M-truncated derivative see for instance [21–25] and the references therein. The
(3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation (BLMPE), which represents
the propagation of a fluid and may be thought of as a model for incompressible fluid, is
one of the most well-known evolution equations. In this paper, we consider BLMPE with
M-truncated derivative (BLMPE-MTD) as follows [26,27]:

Mγ,β
i,t (Yy + Yz) + Yyxxx + Yzxxx − 3(Yx(Yy + Yz))x = 0. (1)

In addition, this Equation (1) explains the interaction of the Riemann wave propagat-
ing along the y-axis and a long wave propagating along the x-axis when z = 0. Several
researchers have investigated various analytical solutions to Equation (1) with γ = 1 and
β = 0, including modified hyperbolic tangent function [28], general bilinear form [29],
Hirota’s bilinear and extended three-wave approach [30], (G′/G)-expansion [31], ansatz
functions, the bilinear form, and extended homoclinic test technique [32], auxiliary equa-
tion method [33], Hirota’s direct method [34], modified exponential function [35], Bäck-
lund transformation method [36], extended tanh function [37], and modified Kudryashov
method, (1/G′)-expansion method [38], and the extended transformed rational func-
tion [39]. Moreover, the exact solutions of fractional BLMPE with conformable deriva-
tive has attained by modified Kudryashov, generalized (G′/G)-expansion and exp(−φ)-
expansion methods [40]. While, the solutions of BLMPE (1) with a M-truncated derivative
are not yet achieved.

Our purpose of this study is to acquire the analytical solutions of BLMPE-MTD (1).
We employ two diverse methods, namely, He’s semi-inverse method and the extended tanh
function method to obtain these solutions. The proposed methods are effective and also
can be used for many other nonlinear evolution equations. In addition, we generalize some
prior findings, including those found in [37]. Because of the M–turncated derivative exists
in Equation (1), the solutions are very useful for characterizing various important physical
processes, which is why they are so popular among physics researchers (1). We also use the
MATLAB program to offer a wide variety of graphs for analyzing how the M-turncated
derivative modifies the exact solutions to the BLMPE-MTD (1).

The following is a brief synopsis of the contents of this article: The wave equation for
BLMPE-MTD (1) is derived in Section 2. In Section 3, we use He’s semi-inverse and ex-
tended tanh function approaches to obtain exact solutions to the BLMPE-MTD. In Section 4,
we present some graphical representation. In the last section, the paper’s conclusions
are presented.
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2. Exact Solutions of BLMPE-MTD

The BLMPE-MTD wave Equation (1) is produced using the next wave transformation:

Y(x, y, z, t) = H(µ), µ = µ1x + µ2y + µ3z +
µ4Γ(β + 1)

γ
tγ, (2)

whereH is the unknown function, µ1, µ2, µ3 and µ4 are parameters to be calculated. We
can see that

Yx = µ1H′, Yxx = µ2
1H′′, Yz = µ3H′,

Yzx = µ1µ3H′′, Yyxxx = µ2µ3
1H′′′′,

Yzxxx = µ3µ3
1H′′′′, M

γ,β
i,t (Yy+Y z) =µ4(µ2 + µ3)H′′. (3)

Plugging Equation (3) into Equation (1), we have

H′′′′ + }1H′′ + 2}2H′H′′ = 0, (4)

where
}1 =

µ4

µ3
1

and }2 =
−3
µ1

.

Integrating Equation (4) and omitting the integral constant, we obtain

H′′′ + }1H′ + }2(H′)2 = 0. (5)

In the following, we use the He’s semi-inverse method and extended tanh function
method to acquire the solution of the wave Equation (5). After that, we use (2) to find the
solutions of the BLMPE-MTD (1).

2.1. He’s Semi-Inverse Method

The next variational formulations are obtained by applying He’s semi-inverse ap-
proach from [41–43]:

J (H) =
∫ ∞

0
{1

2
(H′′)2 − 1

2
}1(H′)2 +

1
3
}2(H′)3}dµ. (6)

According to [44], let the solution of Equation (6) be

H(µ) = Ksech(µ), (7)

where the constant K is unknown. Putting Equation (7) into Equation (6) we attain

J =
1
2
K2

∫ ∞

0
[sech2(µ) tanh4(µ) + sech4(µ) tanh2(µ) + sech6(µ)

−}1sech2(µ) tanh2(µ) +
2
3
}2Ksech3(µ) tanh3(µ)]dµ

=
1
2
K2

∫ ∞

0
[(sech2(µ)− }1sech2(µ) tanh2(µ) +

2
3
}2Ksech3(µ) tanh3(µ)]dµ

=
K2

2
− }1

K2

6
− 2

45
}2K3.

Making J stationary relative to K

∂J
∂K = (1− 1

3
}1)K−

2
15

}2K2 = 0. (8)
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Equation (8) may be solved, leading to

K =
15− 5}1

2}2
.

Hence, Equation (4) has the solution

H(µ) =
15− 5}1

6}2
sech(µ).

Now, solution of BLMPE-MTD (1) is

Y(x, y, z, t) =
15− 5}1

2}2
sech(µ1x + µ2y + µ3z +

µ4Γ(β + 1)
γ

tγ). (9)

Similarly, we may think about the solution to Equation (4) as

H(µ) = Bsech(µ) tanh2(µ).

When we repeat the previous procedures, we end with

B =
11(1199− 213}1)

1456}2
.

Hence, the solutions of BLMPE-MTD (1) is

Y(x, y, z, t) =
11(1199− 213}1)

1456}2
sech(µ) tanh2(µ), (10)

where µ = µ1x + µ2y + µ3z + µ4Γ(β+1)
© tγ.

2.2. Extended Tanh Function Method

Let us suppose the solutionH of Equation (5) is (for more detail, see [45]):

H(µ) = A0 +
N

∑
k=1

(AkZ k +
Bk

Z k ), (11)

where Z solves the Riccati equation

Z ′ = Z2 + ϑ, (12)

with ϑ is a real constant. By using homogeneous balancing between (H′)2 with H′′′ in
Equation (5), we deduce that

2N + N = N + 3 =⇒ N = 1.

Hence, Equation (11) becomes:

H(µ) = A0 + A1Z +
B1

Z . (13)

Equation (12) has the following solutions:

Z(µ) =
√

ϑ tan(
√

ϑµ) or Z(µ) = −
√

ϑ cot(
√

ϑµ), (14)

if ϑ > 0, or

Z(µ) = −
√
−ϑ tanh(

√
−ϑµ) or Z(µ) = −

√
−ϑ coth(

√
−ϑµ), (15)
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if ϑ < 0, or

Z(µ) = −1
µ

, (16)

if ϑ = 0.
Plugging Equation (13) into Equation (5) yields

(6A1 + }2 A2
1)Z4 + (8ϑA1 + }1 A1 + 2ϑA2

1}2 − B1 A1}2)Z2

+(2ϑ2 A1 − 2B1ϑ− }1B1 + ϑ}1 A1 − 4}2 A1B1ϑ + ϑ2}2 A2
1 + }2B2

1)

+ϑB1(−8ϑ− }1 − ϑA1}2 + 2}2B1)Z−2 + ϑ2B1(}2B1 − 6ϑ)Z−4 = 0.

Putting each coefficients Z k to zero

6A1 + }2 A2
1 = 0,

A1(8ϑ + }1 + 2ϑA1}2 − B1}2) = 0,

2ϑ2 A1 − 2B1ϑ− }1B1 + ϑ}1 A1 − 4}2 A1B1ϑ + ϑ2}2 A2
1 + }2B2

1 = 0,

ϑB1(−8ϑ− }1 − ϑA1}2 + 2}2B1) = 0,

and
ϑ2B1(}2B1 − 6ϑ) = 0.

We receive three sets after solving these equations:

First set:
A0 = Free, A1 = 2µ1, B1 = 0, and µ4 = 4ϑµ3

1. (17)

Second set:
A0 = Free, A1 = 0, B1 = −2ϑµ1, and µ4 = 4ϑµ3

1. (18)

Third set:
A0 = Free, A1 = 2µ1, B1 = −2ϑµ1, and µ4 = 16ϑµ3

1. (19)

First set: The Equation (5) has the solution

H(µ) = A0 + 2µ1Z(µ).

There are three possible situations for Z(µ):
Case 1: If ϑ > 0, then we obtain by using (14)

H(µ) = A0 + 2µ1
√

ϑ tan(
√

ϑµ),

and
H(µ) = A0 − 2µ1

√
ϑ cot(

√
ϑµ).

Consequently, the solutions of BLMPE-MTD (1) are

Y(x, y, z, t) = A0 + 2µ1
√

ϑ tan(
√

ϑµ), (20)

and
Y(x, y, z, t) = A0 − 2µ1

√
ϑ cot(

√
ϑµ), (21)

where µ = µ1x + µ2y + µ3z + Γ(β+1)
γ (4µ3

1)t
γ.

Case 2: If ϑ < 0, then we obtain by using (15)

H(µ) = A0 − 2µ1
√
−ϑ tanh(

√
−ϑµ),

and
H(µ) = A0 − 2µ1

√
−ϑ coth(

√
−ϑµ).
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Consequently, the solutions of BLMPE-MTD (1) are

Y(x, y, z, t) = A0 − 2µ1
√
−ϑ tanh(

√
−ϑµ), (22)

and
Y(x, y, z, t) = A0 − 2µ1

√
−ϑ coth(

√
−ϑµ), (23)

where µ = µ1x + µ2y + µ3z + 4ϑµ3
1Γ(β+1)

γ tγ.
Case 3: If ϑ = 0, then we obtain by using (16)

H(µ) = A0 −
2µ1

µ
.

Consequently, the solutions of BLMPE-MTD (1) are

Y(x, y, z, t) = A0 −
2µ1

µ
, (24)

where µ = µ1x + µ2y + µ3z + 4µ3
1Γ(β+1)

γ tγ.

Second set: When ϑ > 0 and ϑ < 0, the solutions are identical to those in the first set. If
ϑ = 0, the solution of BLMPE-MTD (1) is

Y(x, y, z, t) = A0. (25)

Third set: The solution of Equation (5) is

H(µ) = A0 + 2µ1Z(µ)−
2µ1ϑ

Z(µ) .

There are three possible situations for Z(µ):
Case 1: If ϑ > 0, then by using (14) we obtain

H(µ) = A0 + 2µ1
√

ϑ[tan(
√

ϑµ)− cot(
√

ϑµ)].

Consequently, the solutions of BLMPE-MTD (1) are

Y(x, y, z, t) = A0 + 2µ1
√

ϑ(tan(
√

ϑµ)− cot(
√

ϑµ)). (26)

Case 2: If ϑ < 0, then by using (15) we have

H(µ) = A0 − 2µ1
√
−ϑ(tanh(

√
−ϑµ) + coth(

√
−ϑµ)).

Consequently, the solutions of BLMPE-MTD (1) are

Y(x, y, z, t) = A0 − 2µ1
√
−ϑ(tanh(

√
−ϑµ) + coth(

√
−ϑµ)), (27)

where µ = µ1x + µ2y + µ3z + 16ϑµ3
1Γ(β+1)

γ tγ.
Case 3: If ϑ = 0, then by using (16) we obtain

H(µ) = A0 +
2µ1

µ
.

Consequently, the solutions of BLMPE-MTD (1) are

Y(x, y, z, t) = A0 +
2µ1

µ
, (28)

where µ = µ1x + µ2y + µ3z.
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Remark 1. Putting γ = 1 and β = 0 in Equations (20)–(27), we attain the same solutions
(24)–(29) stated in [37].

3. Graphical Representation and Discussion

For various solutions described by (10) and (22), we provide 3D and 2D graphs. The
graphs analyze the dynamic of the reported solutions based on the fractional values γ.
Firstly, we begin by providing graphs for solution of Equation (10) in Figure 1. We plotted
them when µ1 = 1, µ2 = −µ3 = 1, µ4 = −2, y = z = 1, t ∈ [0, 3] and x ∈ [0, 4], β = 0.9
and distinct values of γ = 1, 0.7, 0.5

(a) β = 0.9, γ = 1 (b) β = 0.9, γ = 0.7

(c) β = 0.9, γ = 0.5 (d) β = 0.9, γ = 1, 0.7, 0.5

Figure 1. (a–c) indicate 3D-graph of Equation (10) (d) denotes 2D-graph of Equation (10) for distinct
values γ.

Secondly, we provide graphs for solution of Equation (22) in Figure 2. We plotted
them when µ1 = 1, µ2 = −µ3 = 1, µ4 = −2, A0 = a = 0, y = z = 1, ϑ = −1, x ∈ [0, 4]
and t ∈ [0, 3], β = 0.9, and different values of γ = 1, 0.7, 0.5.

We deduce from previous Figures 1 and 2 that the solution curves do not intersect
with one another. In addition, the surface moves into the left when the order of deriva-
tive decreases. Therefore, the obtained solutions are novel and can be very useful for
understanding physical phenomena.
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(a) β = 0.9, γ = 1 (b) β = 0.9, γ = 0.7

(c) β = 0.9, γ = 0.5 (d) β = 0.9, γ = 1, 0.7, 0.5

Figure 2. (a–c) indicate 3D-graph of Equation (22) (d) denotes 2D-graph of Equation (22) with
different values of γ.

4. Conclusions

The Boiti–Leon–Manna–Pempinelli equation with a M-truncated derivative (BLMPE-
MTD) was investigated. This equation is not studied before with M-truncated derivative.
By using the He’s semi-inverse approach and the extended tanh function method, the
exact solutions for BLMPE-MTD were obtained. These solutions are essential for making
sense of a broad variety of fascinating and challenging physical phenomena. In addition,
we generalized some prior results, including those found in [37]. We generated a large
number of 2D and 3D diagrams to show how the M-truncated derivative impacts the exact
solutions of the BLMPE-MTD. As the order of the derivative decreased, we inferred that
the M-truncated derivative caused the surface to shift to the left. In the future work, we
can consider BLMPE (1) with stochastic term.
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