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Abstract: Intuitionistic fuzzy parameterized intuitionistic fuzzy soft matrices (ifpifs-matrices), pro-
posed by Enginoğlu and Arslan in 2020, are worth utilizing in data classification in supervised
learning due to coming into prominence with their ability to model decision-making problems. This
study aims to define the concepts metrics, quasi-, semi-, and pseudo-metrics and similarities, quasi-,
semi-, and pseudo-similarities over ifpifs-matrices; develop a new classifier by using them; and apply
it to data classification. To this end, it develops a new classifier, i.e., Intuitionistic Fuzzy Parameter-
ized Intuitionistic Fuzzy Soft Classifier (IFPIFSC), based on six pseudo-similarities proposed herein.
Moreover, this study performs IFPIFSC’s simulations using 20 datasets provided in the UCI Machine
Learning Repository and obtains its performance results via five performance metrics, accuracy (Acc),
precision (Pre), recall (Rec), macro F-score (MacF), and micro F-score (MicF). It also compares the
aforementioned results with those of 10 well-known fuzzy-based classifiers and 5 non-fuzzy-based
classifiers. As a result, the mean Acc, Pre, Rec, MacF, and MicF results of IFPIFSC, in comparison with
fuzzy-based classifiers, are 94.45%, 88.21%, 86.11%, 87.98%, and 89.62%, the best scores, respectively,
and with non-fuzzy-based classifiers, are 94.34%, 88.02%, 85.86%, 87.65%, and 89.44%, the best scores,
respectively. Later, this study conducts the statistical evaluations of the performance results using a
non-parametric test (Friedman) and a post hoc test (Nemenyi). The critical diagrams of the Nemenyi
test manifest the performance differences between the average rankings of IFPIFSC and 10 of the
15 are greater than the critical distance (4.0798). Consequently, IFPIFSC is a convenient method for
data classification. Finally, to present opportunities for further research, this study discusses the
applications of ifpifs-matrices for machine learning and how to improve IFPIFSC.

Keywords: intuitionistic fuzzy sets; soft sets; ifpifs-matrices; distance measures; similarity measures;
machine learning

MSC: 03E72; 15B15; 62H30; 68T05

1. Introduction

Fuzzy sets [1,2] are a mathematical tool put forward by Zadeh to overcome the prob-
lems involving uncertainties in which classical sets are insufficient in modeling. Another
tool offered to model problems involving uncertainties is soft sets [3–5]. Thus far, several
hybrid versions of these two concepts have been defined, such as fuzzy soft sets [6] and
fuzzy parameterized fuzzy soft sets (fpfs-sets) [7]. Recently, fpfs-sets have come to the fore
due to their ability to model situations where both parameters and alternatives (objects)
have fuzzy values. Afterward, fuzzy parameterized fuzzy soft matrices (fpfs-matrices) [8]
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have been defined to benefit from the modeling capabilities of fpfs-sets and avoid their
disadvantages in decision-making problems containing a large amount of data.

Latterly, Memiş et al. [9] proposed a classifier, named Fuzzy Parameterized Fuzzy
Soft Normalized Hamming Classifier (FPFSNHC), by defining normalized Hamming
pseudo-similarity over fpfs-matrices and successfully applied it to classify some known
datasets, such as “Breast Cancer Wisconsin (Diagnostic)”, “Immunotherapy”, “Pima Indian
Diabetes”, and “Statlog Heart”. In addition, Memiş and Enginoğlu [10] have developed
Fuzzy Parameterized Fuzzy Soft Chebyshev Classifier (FPFSCC) by defining Chebyshev
pseudo-similarity over fpfs-matrices and successfully applied it to a classification problem
containing medical datasets, such as “Cryotherapy”, “Diabetic Retinopathy”, “Hepatitis”,
and “Immunotherapy”. Furthermore, Memiş et al. [11] have suggested a classifier using
Euclidean pseudo-similarity over fpfs-matrices, namely Fuzzy Parameterized Fuzzy Soft
Euclidean Classifier (FPFS-EC), and successfully applied it to a numerical data classifica-
tion problem involving the datasets “Breast Tissue” and “Parkinson’s Disease”. Moreover,
Memiş et al. [12,13] have propounded Fuzzy Parameterized Fuzzy Soft Aggregation Classi-
fier (FPFS-AC) and Comparison Matrix-Based Fuzzy Parameterized Fuzzy Soft Classifier
(FPFS-CMC) utilizing soft decision-making (SDM) methods. Thus, they have given a point
of view of classifier constructions. In addition, Memiş et al. [14] have introduced a classifier
named Fuzzy Parameterized Fuzzy Soft k-Nearest Neighbor (FPFS-kNN) and compared it
with the kNN-based classifiers. The authors have used Pearson, Spearman, and Kendall
correlation coefficients in the construction of FPFS-kNN, and these three constructions have
been denoted by FPFS-kNN(P), FPFS-kNN(S), and FPFS-kNN(K), respectively.

Despite these successes of fpfs-matrices, they cannot model intuitionistic fuzzy uncer-
tainties [15,16]. Therefore, intuitionistic fuzzy soft sets (ifs-sets) [17], intuitionistic fuzzy
parameterized soft sets (ifps-sets) [18], and intuitionistic fuzzy parameterized fuzzy soft
sets (ifpfs-sets) [19] have been studied. Later, the concept intuitionistic fuzzy parameter-
ized intuitionistic fuzzy soft sets (ifpifs-sets) [20], which can model situations where both
parameters and objects with intuitionistic fuzzy values, has been defined and successfully
applied to an SDM problem. Thereafter, intuitionistic fuzzy parameterized intuitionistic
fuzzy soft matrices (ifpifs-matrices) [21] has been proposed and successfully applied to two
SDM problems.

This paper focuses on developing a new classifier in data classification in supervised
learning by operationalizing ifpifs-matrices and making theoretical contributions to them.
The major contributions of the present study can be summarized as follows:

3 Defining the concepts metrics, quasi-, semi-, and pseudo-metrics and similarities,
quasi-, semi-, and pseudo-similarities over ifpifs-matrices.

3 Proposing five pseudo-metrics and seven pseudo-similarities.
3 Developing a new classifier, i.e., Intuitionistic Fuzzy Parameterized Intuitionistic

Fuzzy Soft Classifier (IFPIFSC), with the best scores.
3 Applying IFPIFSC to real-life classification problems successfully.

In the second part of this study, some basic definitions are required for the follow-
ing sections are provided. Section 3 defines the metric, quasi-, semi-, and pseudo-metric
over the ifpifs-matrices space and proposes five pseudo-metrics. In addition, it defines
the concepts similarity, quasi-, semi-, and pseudo-similarity over the ifpifs-matrices space
and suggests seven pseudo-similarities. Furthermore, this section clarifies some basic
properties of the proposed five pseudo-metrics and seven pseudo-similarities. Section 4
proposes a classifier, i.e., IFPIFSC, based on multiple pseudo-similarities and presents the
definitions used in the construction of IFPIFSC. Section 5 first provides the properties of
20 datasets in the UCI Machine Learning Repository (UCI-MLR) [22] used in the compari-
son of classifiers. In addition, it presents mathematical notations of the performance metrics.
Afterward, this section compares the performance results of the fuzzy-based classifiers,
i.e., Fuzzy kNN [23], Fuzzy Soft Set Classifier (FSSC) [24], Fuzzy Soft Set Classifier Us-
ing Distance-Based Similarity Measure (FussCyier) [25], Hamming Distance-Based Fuzzy
Soft Set Classifier (HDFSSC) [26], FPFSCC, FPFSNHC, FPFS-EC, FPFS-AC, FPFS-CMC,
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FPFS-kNN(P), FPFS-kNN(S), and FPFS-kNN(K), with the performance results of IFPIFSC
and the non-fuzzy-based classifiers, i.e., Support Vector Machines (SVM) [27], Decision
Trees (DT) [28], Boosting Trees (BT) [29], Random Forests (RF) [30], and Adaptive Boosting
(AdaBoost) [31], with those of IFPIFSC. Furthermore, this section performs the statistical
evaluations of the performance results using Friedman [32] and Nemenyi [33] tests in a
procedure suggested by Demšar [34] and presents the critical diagrams of the Nemenyi
test. Furthermore, it compares the classifiers’ time complexities using a big O notation. The
last section discusses classifiers that can be developed by distance/similarity measures of
ifpifs-matrices and the need for further research.

2. Preliminaries

This section presents the concept ifpifs-matrices [21] and some of its basic properties.
Throughout this study, let E be a parameter set and U be an alternative (object) set.

Definition 1 ([15]). Let µ and ν be two functions from E to [0,1] such that µ(x) + ν(x) ≤ 1,
for all x ∈ E. Then, the set {(x, µ(x), ν(x)) : x ∈ E} is called an intuitionistic fuzzy set (if-set)
over E.

Here, for all x ∈ E, µ(x) and ν(x) are called the membership and non-membership
degrees, respectively, and π(x) = 1− µ(x)− ν(x) is called the indeterminacy degree of the
element x ∈ E. Moreover, for all x ∈ E, 0 ≤ π(x) ≤ 1 is straightforward. Across the present
study, the set of all the if -sets over E is denoted by IF(E) and f ∈ IF(E). For brevity, the
notation µ(x)

ν(x) x is used instead of (x, µ(x), ν(x)). That is, an if -set f over E is denoted by

f =
{

µ(x)
ν(x) x : x ∈ E

}
.

Definition 2 ([20]). Let f ∈ IF(E) and α be a function from f to IF(U). Then, the set{(
µ(x)
ν(x) x, α

(
µ(x)
ν(x) x

))
: x ∈ E

}
being the graphic of α, is called an ifpifs-set parameterized via E over U (or briefly over U).

Hereinafter, the set of all the ifpifs-sets over U is denoted by IFPIFSE(U). Further,
in IFPIFSE(U), since the graph(α) and α generate each other uniquely, the notations are
interchangeable. Therefore, if it causes no confusion, we denote an ifpifs-set graph(α) by α.

Definition 3 ([21]). Let α ∈ IFPIFSE(U). Then, [aij] is called ifpifs-matrix of α and defined by

[aij] :=



a01 a02 a03 . . . a0n . . .
a11 a12 a13 . . . a1n . . .
...

...
...

. . .
...

...
am1 am2 am3 . . . amn . . .

...
...

...
. . .

...
. . .


such that for i ∈ {0, 1, 2, · · · } and j ∈ {1, 2, · · · },

aij :=


µ(xj)

ν(xj)
, i = 0

α

(
µ(xj)

ν(xj)
xj

)
(ui), i 6= 0

or briefly aij :=
µij
νij . Here, if |U| = m− 1 and |E| = n, then [aij] is an m× n ifpifs-matrix.

In this paper, if it causes no confusion, the membership and non-membership functions
of [aij], i.e., µij and νij, will be represented by µa

ij and νa
ij, respectively. Moreover, the
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set of all the ifpifs-matrices parameterized via E over U is denoted by IFPIFSE[U] and
[aij], [bij], [cij] ∈ IFPIFSE[U].

Definition 4 ([21]). Let [aij] ∈ IFPIFSE[U]. For all i and j, if µij = λ and νij = ε, then [aij] is
called (λ, ε)-ifpifs-matrix and denoted by

[
λ
ε

]
. Here,

[0
1
]

and
[1

0
]

are called empty and universal
ifpifs-matrices, respectively.

Definition 5 ([21]). Let [aij], [bij] ∈ IFPIFSE[U].

i. For all i and j, if µa
ij = µb

ij and νa
ij = νb

ij, then it is said to be [aij] and [bij] are equal ifpifs-matrices
and denoted by [aij] = [bij].
ii. For all i and j, if µa

ij ≤ µb
ij and νb

ij ≤ νa
ij, then it is said to be [aij] is a submatrix of [bij] and

denoted by [aij]⊆̃[bij].
iii. If [aij]⊆̃[bij] and [aij] 6= [bij], then it is said to be [aij] is a proper submatrix of [bij] and denoted
by [aij](̃[bij].

3. Distance and Similarity Measures of ifpifs-Matrices

This section defines metric, quasi-, semi-, and pseudo-metric over IFPIFSE[U], pro-
poses Minkowski, Euclidean, Hamming, generalized Hausdorff, Hausdorff pseudo-metrics,
and their normalized forms, and investigates some of their basic properties. Afterward, the
section defines similarity, quasi-, semi-, and pseudo-similarity over IFPIFSE[U], suggests
Minkowski, Euclidean, Hamming, generalized Hausdorff, Hausdorff, Jaccard, Dice, and
Cosine pseudo-similarities, and examines some of their basic properties. This section
theoretically contributes to the next section in which the advantages of ifpifs-matrices are
employed in classification problems. In other words, this section provides the advantage
of relaying the modeling capability of ifpifs-matrices to machine learning via distance and
similarity measures defined over IFPIFSE[U]. From now on, let In = {1, 2, · · · , n} and
I∗n = {0, 1, 2, · · · , n}.

3.1. Distance Measures of ifpifs-Matrices

This subsection first defines metric, quasi-, semi-, and pseudo-metric over IFPIFSE[U].
Let d : X× X → R be a mapping and for all x, y, z ∈ X, D1, D2, D3, D4, and D5 denote the
following properties:

D1. d(x, y) ≥ 0 (Positive semi-definiteness);
D2. d(x, x) = 0;
D3. d(x, y) = 0⇔ x = y;
D4. d(x, y) = d(y, x) (Symmetry);
D5. d(x, y) ≤ d(x, z) + d(z, y) (Triangle inequality).

Definition 6. Let d : IFPIFSE[U]× IFPIFSE[U]→ R be a mapping. Then,

i. d is called a quasi-metric iff d satisfies D1, D3, and D5.
ii. d is called a semi-metric iff d satisfies D1, D3, and D4.
iii. d is called a pseudo-metric iff d satisfies D2, D4, and D5.
iv. d is called a metric iff d satisfies D3, D4, and D5.

Secondly, this subsection proposes Minkowski, Euclidean, Hamming, generalized
Hausdorff, and Hausdorff pseudo-metrics over IFPIFSE[U] and their normalized forms
and investigates some of their basic properties.
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Proposition 1. Let p ∈ Z+. Then, the mapping dp
M : IFPIFSE[U] × IFPIFSE[U] → R

defined by

dp
M([aij], [bij]) :=

(
1
2

m−1

∑
i=1

n

∑
j=1

(∣∣∣µa
0jµ

a
ij − µb

0jµ
b
ij

∣∣∣p + ∣∣∣νa
0jν

a
ij − νb

0jν
b
ij

∣∣∣p + ∣∣∣πa
0jπ

a
ij − πb

0jπ
b
ij

∣∣∣p)) 1
p

is a pseudo-metric over IFPIFSE[U] and referred to as Minkowski pseudo-metric (MPM). Further-
more, the normalized MPM is as follows:

d̂p
M([aij], [bij]) :=

 1
2(m− 1)n

m−1

∑
i=1

n

∑
j=1

(∣∣∣µa
0jµ

a
ij − µb

0jµ
b
ij

∣∣∣p + ∣∣∣νa
0jν

a
ij − νb

0jν
b
ij

∣∣∣p + ∣∣∣πa
0jπ

a
ij − πb

0jπ
b
ij

∣∣∣p)
 1

p

Here, d1
M and d2

M are called Hamming pseudo-metric (HPM) and Euclidean pseudo-
metric (EPM) and denoted by dH and dE, respectively. Moreover, d̂1

M and d̂2
M are called

normalized HPM and normalized EPM and denoted by d̂H and d̂E, respectively.

Proposition 2. Let p ∈ Z+. Then, the mapping dp
Hs : IFPIFSE[U] × IFPIFSE[U] → R

defined by

dp
Hs([aij], [bij]) :=

(
m−1

∑
i=1

max
j∈In

(
|µa

0jµ
a
ij − µb

0jµ
b
ij|p + |νa

0jν
a
ij − νb

0jν
b
ij|p + |πa

0jπ
a
ij − πb

0jπ
b
ij|p
)) 1

p

is a pseudo-metric and referred to as generalized Hausdorff pseudo-metric (GHPM). In addition,
normalized GHPM is as follows:

d̂p
Hs([aij], [bij]) :=

(
1

m− 1

m−1

∑
i=1

max
j∈In

(
|µa

0jµ
a
ij − µb

0jµ
b
ij|p + |νa

0jν
a
ij − νb

0jν
b
ij|p + |πa

0jπ
a
ij − πb

0jπ
b
ij|p
)) 1

p

Here, d1
Hs is called Hausdorff pseudo-metric (HsPM) and denoted by dHs. Moreover,

d̂1
Hs is called normalized HsPM and denoted by d̂Hs.

Proposition 3. Let p ∈ Z+ and [aij]m×n, [bij]m×n, [cij]m×n ∈ IFPIFSE[U]. Then, the following
properties are valid.

i. dp
M
([0

1
]
,
[1

0
])

= dp
Hs
([0

1
]
,
[1

0
])

= 1,

ii. dp
M
(
[aij], [bij]

)
≤ p
√
(m− 1)n,

iii. dp
Hs
(
[aij], [bij]

)
≤ p
√

m− 1,

iv. [aij]⊆̃[bij]⊆̃[cij]⇒ dp
M
(
[aij], [bij]

)
≤ dp

M
(
[aij], [cij]

)
∧ dp

M
(
[bij], [cij]

)
≤ dp

M
(
[aij], [cij]

)
,

v. [aij]⊆̃[bij]⊆̃[cij]⇒ dp
Hs
(
[aij], [bij]

)
≤ dp

Hs
(
[aij], [cij]

)
∧ dp

Hs
(
[bij], [cij]

)
≤ dp

Hs
(
[aij], [cij]

)
.

Remark 1. The propositions provided in Proposition 3 are also valid for the normalized pseudo-
metrics d̂p

M and d̂p
Hs.

3.2. Similarity Measures of ifpifs-Matrices

This subsection first defines similarity, quasi-, semi-, and pseudo-similarity over
IFPIFSE[U]. Let s : X × X → R be a mapping and for all x, y, z ∈ X, S1, S2, S3, and S4
denote the following properties:

S1. s(x, x) = 1,
S2. s(x, y) = 1⇔ x = y,
S3. s(x, y) = s(y, x),
S4. 0 ≤ s(x, y) ≤ 1.
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Definition 7. Let s : IFPIFSE[U]× IFPIFSE[U]→ R be a mapping. Then,

i. s is called a similarity iff d satisfies S2, S3, and S4.
ii. s is called a quasi-similarity iff d satisfies S2 and S4.
iii. s is called a semi-similarity iff d satisfies S2 and S3.
iv. s is called a pseudo-similarity iff d satisfies S1, S3, and S4.

Secondly, this subsection proposes Minkowski, Euclidean, Hamming [35], generalized
Hausdorff, and Hausdorff pseudo-similarities over IFPIFSE[U] using normalized pseudo-
metrics of ifpifs-matrices provided in Section 3.1.

Proposition 4. Let p ∈ Z+. Then, the mapping sp
M : IFPIFSE[U]× IFPIFSE[U]→ R defined by

sp
M([aij], [bij]) := 1− d̂p

M([aij], [bij])

is a pseudo-similarity and referred to as Minkowski pseudo-similarity (MPS).

Here, s1
M and s2

M are called Hamming pseudo-similarity (HPS) [35] and Euclidean
pseudo-similarity (EPS) and denoted by sH and sE, respectively.

Proposition 5. Let p ∈ Z+. Then, the mapping sp
Hs : IFPIFSE[U] × IFPIFSE[U] → R

defined by
sp

Hs([aij], [bij]) := 1− d̂p
Hs([aij], [bij])

is a pseudo-similarity and referred to as generalized Hausdorff pseudo-similarity (GHsPS).

Here, s1
Hs is called Hausdorff pseudo-similarity (HsPS) and denoted by sHs. Thirdly,

this subsection suggests Jaccard, Dice, and Cosine pseudo-similarities over IFPIFSE[U].

Proposition 6. The mapping sJ : IFPIFSE[U]× IFPIFSE[U]→ R defined by

sJ ([aij], [bij]) :=
1

m− 1

m−1

∑
i=1

ε + xi
ε + yi + zi − xi

such that

xi =
n

∑
j=1

µa
0jµ

a
ijµ

b
0jµ

b
ij + νa

0jν
a
ijν

b
0jν

b
ij + πa

0jπ
a
ijπ

b
0jπ

b
ij

yi =
n

∑
j=1

(
µa

0jµ
a
ij

)2
+
(

νa
0jν

a
ij

)2
+
(

πa
0jπ

a
ij

)2

and

zi =
n

∑
j=1

(
µb

0jµ
b
ij

)2
+
(

νb
0jν

b
ij

)2
+
(

πb
0jπ

b
ij

)2

is a pseudo-similarity and referred to as Jaccard pseudo-similarity (JPS). Here, ε� 1 is a positive
constant, e.g., ε = 0.0001.

Proof. Let [aij], [bij] ∈ IFPIFSE[U]. It is clear that sJ satisfies the conditions S1 and S3.
Then, it is sufficient to prove the condition S4. For i ∈ Im−1 and for all j ∈ In,

0 ≤ µa
0jµ

a
ijµ

b
0jµ

b
ij + νa

0jν
a
ijν

b
0jν

b
ij + πa

0jπ
a
ijπ

b
0jπ

b
ij

≤
(

µa
0jµ

a
ij

)2
+
(

νa
0jν

a
ij

)2
+
(

πa
0jπ

a
ij

)2
+
(

µb
0jµ

b
ij

)2
+
(

νb
0jν

b
ij

)2
+
(

πb
0jπ

b
ij

)2

−
(

µa
0jµ

a
ijµ

b
0jµ

b
ij + νa

0jν
a
ijν

b
0jν

b
ij + πa

0jπ
a
ijπ

b
0jπ

b
ij

)
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because

0 ≤
(

µa
0jµ

a
ij − µb

0jµ
b
ij

)2
+
(

νa
0jν

a
ij − νb

0jν
b
ij

)2
+
(

πa
0jπ

a
ij − πb

0jπ
b
ij

)2

Therefore,

0 ≤ ε + xi ≤ ε + yi + zi − xi

Hence,

0 ≤ ε + xi
ε + yi + zi − xi

≤ 1

Then,

1
m−1

m−1
∑

i=1
0 ≤ sJ ([aij], [bij]) ≤ 1

m−1

m−1
∑

i=1
1

0 ≤ sJ ([aij], [bij]) ≤ 1
m−1 (m− 1)

0 ≤ sJ ([aij], [bij]) ≤ 1

Proposition 7. The mapping sD : IFPIFSE[U]× IFPIFSE[U]→ R defined by

sD ([aij], [bij]) :=
1

m− 1

m−1

∑
i=1

ε + 2xi
ε + yi + zi

such that

xi =
n

∑
j=1

µa
0jµ

a
ijµ

b
0jµ

b
ij + νa

0jν
a
ijν

b
0jν

b
ij + πa

0jπ
a
ijπ

b
0jπ

b
ij

yi =
n

∑
j=1

(
µa

0jµ
a
ij

)2
+
(

νa
0jν

a
ij

)2
+
(

πa
0jπ

a
ij

)2

and

zi =
n

∑
j=1

(
µb

0jµ
b
ij

)2
+
(

νb
0jν

b
ij

)2
+
(

πb
0jπ

b
ij

)2

is a pseudo-similarity and referred to as Dice pseudo-similarity (DPS). Here, ε � 1 is a positive
constant, e.g., ε = 0.0001.

Proof. Let [aij], [bij] ∈ IFPIFSE[U]. It is clear that sD satisfies the conditions S1 and S3.
Then, it is sufficient to prove the condition S4. For i ∈ Im−1 and for all j ∈ In, since

0 ≤
(

µa
0jµ

a
ij − µb

0jµ
b
ij

)2
+
(

νa
0jν

a
ij − νb

0jν
b
ij

)2
+
(

πa
0jπ

a
ij − πb

0jπ
b
ij

)2

=
(

µa
0jµ

a
ij

)2
+
(

νa
0jν

a
ij

)2
+
(

πa
0jπ

a
ij

)2
+
(

µb
0jµ

b
ij

)2
+
(

νb
0jν

b
ij

)2
+
(

πb
0jπ

b
ij

)2

−2
(

µa
0jµ

a
ijµ

b
0jµ

b
ij + νa

0jν
a
ijν

b
0jν

b
ij + πa

0jπ
a
ijπ

b
0jπ

b
ij

)
then

0 ≤ ε + 2xi ≤ ε + yi + zi

Hence,

0 ≤ ε + 2xi
ε + yi + zi

≤ 1
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Then,

1
m−1

m−1
∑

i=1
0 ≤ sD ([aij], [bij]) ≤ 1

m−1

m−1
∑

i=1
1

0 ≤ sD ([aij], [bij]) ≤ 1
m−1 (m− 1)

0 ≤ sD ([aij], [bij]) ≤ 1

Proposition 8. The mapping sC : IFPIFSE[U]× IFPIFSE[U]→ R defined by

sC ([aij], [bij]) :=
1

m− 1

m−1

∑
i=1

ε + xi
ε +
√

yi
√

zi

such that

xi =
n

∑
j=1

µa
0jµ

a
ijµ

b
0jµ

b
ij + νa

0jν
a
ijν

b
0jν

b
ij + πa

0jπ
a
ijπ

b
0jπ

b
ij

yi =
n

∑
j=1

(
µa

0jµ
a
ij

)2
+
(

νa
0jν

a
ij

)2
+
(

πa
0jπ

a
ij

)2

and

zi =
n

∑
j=1

(
µb

0jµ
b
ij

)2
+
(

νb
0jν

b
ij

)2
+
(

πb
0jπ

b
ij

)2

is a pseudo-similarity and referred to as Cosine pseudo-similarity (CPS). Here, ε� 1 is a positive
constant, e.g., ε = 0.0001.

Proposition 9. Let p ∈ Z+ and [aij]m×n, [bij]m×n, [cij]m×n ∈ IFPIFSE[U]. Then, the following
properties are valid.

i. sp
M
([0

1
]
,
[1

0
])

= sp
Hs
([0

1
]
,
[1

0
])

= sJ

([0
1
]
,
[1

0
])

= sD

([0
1
]
,
[1

0
])

= sC

([0
1
]
,
[1

0
])

= 0,

ii. [aij]⊆̃[bij]⊆̃[cij]⇒ sp
M
(
[aij], [cij]

)
≤ sp

M
(
[aij], [bij]

)
∧ sp

M
(
[aij], [cij]

)
≤ sp

M
(
[bij], [cij]

)
,

iii. [aij]⊆̃[bij]⊆̃[cij]⇒ sp
Hs
(
[aij], [cij]

)
≤ sp

Hs
(
[aij], [bij]

)
∧ sp

Hs
(
[aij], [cij]

)
≤ sp

Hs
(
[bij], [cij]

)
,

iv. [aij]⊆̃[bij]⊆̃[cij]⇒ sJ
(
[aij], [cij]

)
≤ sJ

(
[aij], [bij]

)
∧ sJ

(
[aij], [cij]

)
≤ sJ

(
[bij], [cij]

)
,

v. [aij]⊆̃[bij]⊆̃[cij]⇒ sD
(
[aij], [cij]

)
≤ sD

(
[aij], [bij]

)
∧ sD

(
[aij], [cij]

)
≤ sD

(
[aij], [cij]

)
,

vi. [aij]⊆̃[bij]⊆̃[cij]⇒ sC
(
[aij], [cij]

)
≤ sC

(
[aij], [bij]

)
∧ sC

(
[aij], [cij]

)
≤ sC

(
[bij], [cij]

)
.

4. Proposed Classifier (IFPIFSC)

This section presents the basic mathematical notations to be needed for the proposed
classifier based on ifpifs-matrices. Throughout the present study, let D = [dij]m×(n+1) stand
for a data matrix whose last column consists of the data’s labels, where m and n represent
the samples’ and parameters’ numbers in the data matrix, respectively. (Dtrain)m1×n, Cm1×1,
and (Dtest)m2×n stand for a training matrix, class matrix of the training matrix, and the
testing matrix attained from the data matrix D, respectively, such that m1 + m2 = m. Let
Uk×1 be a matrix consisting of unique class labels of Cm1×1. Di−train and Di−test denote
i-th rows of Dtrain and Dtest, respectively. Similarly, Dtrain−j and Dtest−j denote j-th rows
of Dtrain and Dtest, respectively. Moreover, T

′
m2×1 represents predicted class labels of the

testing samples.
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Definition 8. Let x, y ∈ Rn. Then, the function P : Rn ×Rn → [−1, 1] defined by

P(x, y) :=

n
n
∑

j=1
xjyj −

(
n
∑

j=1
xj

)(
n
∑

j=1
yj

)
√√√√√
n

n
∑

j=1
x2

j −
(

n
∑

j=1
xj

)2
n

n
∑

j=1
y2

j −
(

n
∑

j=1
yj

)2


is called the Pearson correlation coefficient between x and y.

Definition 9. Let x ∈ Rn and j ∈ In. Then, the vector x̂ ∈ Rn defined by

x̂j :=


xj−min

k∈In
{xk}

max
k∈In
{xk}−min

k∈In
{xk}

, max
k∈In
{xk} 6= min

k∈In
{xk}

1, max
k∈In
{xk} = min

k∈In
{xk}

is called normalizing vector of x.

Definition 10. Let D = [dij]m×(n+1) be a data matrix, i ∈ Im, and j ∈ In. Then, the matrix
D̃ = [d̃ij]m×n defined by

d̃ij :=


dij−min

k∈Im
{dkj}

max
k∈Im
{dkj}−min

k∈Im
{dkj}

, max
k∈Im
{dkj} 6= min

k∈Im
{dkj}

1, max
k∈Im
{dkj} = min

k∈Im
{dkj}

is called column normalized matrix (feature-fuzzification matrix) of D.

Definition 11. Let (Dtrain)m1×n be a training matrix obtained from D = [dij]m×(n+1), i ∈ Im1 ,
and j ∈ In. Then, the matrix D̃train = [d̃ij−train]m1×n defined by

d̃ij−train :=


dij−train−min

k∈Im
{dkj}

max
k∈Im
{dkj}−min

k∈Im
{dkj}

, max
k∈Im
{dkj} 6= min

k∈Im
{dkj}

1, max
k∈Im
{dkj} = min

k∈Im
{dkj}

is called column normalized matrix (feature-fuzzification matrix) of Dtrain.

Definition 12. Let (Dtest)m2×n be a testing matrix obtained from D = [dij]m×(n+1), i ∈ Im2 , and
j ∈ In. Then, the matrix D̃test = [d̃ij−test]m1×n defined by

d̃ij−test :=


dij−test−min

k∈Im
{dkj}

max
k∈Im
{dkj}−min

k∈Im
{dkj}

, max
k∈Im
{dkj} 6= min

k∈Im
{dkj}

1, max
k∈Im
{dkj} = min

k∈Im
{dkj}

is called column normalized matrix (feature-fuzzification matrix) of Dtest.

Definition 13 ([35]). Let Dtrain = [dij−train]m1×n and Cm1×n be a training matrix and its
class matrix obtained from a data matrix D = [dij]m×(n+1), respectively. Then, the matrix

i f wλP
Dtrain

=

[
µλP

1j

νλP
1j

]
1×n

is called intuitionistic fuzzification weight matrix based on Pearson correla-

tion coefficient of Dtrain and defined by

µλP
1j := 1− (1− |P(Dtrain−j, C)|)λ
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and
νλP

1j := (1− |P(Dtrain−j, C)|)λ(λ+1)

such that j ∈ In and λ ∈ [0, ∞).

Definition 14 ([35]). Let D̃train = [d̃ij−train]m1×n be a column normalized matrix of a matrix

(Dtrain)m1×n. Then, the matrix ˜̃Dλ
train = [ ˜̃dλ

train−ij] =

[
µ

˜̃Dλ

ij−train

ν
˜̃Dλ

ij−train

]
m1×n

is called intuitionistic

fuzzification of D̃train and defined by

µ
˜̃Dλ

ij−train := 1− (1− d̃ij−train)
λ

and
ν

˜̃Dλ

ij−train := (1− d̃ij−train)
λ(λ+1)

such that i ∈ Im1 , j ∈ In, and λ ∈ [0, ∞).

Definition 15 ([35]). Let D̃test = [d̃ij−test]m2×n be a column normalized matrix of a matrix

(Dtest)m2×n. Then, the matrix ˜̃Dλ
test = [ ˜̃dλ

test−ij] =

[
µ

˜̃Dλ

ij−test

ν
˜̃Dλ

ij−test

]
m2×n

is called intuitionistic fuzzifica-

tion of D̃test and defined by

µ
˜̃Dλ

ij−test := 1− (1− d̃ij−test)
λ

and
ν

˜̃Dλ

ij−test := (1− d̃ij−test)
λ(λ+1)

such that i ∈ Im2 , j ∈ In, and λ ∈ [0, ∞).

Definition 16 ([35]). Let (D̃train)m1×n be a column normalized matrix of a matrix (Dtrain)m1×n

and ˜̃Dλ
train = [ ˜̃dλ

train−ij] =

[
µ

˜̃Dλ

ij−train

ν
˜̃Dλ

ij−train

]
m1×n

be the intuitionistic fuzzification of D̃train. Then, the

ifpifs-matrix
[

b
˜̃Dλ

k−train
ij

]
2×n

is called the training ifpifs-matrix obtained by k-th row of ˜̃Dλ
train and

i f wλP
Dtrain

and defined by

b
˜̃Dλ

k−train
0j :=

µλP
1j

νλP
1j

and b
˜̃Dλ

k−train
1j :=

µ
˜̃Dλ

kj−train

ν
˜̃Dλ

kj−train

such that k ∈ Im1 and j ∈ In.

Definition 17 ([35]). Let (D̃test)m2×n be a column normalized matrix of a matrix (Dtest)m2×n

and ˜̃Dλ
test = [ ˜̃dλ

test−ij] =

[
µ

˜̃Dλ

ij−test

ν
˜̃Dλ

ij−test

]
m2×n

be the intuitionistic fuzzification of D̃test. Then, the ifpifs-

matrix
[

a
˜̃Dλ

k−test
ij

]
2×n

is called the testing ifpifs-matrix obtained by k-th row of ˜̃Dλ
test and i f wλP

Dtrain

and defined by

a
˜̃Dλ

k−test
0j :=

µλP
1j

νλP
1j

and a
˜̃Dλ

k−test
1j :=

µ
˜̃Dλ

kj−test

ν
˜̃Dλ

kj−test

such that k ∈ Im1 and j ∈ In.

Afterward, this section proposes a new classifier named IFPIFSC. This classifier utilizes
Definition 13 to attain a parameter effect-based feature weight on classification. It then built
the training ifpifs-matrix and the testing ifpifs-matrix using Definitions 11, 12, and 14–17.
Later, employing HPS, EPS, MPS, HsPS, JPS, and CPS, a matrix of similarity values of the
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testing ifpifs-matrix to each training ifpifs-matrix is obtained. For each pseudo-similarity,
the class of the training sample with the highest similarity is found, and the class with
the highest frequency value is determined and assigned to the test sample. Similarly, this
procedure repeats for all test samples. Lastly, the predicted class matrix is generated for the
test data. IFPIFSC’s flowchart (Figure 1) and algorithm steps (Algorithm 1) are as follows:

Compute test ifpifs-matr�x  us�ng  and 

For  from  to 

For  from  to 

Compute tra�n ifpifs-matr�x  us�ng  and 

Compute Cos�ne Pseudo-S�m�lar�ty

�n descend�ng order �n terms of each
pseudo-s�m�lar�ty

 the class 

Stop

Return Ass�gned Class Matr�x 

Done

Next

Done

Next

Compute Hamm�ng Pseudo-S�m�lar�ty

Compute Eucl�dean Pseudo-S�m�lar�ty

Compute M�nkowsk� Pseudo-S�m�lar�ty

Compute Hausdorff Pseudo-S�m�lar�ty

Compute Jaccard Pseudo-S�m�lar�ty

For  from  to 

  row of 

 mode

 mode  �s
un�que

Next

No

Done

Yes

Start

Compute  and 

Compute  us�ng  and 

Compute  and 

Read , , and 

Figure 1. IFPIFSC’s flowchart.
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Algorithm 1 IFPIFSC’s pseudocode
Input: (Dtrain)m1×n, Cm1×1, (Dtest)m2×n, λ1, and λ2

Output: Tm2×1

1: procedure IFPIFSC(Dtrain, C, Dtest, λ1, λ2)

2: Compute i f wλ1P
Dtrain

using Dtrain and C

3: Compute feature fuzzification of Dtrain and Dtest, namely D̃train and D̃test

4: Compute feature intuitionistic fuzzification of D̃train and D̃test, namely ˜̃Dλ2
train and ˜̃Dλ2

test

5: for k from 1 to m2 do

6: Compute the testing ifpifs-matrix

[
a

˜̃Dλ2
k−test

ij

]
2×n

using i f wλ1P
Dtrain

and ˜̃Dλ2
k−test

7: for l from 1 to m1 do

8: Compute the training ifpifs-matrix

[
b

˜̃Dλ2
k−train

ij

]
2×n

using i f wλ1P
Dtrain

and ˜̃Dλ2
l−train

9: sml1 ← sH

([
a

˜̃Dλ2
k−test

ij

]
,

[
b

˜̃Dλ2
k−train

ij

])

10: sml2 ← sE

([
a

˜̃Dλ2
k−test

ij

]
,

[
b

˜̃Dλ2
k−train

ij

])

11: sml3 ← s3
M

([
a

˜̃Dλ2
k−test

ij

]
,

[
b

˜̃Dλ2
k−train

ij

])

12: sml4 ← sHs

([
a

˜̃Dλ2
k−test

ij

]
,

[
b

˜̃Dλ2
k−train

ij

])

13: sml5 ← sJ

([
a

˜̃Dλ2
k−test

ij

]
,

[
b

˜̃Dλ2
k−train

ij

])

14: sml6 ← sC

([
a

˜̃Dλ2
k−test

ij

]
,

[
b

˜̃Dλ2
k−train

ij

])
15: end for

16: Fm1×s ← Sorted class matrix of [smls] in descending order in terms of each pseudo-similarity

17: for i from 1 to m1 do

18: Fi ← i-th row of F

19: w←mode(Fi)

20: if mode(Fi) is unique then

21: break

22: end if

23: end for

24: tk1 ← w

25: end for

26: return T
′
m2×1

27: end procedure
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5. Simulation and Performance Comparison

The present section provides the details of the 20 datasets in the UCI-MLR [22] for the
classification task. It then presents five performance metrics to be used for performance
comparison. Afterward, this section executes a simulation to demonstrate that IFPIFSC
exhibits a better-classifying performance than Fuzzy kNN [23], FSSC [24], FussCyier [25],
HDFSSC [26], FPFSCC [10], FPFSNHC [9], FPFS-EC [11], FPFS-AC [13], FPFS-CMC [12],
FPFS-kNN(P) [14], FPFS-kNN(S) [14], FPFS-kNN(K) [14], SVM [27], DT [28], BT [29], RF [30],
and AdaBoost [31] do. Moreover, it performs statistical analyzes of the simulation results
employing the Friedman test [32], a non-parametric test, and the Nemenyi test [33], a post
hoc test. Finally, this section provides the time complexities of the compared classifiers in
compliance with big O notation.

5.1. UCI Datasets and Features

This subsection presents the properties of the following datasets [22], used in the
simulation, in Table 1: “Zoo”, “Breast Tissue”, “Teaching Assistant Evaluation”, “Wine”,
“Parkinsons[sic] ”, “Sonar”, “Seeds”, “Parkinson Acoustic”, “Ecoli”, “Leaf”, “Ionosphere”,
“Libras Movement”, “Dermatology”, “Breast Cancer Wisconsin”, “HCV Data”, “Parkinson’s
Disease Classification”, “Mice Protein Expression”, “Semeion Handwritten Digit”, “Car
Evaluation”, and “Wireless Indoor Localization”.

Table 1. Descriptions of UCI datasets.

No. Name #Instance #Attribute #Class Balanced/Imbalanced

1 Zoo 101 16 7 Imbalanced
2 Breast Tissue 106 9 6 Imbalanced
3 Teaching Assistant Evaluation 151 5 3 Imbalanced
4 Wine 178 13 3 Imbalanced
5 Parkinsons[sic] 195 22 2 Imbalanced
6 Sonar 208 60 2 Imbalanced
7 Seeds 210 7 3 Balanced
8 Parkinson Acoustic 240 46 2 Balanced
9 Ecoli 336 7 8 Imbalanced
10 Leaf 340 14 36 Imbalanced
11 Ionosphere 351 34 2 Imbalanced
12 Libras Movement 360 90 15 Balanced
13 Dermatology 366 34 6 Imbalanced
14 Breast Cancer Wisconsin 569 30 2 Imbalanced
15 HCV Data 589 12 5 Imbalanced
16 Parkinson’s Disease Classification 756 754 2 Imbalanced
17 Mice Protein Expression 1077 72 8 Imbalanced
18 Semeion Handwritten Digit 1593 265 2 Imbalanced
19 Car Evaluation 1728 6 4 Imbalanced
20 Wireless Indoor Localization 2000 7 4 Balanced
# stands for “the number of”.

5.2. Performance Metrics

This subsection provides the mathematical notations of five performance metrics [36–38],
i.e., accuracy (Acc), precision (Pre), recall (Rec), macro F-score (MacF), and micro F-
score (MicF), to compare the aforementioned classifiers. Let Dtest = {x1, x2, . . . , xn},
T = {t1, t2, . . . , tn}, T

′
= {t′1, t

′
2, . . . , t

′
n}, and l be n samples to be classified, ground truth

class sets of the samples, prediction class sets of the samples, and the number of the class of
the samples, respectively.
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Acc(T, T
′
) := 1

l ∑l
i=1

TPi+TNi
TPi+TNi+FPi+FNi

Pre(T, T
′
) := 1

l ∑l
i=1

TPi
TPi+FPi

Rec(T, T
′
) := 1

l ∑l
i=1

TPi
TPi+FNi

MacF(T, T
′
) := 1

l ∑l
i=1

2TPi
2TPi+FPi+FNi

MicF(T, T
′
) := 2 ∑l

i=1 TPi

2 ∑l
i=1 TPi+∑l

i=1 FPi+∑l
i=1 FNi

where TPi, TNi, FPi, and FNi are the number of true positive, true negative, false posi-
tive, and false negative, for the class i, respectively, and their mathematical notations are
as follows:

TPi :=
∣∣∣∣{xk|i ∈ Tk ∧ i ∈ T

′
k, 1 ≤ k ≤ l

}∣∣∣∣
TNi :=

∣∣∣∣{xt|i /∈ Tk ∧ i /∈ T
′
k, 1 ≤ k ≤ l

}∣∣∣∣
FPi :=

∣∣∣∣{xt|i /∈ Tk ∧ i ∈ T
′
k, 1 ≤ k ≤ l

}∣∣∣∣
FNi :=

∣∣∣∣{xt|i ∈ Tk ∧ i /∈ T
′
k, 1 ≤ k ≤ l

}∣∣∣∣
Here, the notation |.| denotes the cardinality of a set.

5.3. Simulation Results

This subsection compares IFPIFSC with the state-of-the-art and well-known classifiers
rely on fuzzy and soft sets, i.e., Fuzzy 3NN, FussCyier, FSSC, HDFSSC, FPFSCC, FPFSNHC,
FPFS-EC, FPFS-AC, FPFS-CMC, FPFS-3NN(P), FPFS-3NN(S), and FPFS-3NN(K), and other
well-known classifiers, i.e., DT, SVM, BT, RF, and AdaBoost, by utilizing MATLAB R2021b
and a laptop with I(R) Core(TM) I5-3230M CPU @ 2.60 GHz and 16 GB RAM. Here, the
mean performance results of the classifiers are obtained by random 10 independent runs
based on the 5-fold cross-validation [38,39]. In each cross-validation, the relevant dataset is
randomly split into five parts, and four of the parts are used for training and the other for
testing (for more details about k-fold cross-validation, see [39]). Table 2 provides the average
Acc, Pre, Rec, MacF, and MicF results of IFPIFSC, Fuzzy 3NN, FSSC, FussCyier, HDFSSC,
FPFSCC, FPFSNHC, FPFS-EC, FPFS-AC, FPFS-CMC, FPFS-3NN(P), FPFS-3NN(S), and
FPFS-3NN(K) for the datasets.

Table 2. Simulation results of the fuzzy-based classifiers.

Datasets Classifiers Acc ± SD Pre ± SD Rec ± SD MacF ± SD MicF ± SD

Zoo

Fuzzy 3NN 97.63 ± 1.42 90.41 ± 7.22 84.13 ± 10.2 92.05 ± 5.77 91.77 ± 4.98
FSSC 97.97 ± 1.32 90.03 ± 9.13 86.56 ± 9.46 93.25 ± 4.92 93.06 ± 4.51
FussCyier 97.74 ± 1.42 89.39 ± 9.23 86.27 ± 9.46 92.68 ± 5.21 92.26 ± 4.85
HDFSSC 98.29 ± 1.4 91.72 ± 8.15 87.45 ± 10.93 93.48 ± 5.2 94.15 ± 4.79
FPFSCC 97.17 ± 2.13 88.27 ± 10.11 82.05 ± 12.41 89.22 ± 7.87 90.27 ± 7.49
FPFSNHC 98.29 ± 1.43 92 ± 8.53 87.17 ± 11.35 93.26 ± 5.81 94.15 ± 4.9
FPFS-EC 98.85 ± 1.12 94.34 ± 6.98 89.86 ± 10.24 96.6 ± 4.17 96.04 ± 3.88
FPFS-AC 98.36 ± 1.3 91.66 ± 8.15 85.9 ± 10.94 94.94 ± 5.42 94.35 ± 4.49
FPFS-CMC 98.73 ± 1.48 93.81 ± 8.43 89.19 ± 12.28 96.31 ± 5.2 95.64 ± 5.08
FPFS-3NN(P) 98.22 ± 1.29 92.03 ± 7.25 86.67 ± 10.38 93.17 ± 5.13 93.87 ± 4.51
FPFS-3NN(S) 98.25 ± 1.26 92.35 ± 6.81 87.1 ± 10.18 93.23 ± 5.27 93.97 ± 4.38
FPFS-3NN(K) 98.25 ± 1.26 92.35 ± 6.81 87.1 ± 10.18 93.23 ± 5.27 93.97 ± 4.38
IFPIFSC 98.65 ± 1.23 92.79 ± 6.53 89.92 ± 8.2 96.31 ± 3.69 95.35 ± 3.38
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Table 2. Cont.

Datasets Classifiers Acc ± SD Pre ± SD Rec ± SD MacF ± SD MicF ± SD

Breast
Tissue

Fuzzy 3NN 84.37 ± 2.73 56.35 ± 9.71 51.64 ± 8.92 57.4 ± 7.04 53.1 ± 8.18
FSSC 87.83 ± 2.88 64.48 ± 10.14 61.95 ± 8.99 66.11 ± 7.27 63.48 ± 8.65
FussCyier 87.19 ± 2.97 64.15 ± 9.11 60.34 ± 9.26 64.79 ± 6.92 61.58 ± 8.91
HDFSSC 87.73 ± 3 67.57 ± 9.55 62.07 ± 9.08 64.47 ± 8.27 63.2 ± 9
FPFSCC 87.29 ± 2.65 63.77 ± 10.12 60.17 ± 8.76 67.03 ± 9.22 61.87 ± 7.95
FPFSNHC 87.89 ± 3.23 66.78 ± 10.22 62.41 ± 10.49 66.32 ± 7.89 63.66 ± 9.69
FPFS-EC 88.11 ± 2.74 65.95 ± 7.98 63.15 ± 8.84 70.24 ± 8.51 64.33 ± 8.23
FPFS-AC 89.58 ± 2.66 69.54 ± 8.57 68.05 ± 8.31 71.32 ± 7.91 68.75 ± 7.98
FPFS-CMC 87.82 ± 2.86 66.36 ± 8.3 62.67 ± 8.98 69.26 ± 8.6 63.47 ± 8.59
FPFS-3NN(P) 88.61 ± 2.51 65.99 ± 7.5 64.44 ± 8.14 69.99 ± 7.87 65.83 ± 7.54
FPFS-3NN(S) 88.01 ± 2 64.35 ± 5.82 62.53 ± 6.52 69.23 ± 6.3 64.03 ± 6.01
FPFS-3NN(K) 87.76 ± 2.2 63.65 ± 6.44 61.84 ± 7.16 68.6 ± 5.97 63.27 ± 6.6
IFPIFSC 91.39 ± 2.91 75.66 ± 9.25 73.18 ± 9.1 73.97 ± 8.64 74.16 ± 8.73

Teaching
Assistant

Evaluation

Fuzzy 3NN 72.06 ± 5.53 59.99 ± 8.74 58.06 ± 8.36 57.23 ± 8.83 58.08 ± 8.3
FSSC 63.6 ± 4.17 49.63 ± 13.36 45.98 ± 6.28 43.62 ± 6.25 45.41 ± 6.25
FussCyier 63.69 ± 4.33 49.43 ± 12.15 46.09 ± 6.47 43.33 ± 6.56 45.53 ± 6.49
HDFSSC 69.37 ± 4.66 55.55 ± 7.82 54.2 ± 7.07 53.37 ± 7.17 54.06 ± 6.99
FPFSCC 69.12 ± 5.83 54.57 ± 9.52 53.77 ± 8.73 52.49 ± 9.16 53.68 ± 8.75
FPFSNHC 60.86 ± 4.75 47.85 ± 14.61 41.84 ± 7.21 39.41 ± 6.38 41.3 ± 7.13
FPFS-EC 75.53 ± 5.42 64.65 ± 9.06 63.2 ± 8.24 62.67 ± 8.51 63.29 ± 8.13
FPFS-AC 75.75 ± 4.67 64.96 ± 7.6 63.6 ± 6.96 62.9 ± 7.29 63.63 ± 7.01
FPFS-CMC 75.62 ± 4.75 64.92 ± 7.88 63.41 ± 7.08 62.7 ± 7.39 63.43 ± 7.12
FPFS-3NN(P) 72.44 ± 5.48 59.41 ± 9.17 58.48 ± 8.34 57.54 ± 8.68 58.66 ± 8.22
FPFS-3NN(S) 72.39 ± 5.07 58.98 ± 8.43 58.39 ± 7.7 57.5 ± 7.97 58.58 ± 7.61
FPFS-3NN(K) 72.3 ± 5.19 58.86 ± 8.64 58.26 ± 7.88 57.37 ± 8.19 58.45 ± 7.79
IFPIFSC 75.65 ± 4.48 64.43 ± 7.28 63.31 ± 6.78 62.6 ± 6.91 63.47 ± 6.72

Wine

Fuzzy 3NN 82.24 ± 4.86 73.79 ± 7.79 72.06 ± 7.39 72.22 ± 7.54 73.36 ± 7.3
FSSC 96.26 ± 2.39 94.88 ± 3.1 95.3 ± 2.99 94.63 ± 3.46 94.38 ± 3.58
FussCyier 96.44 ± 2.21 94.97 ± 3.1 95.42 ± 2.89 94.91 ± 3.19 94.66 ± 3.31
HDFSSC 95.36 ± 2.66 93.49 ± 3.7 93.84 ± 3.61 93.35 ± 3.84 93.03 ± 3.99
FPFSCC 92.43 ± 2.53 89.31 ± 3.6 89.99 ± 3.4 88.89 ± 3.79 88.65 ± 3.8
FPFSNHC 95.54 ± 2.82 93.79 ± 3.74 94.41 ± 3.53 93.47 ± 4.23 93.31 ± 4.24
FPFS-EC 97.64 ± 1.69 96.59 ± 2.42 97.04 ± 2.1 96.61 ± 2.45 96.46 ± 2.53
FPFS-AC 95.87 ± 3.02 94.62 ± 3.45 94.82 ± 3.82 94.11 ± 4.42 93.81 ± 4.52
FPFS-CMC 97.22 ± 2.64 96.15 ± 3.51 96.52 ± 3.31 96 ± 3.9 95.84 ± 3.96
FPFS-3NN(P) 97.19 ± 2.15 96.03 ± 2.94 96.46 ± 2.72 95.93 ± 3.13 95.79 ± 3.22
FPFS-3NN(S) 97.3 ± 2.28 96.25 ± 2.98 96.61 ± 2.87 96.13 ± 3.25 95.95 ± 3.42
FPFS-3NN(K) 96.74 ± 2.54 95.59 ± 3.1 95.91 ± 3.2 95.34 ± 3.59 95.11 ± 3.8
IFPIFSC 98.24 ± 1.71 97.65 ± 2.12 97.79 ± 2.16 97.56 ± 2.36 97.36 ± 2.57

Parkinsons[sic]

Fuzzy 3NN 85.38 ± 4.25 81.81 ± 6.39 78.34 ± 6.89 79.19 ± 6.29 85.38 ± 4.25
FSSC 73.79 ± 6.35 72.76 ± 4.16 79.88 ± 5.09 71.49 ± 5.98 73.79 ± 6.35
FussCyier 73.9 ± 6.44 73.25 ± 3.95 80.51 ± 4.79 71.73 ± 6.01 73.9 ± 6.44
HDFSSC 78.21 ± 6.16 75.13 ± 5.07 82.04 ± 5.57 75.41 ± 6.11 78.21 ± 6.16
FPFSCC 74.92 ± 6.14 68.07 ± 8.01 70.61 ± 10.07 68.22 ± 8.38 74.92 ± 6.14
FPFSNHC 73.9 ± 6.51 72.86 ± 4.3 79.94 ± 5.16 71.58 ± 6.15 73.9 ± 6.51
FPFS-EC 95.85 ± 3.15 94.37 ± 4.71 95.15 ± 4.12 94.48 ± 4.17 95.85 ± 3.15
FPFS-AC 92.97 ± 4.27 91.04 ± 5.81 90.83 ± 6.1 90.56 ± 5.67 92.97 ± 4.27
FPFS-CMC 95.03 ± 3.29 92.85 ± 4.62 94.67 ± 4.17 93.5 ± 4.24 95.03 ± 3.29
FPFS-3NN(P) 94.41 ± 3.8 93.31 ± 5.26 92.03 ± 5.21 92.38 ± 5.01 94.41 ± 3.8
FPFS-3NN(S) 93.95 ± 3.62 93.2 ± 5.11 90.83 ± 5.59 91.6 ± 5.03 93.95 ± 3.62
FPFS-3NN(K) 93.95 ± 3.62 93.2 ± 5.11 90.83 ± 5.59 91.6 ± 5.03 93.95 ± 3.62
IFPIFSC 95.23 ± 3.15 93.22 ± 4.51 94.99 ± 4.17 93.73 ± 4.11 95.23 ± 3.15
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Table 2. Cont.

Datasets Classifiers Acc ± SD Pre ± SD Rec ± SD MacF ± SD MicF ± SD

Sonar

Fuzzy 3NN 82.5 ± 5.73 83.3 ± 5.77 82.04 ± 5.89 82.15 ± 5.89 82.5 ± 5.73
FSSC 74.92 ± 7.5 75.5 ± 7.88 74.44 ± 7.62 74.42 ± 7.7 74.92 ± 7.5
FussCyier 72.12 ± 5.63 73.68 ± 5.82 72.79 ± 5.66 71.94 ± 5.73 72.12 ± 5.63
HDFSSC 69.38 ± 7.7 69.75 ± 7.96 69.46 ± 7.91 69.17 ± 7.82 69.38 ± 7.7
FPFSCC 69.22 ± 6.77 69.38 ± 6.92 68.95 ± 6.84 68.82 ± 6.96 69.22 ± 6.77
FPFSNHC 71.06 ± 5.46 72.63 ± 5.63 71.76 ± 5.44 70.87 ± 5.57 71.06 ± 5.46
FPFS-EC 86.57 ± 4.79 87.37 ± 4.69 86.22 ± 4.88 86.34 ± 4.9 86.57 ± 4.79
FPFS-AC 84.99 ± 5.18 86.2 ± 4.96 84.47 ± 5.38 84.62 ± 5.41 84.99 ± 5.18
FPFS-CMC 85.53 ± 4.78 86.33 ± 4.73 85.22 ± 4.92 85.29 ± 4.92 85.53 ± 4.78
FPFS-3NN(P) 86.77 ± 4.62 88.1 ± 4.35 86.21 ± 4.83 86.42 ± 4.87 86.77 ± 4.62
FPFS-3NN(S) 86.19 ± 4.77 87.82 ± 4.48 85.56 ± 4.97 85.79 ± 5.04 86.19 ± 4.77
FPFS-3NN(K) 86.19 ± 4.77 87.82 ± 4.48 85.56 ± 4.97 85.79 ± 5.04 86.19 ± 4.77
IFPIFSC 86.88 ± 5.15 87.83 ± 5.35 86.47 ± 5.25 86.65 ± 5.26 86.88 ± 5.15

Seeds

Fuzzy 3NN 90.32 ± 3.44 87.35 ± 4.44 85.48 ± 5.16 85.36 ± 5.4 85.48 ± 5.16
FSSC 94.1 ± 2.08 91.54 ± 2.96 91.14 ± 3.12 91.08 ± 3.18 91.14 ± 3.12
FussCyier 94.13 ± 2.23 91.63 ± 3.14 91.19 ± 3.34 91.15 ± 3.37 91.19 ± 3.34
HDFSSC 93.17 ± 2.13 90.34 ± 3.11 89.76 ± 3.2 89.76 ± 3.19 89.76 ± 3.2
FPFSCC 90.48 ± 3.32 86.35 ± 4.91 85.71 ± 4.98 85.68 ± 5.02 85.71 ± 4.98
FPFSNHC 93.52 ± 2.46 90.92 ± 3.43 90.29 ± 3.69 90.28 ± 3.71 90.29 ± 3.69
FPFS-EC 93.14 ± 2.59 90.18 ± 3.98 89.71 ± 3.89 89.58 ± 4 89.71 ± 3.89
FPFS-AC 93.49 ± 2.59 90.71 ± 3.9 90.24 ± 3.89 90.11 ± 3.95 90.24 ± 3.89
FPFS-CMC 93.05 ± 2.74 90.02 ± 4.03 89.57 ± 4.11 89.45 ± 4.19 89.57 ± 4.11
FPFS-3NN(P) 92.86 ± 2.38 89.82 ± 3.5 89.29 ± 3.58 89.23 ± 3.61 89.29 ± 3.58
FPFS-3NN(S) 93.02 ± 2.66 90.06 ± 3.94 89.52 ± 4 89.46 ± 4.03 89.52 ± 4
FPFS-3NN(K) 92.79 ± 2.51 89.77 ± 3.73 89.19 ± 3.76 89.14 ± 3.78 89.19 ± 3.76
IFPIFSC 95.49 ± 2.11 93.59 ± 3.07 93.24 ± 3.17 93.19 ± 3.25 93.24 ± 3.17

Parkinson
Acoustic

Fuzzy 3NN 75.96 ± 5.94 76.71 ± 5.98 75.96 ± 5.94 75.78 ± 6.01 75.96 ± 5.94
FSSC 79.75 ± 5.69 80.34 ± 5.56 79.75 ± 5.69 79.63 ± 5.77 79.75 ± 5.69
FussCyier 80 ± 5.79 80.5 ± 5.71 80 ± 5.79 79.9 ± 5.85 80 ± 5.79
HDFSSC 82.58 ± 4.79 83.03 ± 4.65 82.58 ± 4.79 82.51 ± 4.85 82.58 ± 4.79
FPFSCC 79.96 ± 5.08 80.73 ± 5.16 79.96 ± 5.08 79.83 ± 5.12 79.96 ± 5.08
FPFSNHC 79.08 ± 5.57 79.63 ± 5.51 79.08 ± 5.57 78.97 ± 5.62 79.08 ± 5.57
FPFS-EC 75.71 ± 7.05 76.05 ± 7.09 75.71 ± 7.05 75.62 ± 7.07 75.71 ± 7.05
FPFS-AC 80.67 ± 5.63 81.23 ± 5.66 80.67 ± 5.63 80.58 ± 5.66 80.67 ± 5.63
FPFS-CMC 75.79 ± 6.75 76.14 ± 6.89 75.79 ± 6.75 75.72 ± 6.76 75.79 ± 6.75
FPFS-3NN(P) 80.38 ± 5.33 80.98 ± 5.28 80.38 ± 5.33 80.26 ± 5.4 80.38 ± 5.33
FPFS-3NN(S) 79.79 ± 5.6 80.41 ± 5.51 79.79 ± 5.6 79.67 ± 5.69 79.79 ± 5.6
FPFS-3NN(K) 80.46 ± 5.53 81.12 ± 5.47 80.46 ± 5.53 80.34 ± 5.61 80.46 ± 5.53
IFPIFSC 82.54 ± 5.44 82.97 ± 5.39 82.54 ± 5.44 82.48 ± 5.48 82.54 ± 5.44

Ecoli

Fuzzy 3NN 92.08 ± 1.22 53.87 ± 3.94 60.13 ± 6.24 64.95 ± 5.85 68.34 ± 4.89
FSSC 94.73 ± 1.31 70.9 ± 7.74 74.61 ± 4.46 81.39 ± 5.05 80.69 ± 4.41
FussCyier 95.23 ± 1.19 73.87 ± 7.4 75.16 ± 4.73 82.21 ± 5.03 82.59 ± 4.08
HDFSSC 94.99 ± 1.1 69.08 ± 6 74.43 ± 4.63 81.44 ± 4.4 81.41 ± 3.85
FPFSCC 88.74 ± 1.78 47.56 ± 8.84 51.08 ± 8.31 56.28 ± 6.8 57.89 ± 5.7
FPFSNHC 93.64 ± 1.39 64 ± 7.65 66.75 ± 7.76 74.49 ± 6.31 76.13 ± 4.98
FPFS-EC 94.08 ± 1.28 68.97 ± 11.17 65.21 ± 8.02 74.07 ± 6.9 78.66 ± 4.75
FPFS-AC 94.1 ± 1.12 72.12 ± 8.3 67.66 ± 6.71 74.88 ± 4.71 79.04 ± 4.06
FPFS-CMC 93.94 ± 1.14 67.75 ± 9.7 64.38 ± 6.89 72.69 ± 5.24 78.18 ± 4.14
FPFS-3NN(P) 94.49 ± 1.03 74.72 ± 8.65 65.59 ± 6.41 74.75 ± 5.57 81.31 ± 3.45
FPFS-3NN(S) 95.18 ± 1.01 78.06 ± 7.5 70.1 ± 6.75 78.82 ± 5.3 83.66 ± 3.43
FPFS-3NN(K) 95.26 ± 1 77.83 ± 7.43 70.88 ± 6.87 78.46 ± 5.68 83.93 ± 3.34
IFPIFSC 94.8 ± 1.06 77.54 ± 7.7 71.43 ± 5.67 79.18 ± 4.76 81.73 ± 3.65
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Table 2. Cont.

Datasets Classifiers Acc ± SD Pre ± SD Rec ± SD MacF ± SD MicF ± SD

Leaf

Fuzzy 3NN 96.14 ± 0.23 31.16 ± 4.69 31.18 ± 3.95 61.27 ± 4.03 31.94 ± 4.05
FSSC 97.43 ± 0.34 66.6 ± 5.92 61.82 ± 5.22 70.9 ± 3.85 61.5 ± 5.13
FussCyier 97.46 ± 0.35 66.76 ± 5.82 62.26 ± 5.23 71.58 ± 3.66 61.97 ± 5.21
HDFSSC 97.6 ± 0.32 68.65 ± 5.49 64.47 ± 5.01 72.52 ± 3.51 63.97 ± 4.77
FPFSCC 96.95 ± 0.32 59.05 ± 5.89 54.58 ± 5.07 67.86 ± 4.42 54.26 ± 4.75
FPFSNHC 97.46 ± 0.3 66.45 ± 5.12 62.43 ± 4.6 72.58 ± 3.27 61.97 ± 4.52
FPFS-EC 97.8 ± 0.3 71.26 ± 5.97 67.11 ± 5.04 74.37 ± 3.3 67.06 ± 4.54
FPFS-AC 97.85 ± 0.28 72.46 ± 4.26 67.86 ± 4.56 74.59 ± 3.43 67.74 ± 4.27
FPFS-CMC 97.74 ± 0.28 70.79 ± 4.49 66.38 ± 4.59 73.41 ± 3.59 66.15 ± 4.21
FPFS-3NN(P) 97.78 ± 0.28 71.74 ± 4.52 66.47 ± 3.9 74.31 ± 4.11 66.65 ± 4.13
FPFS-3NN(S) 97.94 ± 0.3 74.14 ± 4.72 68.83 ± 4.46 75.74 ± 4.15 69.12 ± 4.56
FPFS-3NN(K) 97.92 ± 0.31 74.32 ± 4.83 68.6 ± 4.43 75.16 ± 4.04 68.82 ± 4.62
IFPIFSC 98.15 ± 0.26 76.88 ± 4.09 72.17 ± 3.95 76.88 ± 3.11 72.24 ± 3.87

Ionosphere

Fuzzy 3NN 84.99 ± 3.61 89.17 ± 3.11 79.57 ± 4.86 81.66 ± 4.98 84.99 ± 3.61
FSSC 64.1 ± 0.37 64.1 ± 0.37 50 ± 0 78.13 ± 0.27 64.1 ± 0.37
FussCyier 64.1 ± 0.37 64.1 ± 0.37 50 ± 0 78.13 ± 0.27 64.1 ± 0.37
HDFSSC 64.1 ± 0.37 64.1 ± 0.37 50 ± 0 78.13 ± 0.27 64.1 ± 0.37
FPFSCC 84.88 ± 6.17 84.51 ± 6.72 83.52 ± 5.79 83.58 ± 6.36 84.88 ± 6.17
FPFSNHC 82.6 ± 4.17 83.27 ± 5.08 78.43 ± 4.94 79.76 ± 5.1 82.6 ± 4.17
FPFS-EC 89.55 ± 3.65 91.98 ± 2.91 85.94 ± 4.97 87.73 ± 4.71 89.55 ± 3.65
FPFS-AC 88.81 ± 3.5 91.82 ± 2.63 84.79 ± 4.77 86.76 ± 4.52 88.81 ± 3.5
FPFS-CMC 89.12 ± 2.91 91.59 ± 2.48 85.44 ± 3.98 87.28 ± 3.69 89.12 ± 2.91
FPFS-3NN(P) 87.81 ± 2.84 91.11 ± 2.4 83.42 ± 3.83 85.51 ± 3.66 87.81 ± 2.84
FPFS-3NN(S) 87.78 ± 3.11 90.9 ± 3.02 83.47 ± 4.01 85.53 ± 3.9 87.78 ± 3.11
FPFS-3NN(K) 87.87 ± 3.09 91.03 ± 2.88 83.55 ± 4.04 85.62 ± 3.91 87.87 ± 3.09
IFPIFSC 91.14 ± 2.91 91.26 ± 3.43 89.54 ± 3.25 90.19 ± 3.22 91.14 ± 2.91

Libras
Movement

Fuzzy 3NN 95.9 ± 0.55 73.7 ± 3.83 69.23 ± 4.06 69.07 ± 4.07 69.22 ± 4.13
FSSC 93.13 ± 0.75 54.48 ± 5.59 48.39 ± 5.68 52.25 ± 5.52 48.44 ± 5.62
FussCyier 93.39 ± 0.72 55.52 ± 5.74 50.39 ± 5.58 53.84 ± 4.93 50.42 ± 5.43
HDFSSC 93.94 ± 0.72 59.18 ± 5.98 54.49 ± 5.51 58.01 ± 4.74 54.58 ± 5.41
FPFSCC 93.17 ± 0.75 53.71 ± 5.96 48.71 ± 5.7 52.09 ± 5.15 48.81 ± 5.66
FPFSNHC 93.15 ± 0.8 53.32 ± 6.05 48.64 ± 6 53 ± 5.49 48.64 ± 5.99
FPFS-EC 97.01 ± 0.56 80.44 ± 4.62 77.59 ± 4.18 77.63 ± 4.17 77.56 ± 4.2
FPFS-AC 97.33 ± 0.52 82.59 ± 3.83 80.09 ± 3.78 79.78 ± 3.61 79.94 ± 3.87
FPFS-CMC 96.95 ± 0.59 79.7 ± 4.51 77.27 ± 4.26 77.64 ± 4.35 77.14 ± 4.4
FPFS-3NN(P) 96.85 ± 0.59 80.47 ± 4.13 76.42 ± 4.4 76.22 ± 4.21 76.39 ± 4.44
FPFS-3NN(S) 96.74 ± 0.6 79.61 ± 3.79 75.55 ± 4.43 75.26 ± 4.24 75.56 ± 4.5
FPFS-3NN(K) 96.75 ± 0.62 79.67 ± 3.96 75.62 ± 4.57 75.31 ± 4.37 75.61 ± 4.65
IFPIFSC 97.89 ± 0.46 86.55 ± 3.16 84.21 ± 3.53 83.65 ± 3.59 84.17 ± 3.43

Dermatology

Fuzzy 3NN 91.22 ± 1.2 77.95 ± 3.66 71.9 ± 4.71 72.01 ± 4.45 73.66 ± 3.6
FSSC 99.15 ± 0.55 97.36 ± 1.75 97.14 ± 1.88 97.13 ± 1.86 97.46 ± 1.65
FussCyier 98.62 ± 0.81 95.82 ± 2.32 96.27 ± 2.11 95.78 ± 2.41 95.85 ± 2.44
HDFSSC 98.87 ± 0.72 96.51 ± 2.2 96.5 ± 2.16 96.31 ± 2.28 96.61 ± 2.16
FPFSCC 93.85 ± 1.33 83.13 ± 3.86 82.69 ± 3.73 81.68 ± 3.88 81.56 ± 3.99
FPFSNHC 97.75 ± 0.96 93.65 ± 2.52 93.77 ± 2.72 93.08 ± 2.95 93.25 ± 2.88
FPFS-EC 98.03 ± 0.77 94.21 ± 2.19 93.98 ± 2.4 93.69 ± 2.41 94.1 ± 2.31
FPFS-AC 98.83 ± 0.78 96.53 ± 2.33 96.23 ± 2.5 96.23 ± 2.5 96.5 ± 2.33
FPFS-CMC 97.66 ± 0.81 92.75 ± 2.6 92.65 ± 2.74 92.42 ± 2.66 92.98 ± 2.43
FPFS-3NN(P) 97.4 ± 0.88 92.31 ± 2.57 91.98 ± 2.76 91.76 ± 2.8 92.21 ± 2.65
FPFS-3NN(S) 98.31 ± 0.72 94.78 ± 2.3 94.65 ± 2.37 94.46 ± 2.38 94.94 ± 2.17
FPFS-3NN(K) 98.24 ± 0.76 94.66 ± 2.3 94.5 ± 2.38 94.28 ± 2.44 94.72 ± 2.27
IFPIFSC 99.01 ± 0.72 96.93 ± 2.37 96.72 ± 2.3 96.67 ± 2.41 97.02 ± 2.15
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Table 2. Cont.

Datasets Classifiers Acc ± SD Pre ± SD Rec ± SD MacF ± SD MicF ± SD

Breast
Cancer

Wisconsin

Fuzzy 3NN 92.02 ± 2.1 91.97 ± 2.24 90.96 ± 2.39 91.36 ± 2.29 92.02 ± 2.1
FSSC 93.64 ± 2.33 93.4 ± 2.49 93.03 ± 2.64 93.16 ± 2.52 93.64 ± 2.33
FussCyier 93.53 ± 2.3 94.3 ± 2.18 91.98 ± 2.88 92.88 ± 2.58 93.53 ± 2.3
HDFSSC 92.85 ± 2.27 93 ± 2.29 91.69 ± 2.79 92.22 ± 2.52 92.85 ± 2.27
FPFSCC 93.34 ± 1.9 93.09 ± 2.09 92.73 ± 2.12 92.85 ± 2.04 93.34 ± 1.9
FPFSNHC 93.81 ± 2.25 94.69 ± 2.11 92.22 ± 2.79 93.19 ± 2.52 93.81 ± 2.25
FPFS-EC 95.27 ± 1.65 95.09 ± 1.94 94.88 ± 1.68 94.94 ± 1.75 95.27 ± 1.65
FPFS-AC 95.08 ± 1.58 94.85 ± 1.79 94.76 ± 1.74 94.74 ± 1.68 95.08 ± 1.58
FPFS-CMC 95.03 ± 1.74 94.84 ± 1.9 94.62 ± 1.94 94.67 ± 1.86 95.03 ± 1.74
FPFS-3NN(P) 96.63 ± 1.43 96.75 ± 1.6 96.07 ± 1.59 96.37 ± 1.54 96.63 ± 1.43
FPFS-3NN(S) 96.54 ± 1.52 96.68 ± 1.69 95.96 ± 1.68 96.27 ± 1.63 96.54 ± 1.52
FPFS-3NN(K) 96.54 ± 1.52 96.68 ± 1.69 95.96 ± 1.68 96.27 ± 1.63 96.54 ± 1.52
IFPIFSC 95.69 ± 1.43 95.57 ± 1.59 95.28 ± 1.6 95.38 ± 1.54 95.69 ± 1.43

HCV
Data

Fuzzy 3NN 97.17 ± 0.53 54.58 ± 11.24 48.12 ± 12.36 67.13 ± 10.33 92.94 ± 1.31
FSSC 97.29 ± 0.62 64.38 ± 8.68 63.6 ± 11.47 69.32 ± 7.91 93.23 ± 1.55
FussCyier 97.32 ± 0.61 65.17 ± 9.47 62.55 ± 11.3 69.64 ± 8.84 93.31 ± 1.52
HDFSSC 96.73 ± 0.96 62.71 ± 8.67 64.74 ± 11.14 67.65 ± 6.87 91.82 ± 2.41
FPFSCC 95.95 ± 0.99 51.7 ± 13.03 50.43 ± 11.24 65.59 ± 10.15 89.88 ± 2.48
FPFSNHC 97.15 ± 0.64 63.69 ± 12.44 54.98 ± 11 68.58 ± 6.68 92.87 ± 1.61
FPFS-EC 97.11 ± 0.57 60.45 ± 14.64 47.08 ± 10 82.26 ± 10.98 92.78 ± 1.42
FPFS-AC 97.97 ± 0.58 73.93 ± 14.51 55.96 ± 10.7 76.71 ± 10.02 94.92 ± 1.45
FPFS-CMC 97.04 ± 0.55 63.74 ± 13.69 48.65 ± 10.22 76.46 ± 10.7 92.6 ± 1.38
FPFS-3NN(P) 97 ± 0.33 56.97 ± 9.95 38.03 ± 5.65 84.43 ± 9.4 92.51 ± 0.84
FPFS-3NN(S) 97.3 ± 0.41 67.66 ± 12.12 43.88 ± 7.76 80.49 ± 9.48 93.26 ± 1.04
FPFS-3NN(K) 97.3 ± 0.41 67.22 ± 11.88 43.88 ± 7.76 80.4 ± 9.54 93.26 ± 1.04
IFPIFSC 97.92 ± 0.52 70.56 ± 10.8 57.48 ± 12.03 74.69 ± 7.55 94.81 ± 1.29

Parkinson’s
Disease

Classification

Fuzzy 3NN 71.27 ± 3.19 61.36 ± 4.28 60.41 ± 3.76 60.68 ± 3.93 71.27 ± 3.19
FSSC 38.3 ± 7 47.68 ± 4.78 48 ± 4.87 37.76 ± 6.63 38.3 ± 7
FussCyier 62.3 ± 16.08 47.44 ± 6.03 49.01 ± 2.09 44.4 ± 11.95 62.3 ± 16.08
HDFSSC 62.52 ± 15.96 47.31 ± 6.73 49.01 ± 2.22 45.17 ± 13.02 62.52 ± 15.96
FPFSCC 74.56 ± 3.9 69.04 ± 4.1 72.65 ± 4.7 69.79 ± 4.35 74.56 ± 3.9
FPFSNHC 73.79 ± 2.84 67.85 ± 3.19 70.99 ± 4.09 68.52 ± 3.36 73.79 ± 2.84
FPFS-EC 94.1 ± 2.37 92.32 ± 3.28 92.24 ± 3.28 92.22 ± 3.12 94.1 ± 2.37
FPFS-AC 93.63 ± 1.88 91.87 ± 2.76 91.38 ± 2.66 91.55 ± 2.46 93.63 ± 1.88
FPFS-CMC 90.9 ± 2.32 88.37 ± 3.44 87.72 ± 2.89 87.94 ± 2.94 90.9 ± 2.32
FPFS-3NN(P) 92.39 ± 1.93 91.11 ± 2.59 88.57 ± 3.4 89.62 ± 2.79 92.39 ± 1.93
FPFS-3NN(S) 91.67 ± 1.88 89.89 ± 2.54 87.84 ± 3.3 88.69 ± 2.73 91.67 ± 1.88
FPFS-3NN(K) 91.67 ± 1.85 89.96 ± 2.44 87.74 ± 3.36 88.66 ± 2.73 91.67 ± 1.85
IFPIFSC 94.95 ± 1.56 93.76 ± 2.18 92.96 ± 2.56 93.27 ± 2.12 94.95 ± 1.56

Mice
Protein

Expression

Fuzzy 3NN 99.89 ± 0.12 99.58 ± 0.43 99.56 ± 0.47 99.56 ± 0.46 99.55 ± 0.47
FSSC 98.67 ± 0.48 95.01 ± 1.8 94.9 ± 1.86 94.83 ± 1.88 94.69 ± 1.92
FussCyier 98.75 ± 0.48 95.33 ± 1.78 95.22 ± 1.85 95.14 ± 1.88 94.99 ± 1.9
HDFSSC 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
FPFSCC 99.98 ± 0.05 99.91 ± 0.18 99.91 ± 0.19 99.91 ± 0.19 99.91 ± 0.19
FPFSNHC 99.98 ± 0.05 99.93 ± 0.16 99.93 ± 0.16 99.92 ± 0.16 99.92 ± 0.18
FPFS-EC 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
FPFS-AC 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
FPFS-CMC 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
FPFS-3NN(P) 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
FPFS-3NN(S) 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
FPFS-3NN(K) 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
IFPIFSC 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
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Table 2. Cont.

Datasets Classifiers Acc ± SD Pre ± SD Rec ± SD MacF ± SD MicF ± SD

Semeion
Handwritten

Digit

Fuzzy 3NN 97.23 ± 0.71 97.67 ± 1.47 86.67 ± 3.56 91.16 ± 2.66 97.23 ± 0.71
FSSC 44.16 ± 2.96 57.54 ± 0.36 68.98 ± 1.66 40.62 ± 2.23 44.16 ± 2.96
FussCyier 76.2 ± 2.65 64.06 ± 1.33 84.36 ± 2.19 64.53 ± 2.41 76.2 ± 2.65
HDFSSC 89.45 ± 1.75 73.53 ± 2.52 88.22 ± 2.91 78 ± 2.7 89.45 ± 1.75
FPFSCC 66.56 ± 7.62 60.04 ± 2.83 75.92 ± 4.98 56.13 ± 6.03 66.56 ± 7.62
FPFSNHC 80.18 ± 2.34 65.7 ± 1.66 85.25 ± 2.8 67.85 ± 2.51 80.18 ± 2.34
FPFS-EC 96.65 ± 0.9 92.33 ± 2.98 88.4 ± 3.78 90.11 ± 2.86 96.65 ± 0.9
FPFS-AC 95.2 ± 1.37 88.24 ± 4.48 83.75 ± 4.72 85.68 ± 4.24 95.2 ± 1.37
FPFS-CMC 94.46 ± 1.15 85.4 ± 3.78 82.85 ± 3.92 83.93 ± 3.42 94.46 ± 1.15
FPFS-3NN(P) 96.62 ± 0.77 94.26 ± 2.45 86.1 ± 3.52 89.53 ± 2.62 96.62 ± 0.77
FPFS-3NN(S) 96.62 ± 0.77 94.26 ± 2.45 86.1 ± 3.52 89.53 ± 2.62 96.62 ± 0.77
FPFS-3NN(K) 96.62 ± 0.77 94.26 ± 2.45 86.1 ± 3.52 89.53 ± 2.62 96.62 ± 0.77
IFPIFSC 98.14 ± 0.75 97.32 ± 1.85 92.16 ± 3.47 94.42 ± 2.43 98.14 ± 0.75

Car
Evaluation

Fuzzy 3NN 94.43 ± 0.71 79.11 ± 2.84 62.39 ± 4.61 66.95 ± 4.89 88.86 ± 1.41
FSSC 72.2 ± 1.04 38.09 ± 1.48 57.24 ± 3.43 34.39 ± 1.83 44.39 ± 2.08
FussCyier 80.38 ± 1.08 44.49 ± 1.83 65.07 ± 3.52 45.43 ± 2.22 60.76 ± 2.16
HDFSSC 86.66 ± 1.05 55.65 ± 2.45 76.71 ± 4.15 60.53 ± 3.05 73.32 ± 2.09
FPFSCC 84.99 ± 1.43 58.65 ± 4.56 75.17 ± 4.82 62.41 ± 5.01 69.98 ± 2.87
FPFSNHC 79.61 ± 1.06 42.66 ± 2.21 63.24 ± 3.35 43.42 ± 2.78 59.21 ± 2.11
FPFS-EC 97.46 ± 0.54 90.01 ± 2.56 89.04 ± 3.82 89.25 ± 2.96 94.91 ± 1.07
FPFS-AC 97.79 ± 0.56 90.51 ± 3.23 92.62 ± 2.64 91.24 ± 2.86 95.57 ± 1.13
FPFS-CMC 97.42 ± 0.62 89.93 ± 3.01 88.59 ± 3.57 88.88 ± 2.95 94.85 ± 1.24
FPFS-3NN(P) 97.7 ± 0.69 89.07 ± 3.8 90.77 ± 3.76 89.62 ± 3.7 95.41 ± 1.38
FPFS-3NN(S) 97.77 ± 0.64 89.4 ± 3.55 91.12 ± 3.47 89.99 ± 3.39 95.54 ± 1.28
FPFS-3NN(K) 97.75 ± 0.65 89.39 ± 3.61 91.03 ± 3.45 89.93 ± 3.42 95.49 ± 1.29
IFPIFSC 98.03 ± 0.42 91.27 ± 3.03 90.41 ± 3.19 90.59 ± 2.64 96.06 ± 0.85

Wireless
Indoor

Localization

Fuzzy 3NN 99.13 ± 0.28 98.29 ± 0.55 98.26 ± 0.56 98.26 ± 0.56 98.26 ± 0.56
FSSC 97.5 ± 0.42 95.42 ± 0.71 95 ± 0.83 94.99 ± 0.84 95 ± 0.83
FussCyier 97.62 ± 0.4 95.64 ± 0.68 95.24 ± 0.8 95.24 ± 0.8 95.24 ± 0.8
HDFSSC 96.73 ± 0.57 93.9 ± 1.04 93.46 ± 1.15 93.46 ± 1.15 93.46 ± 1.15
FPFSCC 91.39 ± 0.88 83.12 ± 1.73 82.79 ± 1.76 82.61 ± 1.78 82.79 ± 1.76
FPFSNHC 94.64 ± 0.75 89.79 ± 1.36 89.27 ± 1.5 89.33 ± 1.48 89.27 ± 1.5
FPFS-EC 94.86 ± 0.79 89.83 ± 1.57 89.73 ± 1.58 89.73 ± 1.58 89.73 ± 1.58
FPFS-AC 95.63 ± 0.59 91.4 ± 1.18 91.26 ± 1.19 91.26 ± 1.19 91.26 ± 1.19
FPFS-CMC 94.54 ± 0.69 89.22 ± 1.37 89.09 ± 1.39 89.1 ± 1.38 89.09 ± 1.39
FPFS-3NN(P) 95.27 ± 0.73 90.71 ± 1.43 90.54 ± 1.46 90.57 ± 1.45 90.54 ± 1.46
FPFS-3NN(S) 95.05 ± 0.73 90.28 ± 1.41 90.11 ± 1.46 90.14 ± 1.44 90.11 ± 1.46
FPFS-3NN(K) 96.32 ± 0.67 92.8 ± 1.29 92.64 ± 1.33 92.67 ± 1.32 92.64 ± 1.33
IFPIFSC 99.15 ± 0.24 98.32 ± 0.47 98.3 ± 0.48 98.3 ± 0.48 98.3 ± 0.48

Mean
Performance

Results

Fuzzy 3NN 89.1 ± 2.42 75.91 ± 4.92 72.31 ± 5.51 76.27 ± 5.06 78.7 ± 3.99
FSSC 82.93 ± 2.53 73.21 ± 4.9 73.38 ± 4.66 72.95 ± 4.25 73.58 ± 4.08
FussCyier 86.01 ± 2.9 73.98 ± 4.86 74.51 ± 4.5 74.96 ± 4.49 77.12 ± 4.48
HDFSSC 87.43 ± 2.91 75.51 ± 4.69 76.26 ± 4.69 77.25 ± 4.55 79.42 ± 4.44
FPFSCC 86.25 ± 3.08 72.2 ± 5.91 73.07 ± 5.94 73.55 ± 5.58 75.43 ± 4.9
FPFSNHC 87.2 ± 2.49 75.07 ± 5.28 75.64 ± 5.21 75.39 ± 4.4 77.92 ± 4.13
FPFS-EC 93.17 ± 2.1 84.82 ± 5.04 82.56 ± 4.91 85.91 ± 4.43 86.92 ± 3.5
FPFS-AC 93.2 ± 2.1 85.81 ± 4.87 83.25 ± 4.85 85.63 ± 4.35 87.36 ± 3.48
FPFS-CMC 92.68 ± 2.1 84.03 ± 4.97 81.73 ± 4.9 84.63 ± 4.4 86.24 ± 3.55
FPFS-3NN(P) 93.04 ± 1.95 84.75 ± 4.47 81.39 ± 4.46 85.38 ± 4.28 86.67 ± 3.31
FPFS-3NN(S) 92.99 ± 1.95 85.45 ± 4.41 81.9 ± 4.53 85.38 ± 4.19 86.84 ± 3.26
FPFS-3NN(K) 93.03 ± 1.96 85.51 ± 4.43 81.98 ± 4.58 85.38 ± 4.21 86.89 ± 3.3
IFPIFSC 94.45 ± 1.83 88.21 ± 4.21 86.11 ± 4.31 87.98 ± 3.68 89.62 ± 3.03

Acc, Pre, Rec, MacF, and MicF results and their standard deviations (SD) are presented in percentage. The best
performance results are shown in bold.
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Table 2 manifests that IFPIFSC exactly classifies the dataset “Mice Protein Expression”
just as HDFSSC, FPFS-EC, FPFS-AC, FPFS-CMC, FPFS-3NN(P), FPFS-3NN(S), and FPFS-
3NN(K) do. Moreover, in compliance with all performance metrics, the performance
results of IFPIFSC for “Ionosphere”, “Zoo”, “Car Evaluation”, “Semeion Handwritten
Digit”, “Parkinson’s Disease Classification”, “Seeds”, “Parkinsons[sic]”, “Breast Cancer
Wisconsin”, “Dermatology”, “Wine”, and “Wireless Indoor Localization” are over 89%,
89%, 90%, 92%, 92%, 93%, 93%, 95%, 96%, 97%, and 98%, respectively. In addition,
IFPIFSC produces the best results in all performance metrics in “Breast Tissue”, “Wine”,
“Sonar” (except for Pre value), “Seeds”, “Leaf”, “Ionosphere” (except for Pre value), “Libras
Movement”, “Parkinson’s Disease Classification”, “Semeion Handwritten Digit” (except
for Pre value), “Car Evaluation” (except for Rec and MacF values), and “Wireless Indoor
Localization”. Although IFPIFSC does not produce the best results in all performance
metrics in “Parkinsons[sic]”, “Parkinson Acoustic”, and “HCV Data”, it generates the
closest results to the best ones for these datasets, except for the Pre value in “Parkinsons[sic]”
and the Rec and MacF values in “HCV Data”. Consequently, the mean performance results
in Table 2 indicate that IFPIFSC is a more efficient classifier than other classifiers on the
considered datasets.

IFPIFSC achieves exceptional classification performance due to its utilizing HPS, EPS,
MPS, HsPS, JPS, and CPS over ifpifs-matrices space and Pearson correlation coefficient-
based feature weight. Moreover, Table 3 consists of ranking numbers of the best results,
while Table 4 includes a pairwise comparison of the ranking results.

Table 3. Ranking numbers of the best results for all fuzzy-based classifiers.

Classifiers Acc Pre Rec MacF MicF Total Rank

Fuzzy 3NN 0/20 1/20 0/20 0/20 0/20 1/100
FSSC 1/20 1/20 1/20 1/20 1/20 5/100
FussCyier 0/20 0/20 1/20 1/20 0/20 2/100
HDFSSC 2/20 2/20 3/20 2/20 2/20 11/100
FPFSCC 0/20 0/20 0/20 0/20 0/20 0/100
FPFSNHC 0/20 0/20 0/20 0/20 0/20 0/100
FPFS-EC 3/20 4/20 2/20 3/20 3/20 15/100
FPFS-AC 3/20 3/20 3/20 3/20 3/20 15/100
FPFS-CMC 1/20 1/20 1/20 1/20 1/20 5/100
FPFS-3NN(P) 2/20 3/20 2/20 3/20 2/20 12/100
FPFS-3NN(S) 1/20 2/20 1/20 1/20 1/20 6/100
FPFS-3NN(K) 2/20 1/20 1/20 1/20 2/20 7/100
IFPIFSC 12/20 9/20 12/20 11/20 12/20 56/100

Table 4. Ranking numbers of the best results of IFPIFSC over the others.

Classifiers Acc Pre Rec MacF MicF

IFPIFSC versus Fuzzy 3NN 20 19 20 20 20
IFPIFSC versus FSSC 19 19 17 18 19
IFPIFSC versus FussCyier 19 20 18 19 20
IFPIFSC versus HDFSSC 18 19 17 18 19
IFPIFSC versus FPFSCC 20 20 20 20 20
IFPIFSC versus FPFSNHC 20 20 20 20 20
IFPIFSC versus FPFS-EC 18 16 19 16 17
IFPIFSC versus FPFS-AC 18 17 18 17 18
IFPIFSC versus FPFS-CMC 19 17 19 19 19
IFPIFSC versus FPFS-3NN(P) 19 17 18 18 19
IFPIFSC versus FPFS-3NN(S) 18 18 18 18 18
IFPIFSC versus FPFS-3NN(K) 18 18 18 18 18

Afterward, Table 5 provides the average Acc, Pre, Rec, MacF, and MicF results of IF-
PIFSC, SVM, DT, BT, RF, and AdaBoost for the datasets. Table 5 shows that IFPIFSC exactly
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classifies the dataset “Mice Protein Expression” just as SVM, DT, and RF do. Furthermore,
according to all performance metrics, the performance results of IFPIFSC for “Ionosphere”,
“Zoo”, “Car Evaluation”, “Semeion Handwritten Digit”, “Parkinson’s Disease Classifica-
tion”, “Parkinsons[sic]”, “Seeds”, “Breast Cancer Wisconsin”, “Dermatology”, “Wine”,
and “Wireless Indoor Localization” are over 89%, 89%, 90%, 92%, 92%, 92%, 93%, 95%,
96%, 96%, and 98%, respectively. In addition, IFPIFSC produces the best results in all
performance metrics in “Breast Tissue”, “Teaching Assistant Evaluation” (except for Pre
value), “Parkinsons[sic]”, “Sonar”, “Seeds”, “Parkinson Acoustic”, “Libras Movement”,
“Parkinson’s Disease Classification”, and “Wireless Indoor Localization”. Moreover, though
IFPIFSC does not generate the best results in all performance metrics in “Wine”, “Leaf”, and
“Dermatology”, it produces the closest results to the best ones for these datasets. As a result,
the mean performance results in Table 5 demonstrate that IFPIFSC is a more efficacious
classifier than other classifiers on the considered datasets. Moreover, Table 6 consists of
ranking numbers of the best results, while Table 7 includes a pairwise comparison of the
ranking results.

Table 5. Simulation results of the non-fuzzy-based classifiers.

Datasets Classifiers Acc ± SD Pre ± SD Rec ± SD MacF ± SD MicF ± SD

Zoo

SVM 98.51 ± 1.14 92.64 ± 6.1 89.79 ± 7.5 94.88 ± 4.55 94.84 ± 3.99
DT 96.97 ± 1.19 83.19 ± 8.82 76.02 ± 9.61 87.71 ± 4.33 89.6 ± 4.18
BT 82.45 ± 1.28 40.57 ± 1.15 14.76 ± 0.96 57.71 ± 1.15 40.57 ± 1.15
RF 98.9 ± 1.02 94.96 ± 6.42 90.36 ± 9.41 96.58 ± 4 96.24 ± 3.54
AdaBoost 82.45 ± 1.28 40.57 ± 1.15 14.76 ± 0.96 57.71 ± 1.15 40.57 ± 1.15
IFPIFSC 98.67 ± 1.03 93.29 ± 6.43 89.38 ± 8.15 95.44 ± 4.57 95.44 ± 3.59

Breast
Tissue

SVM 89.03 ± 3.56 69.42 ± 11.53 66.12 ± 11.07 68.75 ± 9.86 67.1 ± 10.68
DT 88.8 ± 2.98 69.31 ± 9.82 65.28 ± 9.38 69.12 ± 8.28 66.41 ± 8.94
BT 89.75 ± 2.92 71.85 ± 9.62 68.49 ± 8.9 70.29 ± 7.01 69.26 ± 8.75
RF 89.81 ± 3.16 70.99 ± 11.25 68.13 ± 9.58 72.02 ± 7.23 69.42 ± 9.48
AdaBoost 89.75 ± 2.92 71.85 ± 9.62 68.49 ± 8.9 70.29 ± 7.01 69.26 ± 8.75
IFPIFSC 90.97 ± 2.22 74.85 ± 8.12 71.96 ± 7.36 73.15 ± 6.85 72.91 ± 6.67

Teaching
Assistant

Evaluation

SVM 68.03 ± 5.17 53.94 ± 8.34 52.2 ± 7.79 51.88 ± 7.59 52.05 ± 7.76
DT 69.76 ± 6.08 55.26 ± 9.74 54.57 ± 9.12 53.91 ± 9.36 54.65 ± 9.12
BT 70.5 ± 5.73 56.88 ± 9.61 55.73 ± 8.63 55.36 ± 8.75 55.75 ± 8.59
RF 74.56 ± 4.68 62.81 ± 7.87 61.73 ± 7.08 61.16 ± 7.32 61.85 ± 7.01
AdaBoost 70.5 ± 5.73 56.88 ± 9.61 55.73 ± 8.63 55.36 ± 8.75 55.75 ± 8.59
IFPIFSC 74.62 ± 5 62.75 ± 8.12 61.79 ± 7.6 61.34 ± 7.85 61.94 ± 7.5

Wine

SVM 96.78 ± 2.27 95.45 ± 3.06 95.43 ± 3.12 95.19 ± 3.33 95.16 ± 3.4
DT 93.69 ± 3.48 91.08 ± 5.21 90.91 ± 4.92 90.59 ± 5.27 90.54 ± 5.22
BT 61.17 ± 6.34 41.79 ± 9.64 35.54 ± 10.93 58.21 ± 6.24 41.76 ± 9.51
RF 98.68 ± 1.44 98.02 ± 2.18 98.29 ± 1.85 98.06 ± 2.11 98.03 ± 2.16
AdaBoost 61.17 ± 6.34 41.79 ± 9.64 35.54 ± 10.93 58.21 ± 6.24 41.76 ± 9.51
IFPIFSC 97.98 ± 2.05 97.37 ± 2.39 97.45 ± 2.62 97.2 ± 2.88 96.97 ± 3.08

Parkinsons[sic]

SVM 86.67 ± 3.06 87.29 ± 6.23 75.98 ± 5.42 79.04 ± 5.42 86.67 ± 3.06
DT 86.67 ± 5.38 82.75 ± 6.98 83.58 ± 6.64 82.57 ± 6.51 86.67 ± 5.38
BT 89.23 ± 5.56 86.83 ± 7.62 84.09 ± 8.17 84.87 ± 7.85 89.23 ± 5.56
RF 90.67 ± 3.76 90.23 ± 5.54 84.64 ± 6.44 86.45 ± 5.57 90.67 ± 3.76
AdaBoost 88.87 ± 6.85 87.64 ± 8.09 81.6 ± 13.94 87.43 ± 5.42 88.87 ± 6.85
IFPIFSC 94.67 ± 3.97 92.72 ± 5.29 93.76 ± 5.59 92.95 ± 5.13 94.67 ± 3.97

Sonar

SVM 76.2 ± 6.51 77.01 ± 6.77 75.69 ± 6.54 75.68 ± 6.7 76.2 ± 6.51
DT 71.87 ± 6.85 72.33 ± 6.94 71.67 ± 6.83 71.51 ± 6.92 71.87 ± 6.85
BT 85.04 ± 5.91 85.65 ± 6 84.75 ± 5.94 84.84 ± 5.97 85.04 ± 5.91
RF 83.7 ± 6 84.73 ± 5.82 83.34 ± 6.1 83.37 ± 6.2 83.7 ± 6
AdaBoost 84.37 ± 5.16 85.05 ± 5.18 83.99 ± 5.22 84.12 ± 5.26 84.37 ± 5.16
IFPIFSC 87.45 ± 5.13 88.26 ± 5.01 87.04 ± 5.23 87.21 ± 5.27 87.45 ± 5.13



Axioms 2023, 12, 463 22 of 29

Table 5. Cont.

Datasets Classifiers Acc ± SD Pre ± SD Rec ± SD MacF ± SD MicF ± SD

Seeds

SVM 94.44 ± 2.41 92.12 ± 3.55 91.67 ± 3.61 91.58 ± 3.67 91.67 ± 3.61
DT 94.29 ± 2.57 92.03 ± 3.69 91.43 ± 3.85 91.38 ± 3.91 91.43 ± 3.85
BT 88.7 ± 14.81 83.41 ± 22.36 83.05 ± 22.21 85.64 ± 16.15 83.05 ± 22.21
RF 95.27 ± 2.28 93.39 ± 3.25 92.9 ± 3.42 92.87 ± 3.44 92.9 ± 3.42
AdaBoost 88.7 ± 14.81 83.41 ± 22.36 83.05 ± 22.21 85.64 ± 16.15 83.05 ± 22.21
IFPIFSC 95.68 ± 2.44 94.02 ± 3.39 93.52 ± 3.66 93.48 ± 3.71 93.52 ± 3.66

Parkinson
Acoustic

SVM 80.17 ± 6.12 80.85 ± 5.98 80.17 ± 6.12 80.03 ± 6.23 80.17 ± 6.12
DT 72.54 ± 5.95 73.1 ± 6.17 72.54 ± 5.95 72.38 ± 5.98 72.54 ± 5.95
BT 80.29 ± 5.46 81.03 ± 5.42 80.29 ± 5.46 80.16 ± 5.52 80.29 ± 5.46
RF 80.46 ± 5.39 81.13 ± 5.48 80.46 ± 5.39 80.35 ± 5.43 80.46 ± 5.39
AdaBoost 81.54 ± 5.76 82.21 ± 5.72 81.54 ± 5.76 81.43 ± 5.81 81.54 ± 5.76
IFPIFSC 81.88 ± 4.67 82.32 ± 4.62 81.88 ± 4.67 81.81 ± 4.72 81.88 ± 4.67

Ecoli

SVM 93.91 ± 0.78 78.32 ± 9.3 51.95 ± 9.5 75.99 ± 6.39 79.29 ± 2.95
DT 94.43 ± 1.16 71.31 ± 8.92 57.72 ± 7.98 75.75 ± 5.77 80.69 ± 4.34
BT 95.28 ± 1.09 78.54 ± 9.7 67.64 ± 9.94 80.4 ± 5.47 83.49 ± 4.16
RF 95.8 ± 0.97 84.53 ± 5.55 71.05 ± 9.06 83.45 ± 4.34 85.69 ± 3.53
AdaBoost 95.28 ± 1.09 78.54 ± 9.7 67.64 ± 9.94 80.4 ± 5.47 83.49 ± 4.16
IFPIFSC 94.85 ± 1.01 77.57 ± 7.86 71.34 ± 6.66 79.43 ± 4.82 81.82 ± 3.81

Leaf

SVM 96.96 ± 0.29 62.81 ± 5.15 53.46 ± 4.08 68.93 ± 4.32 54.47 ± 4.35
DT 97.44 ± 0.36 66.56 ± 6.58 61.31 ± 5.54 70.92 ± 3.94 61.65 ± 5.4
BT 97.84 ± 0.38 73.3 ± 6.15 67.39 ± 5.9 74.64 ± 4.25 67.62 ± 5.63
RF 98.4 ± 0.35 80.12 ± 5.24 75.43 ± 5.25 80.56 ± 3.94 75.94 ± 5.25
AdaBoost 97.84 ± 0.38 73.3 ± 6.15 67.39 ± 5.9 74.64 ± 4.25 67.62 ± 5.63
IFPIFSC 98.11 ± 0.31 76.44 ± 4.84 71.4 ± 4.7 75.83 ± 3.95 71.59 ± 4.69

Ionosphere

SVM 87.18 ± 2.85 89.02 ± 2.87 83.44 ± 3.83 85.08 ± 3.61 87.18 ± 2.85
DT 88.58 ± 3.32 87.84 ± 3.7 87.75 ± 3.69 87.61 ± 3.6 88.58 ± 3.32
BT 93.93 ± 2.7 94.57 ± 2.64 92.32 ± 3.41 93.21 ± 3.1 93.93 ± 2.7
RF 93.3 ± 2.7 93.55 ± 2.9 91.98 ± 3.24 92.58 ± 3.03 93.3 ± 2.7
AdaBoost 93.25 ± 2.39 94.01 ± 2.43 91.43 ± 3.03 92.43 ± 2.75 93.25 ± 2.39
IFPIFSC 91.43 ± 2.56 91.6 ± 2.69 89.87 ± 3.4 90.47 ± 2.95 91.43 ± 2.56

Libras
Movement

SVM 95.86 ± 0.63 73.58 ± 4.58 68.99 ± 4.61 68.76 ± 4.83 68.97 ± 4.73
DT 94.92 ± 0.88 65.79 ± 6.93 61.87 ± 6.68 63.13 ± 6.09 61.89 ± 6.62
BT 96.09 ± 0.63 74.11 ± 4.32 70.63 ± 4.8 70.94 ± 5.08 70.64 ± 4.72
RF 97.45 ± 0.57 83.09 ± 3.92 80.95 ± 4.21 80.78 ± 4.45 80.86 ± 4.29
AdaBoost 96.09 ± 0.63 74.11 ± 4.32 70.63 ± 4.8 70.94 ± 5.08 70.64 ± 4.72
IFPIFSC 97.93 ± 0.5 86.88 ± 3.56 84.55 ± 3.78 83.9 ± 4.08 84.5 ± 3.77

Dermatology

SVM 98.89 ± 0.55 96.57 ± 1.78 96.33 ± 1.86 96.25 ± 1.89 96.67 ± 1.66
DT 98.12 ± 0.64 94.09 ± 2.55 93.37 ± 3.04 93.23 ± 2.67 94.35 ± 1.91
BT 98.87 ± 0.58 96.08 ± 2.36 95.6 ± 2.94 95.53 ± 2.67 96.61 ± 1.75
RF 99.25 ± 0.57 97.79 ± 1.8 97.45 ± 1.94 97.51 ± 1.9 97.76 ± 1.71
AdaBoost 98.87 ± 0.58 96.08 ± 2.36 95.6 ± 2.94 95.53 ± 2.67 96.61 ± 1.75
IFPIFSC 99.03 ± 0.58 96.83 ± 2.01 96.79 ± 1.84 96.67 ± 1.93 97.08 ± 1.75

Breast
Cancer

Wisconsin

SVM 95.29 ± 2.07 95.31 ± 2.36 94.67 ± 2.17 94.93 ± 2.21 95.29 ± 2.07
DT 93.03 ± 2.37 92.56 ± 2.61 92.67 ± 2.5 92.56 ± 2.52 93.03 ± 2.37
BT 96.64 ± 1.8 96.92 ± 1.8 95.96 ± 2.14 96.37 ± 1.95 96.64 ± 1.8
RF 95.9 ± 1.76 95.88 ± 1.94 95.4 ± 1.94 95.6 ± 1.89 95.9 ± 1.76
AdaBoost 96.92 ± 1.65 97.12 ± 1.7 96.34 ± 1.92 96.68 ± 1.79 96.92 ± 1.65
IFPIFSC 95.57 ± 1.59 95.4 ± 1.82 95.18 ± 1.66 95.26 ± 1.69 95.57 ± 1.59

HCV Data

SVM 97.89 ± 0.7 70.03 ± 13.49 62.44 ± 13.79 72.6 ± 7.52 94.72 ± 1.75
DT 97.18 ± 0.71 63.1 ± 11.34 53.11 ± 12.66 70.15 ± 8.79 92.95 ± 1.79
BT 97.9 ± 0.52 70.93 ± 12.7 56.71 ± 11.99 75.35 ± 8.03 94.75 ± 1.29
RF 97.76 ± 0.63 68.44 ± 14.52 54.28 ± 13.14 76.44 ± 9.19 94.41 ± 1.57
AdaBoost 97.9 ± 0.52 70.93 ± 12.7 56.71 ± 11.99 75.35 ± 8.03 94.75 ± 1.29
IFPIFSC 97.92 ± 0.48 70.4 ± 10.95 57.58 ± 11.82 72.78 ± 7.15 94.8 ± 1.19
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Table 5. Cont.

Datasets Classifiers Acc ± SD Pre ± SD Rec ± SD MacF ± SD MicF ± SD

Parkinson’s
Disease

Classification

SVM 74.6 ± 0.29 74.6 ± 0.29 50 ± 0 85.45 ± 0.19 74.6 ± 0.29
DT 80.54 ± 3.35 74.46 ± 4.45 74.34 ± 4.9 74.25 ± 4.58 80.54 ± 3.35
BT 91.28 ± 2.03 91.87 ± 2.78 84.75 ± 3.55 87.44 ± 3.09 91.28 ± 2.03
RF 87.17 ± 2.22 87.78 ± 3.73 77.34 ± 3.92 80.53 ± 3.77 87.17 ± 2.22
AdaBoost 90.29 ± 2.37 91 ± 3.08 82.89 ± 4.34 85.77 ± 3.84 90.29 ± 2.37
IFPIFSC 94.83 ± 1.85 93.6 ± 2.27 92.69 ± 3.05 93.08 ± 2.56 94.83 ± 1.85

Mice
Protein

Expression

SVM 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
DT 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
BT 78.48 ± 0.01 13.93 ± 0.03 12.5 ± 0 24.45 ± 0.05 13.93 ± 0.03
RF 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
AdaBoost 78.48 ± 0.01 13.93 ± 0.03 12.5 ± 0 24.45 ± 0.05 13.93 ± 0.03
IFPIFSC 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0

Semeion
Handwritten

Digit

SVM 97.81 ± 0.78 95.05 ± 2.51 92.57 ± 3.29 93.67 ± 2.36 97.81 ± 0.78
DT 93.07 ± 1.53 81.28 ± 4.69 80.16 ± 3.67 80.48 ± 3.57 93.07 ± 1.53
BT 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
RF 96.7 ± 0.88 97.19 ± 1.53 84.12 ± 4.34 89.19 ± 3.31 96.7 ± 0.88
AdaBoost 97.93 ± 1.19 96.35 ± 3.61 91.88 ± 4.03 93.89 ± 3.48 97.93 ± 1.19
IFPIFSC 98.15 ± 0.73 97.21 ± 1.91 92.27 ± 3.25 94.49 ± 2.25 98.15 ± 0.73

Car
Evaluation

SVM 92.53 ± 0.7 79.4 ± 4.27 75.88 ± 4.2 76.98 ± 3.69 85.07 ± 1.39
DT 97.82 ± 0.48 90.42 ± 2.87 91.52 ± 3.65 90.66 ± 2.75 95.64 ± 0.96
BT 98.51 ± 0.46 90.14 ± 3.25 94.03 ± 3.13 91.67 ± 3.06 97.02 ± 0.92
RF 98.94 ± 0.47 94.21 ± 2.84 96.29 ± 2.7 95.1 ± 2.61 97.88 ± 0.94
AdaBoost 98.51 ± 0.46 90.14 ± 3.25 94.03 ± 3.13 91.67 ± 3.06 97.02 ± 0.92
IFPIFSC 97.97 ± 0.51 90.52 ± 3.27 90.47 ± 3.45 90.21 ± 2.58 95.94 ± 1.01

Wireless
Indoor

Localization

SVM 99 ± 0.35 98.02 ± 0.68 97.99 ± 0.69 97.99 ± 0.69 97.99 ± 0.69
DT 98.52 ± 0.4 97.08 ± 0.78 97.05 ± 0.8 97.04 ± 0.8 97.05 ± 0.8
BT 99.08 ± 0.31 98.18 ± 0.61 98.16 ± 0.63 98.16 ± 0.63 98.16 ± 0.63
RF 99.09 ± 0.34 98.21 ± 0.66 98.19 ± 0.68 98.19 ± 0.68 98.19 ± 0.68
AdaBoost 99.08 ± 0.31 98.18 ± 0.61 98.16 ± 0.63 98.16 ± 0.63 98.16 ± 0.63
IFPIFSC 99.15 ± 0.32 98.33 ± 0.64 98.31 ± 0.65 98.31 ± 0.65 98.31 ± 0.65

Mean
Performance

Results

SVM 90.99 ± 2.01 83.07 ± 4.94 77.74 ± 4.96 82.68 ± 4.25 83.8 ± 3.43
DT 90.41 ± 2.48 80.18 ± 5.64 77.84 ± 5.57 80.75 ± 4.78 83.16 ± 4.09
BT 89.55 ± 2.92 76.33 ± 5.89 72.12 ± 5.98 78.26 ± 4.8 77.45 ± 4.64
RF 93.59 ± 1.96 87.85 ± 4.62 84.12 ± 4.98 87.04 ± 4.02 88.85 ± 3.31
AdaBoost 89.39 ± 3.02 76.16 ± 6.07 71.5 ± 6.46 78.01 ± 4.84 77.29 ± 4.74
IFPIFSC 94.34 ± 1.85 88.02 ± 4.26 85.86 ± 4.46 87.65 ± 3.78 89.44 ± 3.09

Acc, Pre, Rec, MacF, and MicF results and their standard deviations (SD) are presented in percentage. The best
performance results are shown in bold.

Table 6. Ranking numbers of the best results for all non-fuzzy-based classifiers.

Classifiers Acc Pre Rec MacF MicF Total Rank

SVM 1/20 1/20 2/20 1/20 1/20 6/100
DT 1/20 1/20 1/20 1/20 1/20 5/100
BT 2/20 3/20 2/20 2/20 2/20 11/100
RF 7/20 8/20 6/20 8/20 7/20 36/100
AdaBoost 1/20 2/20 1/20 1/20 1/20 6/100
IFPIFSC 11/20 9/20 11/20 10/20 11/20 52/100
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Table 7. Ranking numbers of the best results of IFPIFSC over the others.

Classifiers Acc Pre Rec MacF MicF

IFPIFSC versus SVM 20 19 17 20 20
IFPIFSC versus DT 20 20 19 19 20
IFPIFSC versus BT 15 15 16 14 15
IFPIFSC versus RF 12 11 13 11 12
IFPIFSC versus AdaBoost 16 16 17 15 16

5.4. Statistical Evaluation

The present subsection performs the Friedman test [32], a non-parametric test, and
the Nemenyi test [33], a post hoc test, in a procedure proposed by Demšar [34] to analyze
all performance results acquired in view of Acc, Pre, Rec, MacF, and MicF. The Friedman
test generates a performance-based ranking of the classifiers for each dataset. Thus, the
rank of 1 implies the best-performing classifier, the rank of 2 to the second best, etc. If the
performances of the classifiers are equal, then it assigns the average of their possible ranks
to their ranks. It then compares the average ranks and calculates χ2

F, distributed with k− 1
degree of freedom. Here, k denotes the classifiers’ number. Afterward, a post hoc test, e.g.,
the Nemenyi test, is employed to determine the differences between the classifiers. The
determined differences between any two classifiers more than critical distance are accepted
as statistically significant.

This subsection calculates each classifier’s average ranking using the Friedman test.
Here, the number of fuzzy-based classifiers compared with IFPIFSC is 12, i.e., k = 13, and
the number of datasets is 20, i.e., N = 20. Friedman test statistics of Acc, Pre, Rec, MacF,
and MicF results, χ2

F = 108.60, χ2
F = 106.69, χ2

F = 90.48, χ2
F = 108.51, and χ2

F = 110.43,
respectively. For k = 13 and N = 20, the Friedman test critical value is 21.03 at the α = 0.05
significance level (for more details, see [40]). Since the Friedman test statistics of Acc
(108.60), Pre (106.69), Rec (90.48), MacF (108.51), and MicF (110.43) are greater than the criti-
cal value 21.03; there is a significant difference between the performances of the classifiers.
Hence, the null hypothesis “There are no performance differences between the classifiers”
is rejected, and, thus, the Nemenyi test can be applied. For k = 13, N = 20, and α = 0.05,
since the critical value for the infinite degrees of freedom in the table Studentized Range

q is cv = 4.286, the critical distance is cd = cv√
2
×
√

k×(k+1)
6×N = 4.286√

2
×
√

8×(8+1)
6×20 ≈ 2.348

according to the Nemenyi test. The critical diagrams produced by the Nemenyi test for
the five performance metrics are presented in Figure 2. Figure 2 manifests that the per-
formance differences between the average rankings of IFPIFSC and those of FPFS-CMC,
FPFCC, Fuzzy kNN, FPFS-NHC, FSSC, FussCyier, and HDFSSC, are greater than the critical
distance (4.0798). Figure 2 shows that even though the difference between the average rank-
ings of IFPIFSC and FPFS-EC, FPFS-AC, FPFS-3NN(P), FPFS-3NN(S), and FPFS-3NN(K) is
less than the critical distance (4.0798), IFPIFSC performs better than them concerning all
performance metrics. Therefore, IFPIFSC outperforms the others statistically for all five
performance metrics.

Secondly, this subsection calculates each classifier’s average ranking using the Fried-
man test. Here, the number of non-fuzzy-based classifiers compared with IFPIFSC is 5,
i.e., k = 6, and the number of datasets is 20, i.e., N = 20. Friedman test statistics of Acc,
Pre, Rec, MacF, and MicF results, χ2

F = 48.65, χ2
F = 45.28, χ2

F = 39.93, χ2
F = 45.64, and

χ2
F = 48.65, respectively. For k = 6 and N = 20, the Friedman test critical value is 11.07 at

the α = 0.05 significance level (for more details, see [40]). Since the Friedman test statistics
of Acc (48.65), Pre (45.28), Rec (39.93), MacF (45.64), and MicF (48.65) are greater than
the critical value 11.07; there is a significant difference between the performances of the
classifiers. Thereby, the null hypothesis “There are no performance differences between the
classifiers” is rejected, and, thus, the Nemenyi test can be applied. For k = 6, N = 20, and
α = 0.05, since the value for the infinite degrees of freedom in the table Studentized Range

q is 4.030, the critical distance is 4.030√
2
×
√

6×(6+1)
6×20 ≈ 1.686 according to the Nemenyi test.
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The critical diagrams generated by the Nemenyi test for the five performance metrics are
presented in Figure 3.
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Figure 2. The critical diagrams obtained by the Friedman test and Nemenyi test at 0.05 significance
level for the five performance criteria (for fuzzy-based classifiers).
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Figure 3. The critical diagrams obtained by the Friedman test and Nemenyi test at 0.05 significance
level for the five performance criteria (for non-fuzzy-based classifiers).

Figure 3 demonstrates that the performance differences between the average rankings
of IFPIFSC and those of AdaBoost (MacF), SVM, and DT are greater than the critical
distance (1.686). In addition, Figure 3 indicates that IFPIFSC realizes better than RF, BT,
and AdaBoost in terms of all performance metrics, although the difference between the
average rankings of IFPIFSC, RF, BT, and AdaBoost is less than the critical distance (1.686).
Therefore, IFPIFSC outperforms the others statistically for all five performance metrics.



Axioms 2023, 12, 463 26 of 29

5.5. Comparison of the Time Complexity

The present section compares the time complexities of the classifiers by employing a
big O notation. From the pseudocode of IFPIFSC, the time complexity is O(mn) since mn is
higher than m6 for each test sample. Here, m and n are the numbers of the training samples
and of their attributes, respectively. The time complexities, big O notation herein, of the
compared classifiers are presented in Table 8.

Table 8. Time complexities based on big O notation of the classifiers.

Classifier Time Complexity

Fuzzy kNN O(n2 log k)
FSSC O(ml)
FussCyier O(ml)
HDFSSC O(ml)
FPFSCC O(ml)
FPFSNHC O(ml)
FPFS-EC O(mn)
FPFS-AC O(mn)
FPFS-CMC O(m2 + mn)
FPFS-kNN(P) O(m2l)
FPFS-kNN(S) O(m2l)
FPFS-kNN(K) O(m2l)
SVM O(m2n2)
DT O(mn log n)
BT O(tmn log n)
RF O(tmn log n)
AdaBoost O(tmn log n)
IFPIFSC O(mn)

k is the number of the nearest neighbours, m is the sample number of the training data, n is the parameter number
of the training data, l is the class number of the data, and t is the number of tree.

6. Conclusions

This study defined the concepts metrics, quasi-, semi-, and pseudo-metrics and sim-
ilarities, quasi-, semi-, and pseudo-similarities over ifpifs-matrices. Thus, it theoretically
contributed to the literature. Next, this study suggested five pseudo-metrics and seven
pseudo-similarities over ifpifs-matrices. Hence, it confirmed the existence of the aforemen-
tioned contribution. Later, this study propounded IFPIFSC simultaneously using six of the
proposed pseudo-similarities and applied it to a data classification problem. In this way,
this study clarified how to construct ifpifs-matrices and apply them to real problems in data
classification. Furthermore, it compared IFPIFSC with the well-known and state-of-the-art
classifiers Fuzzy kNN, FSSC, FussCyier, HDFSSC, FPFSCC, FPFSNHC, FPFS-EC, FPFS-AC,
FPFS-CMC, FPFS-kNN(P), FPFS-kNN(S), FPFS-kNN(K), SVM, DT, BT, RF, and AdaBoost
and statistically analyzed the comparison results. Thereby, the present study manifested
that the proposed method has the best performance results and, thus, is a pretty convenient
method in supervised learning.

The success of the available classifiers has natural limits depending on datasets. There-
fore, IFPIFSC has been designed to cope with these drawbacks. This classifier allows using
novel multiple-similarity functions and threshold values. By this means, IFPIFSC is open
to improvement: one of the ways to improve this proposed classifier is to define or use
different similarity measures over ifpifs-matrices. The second is to adapt the values λ1 and
λ2 used in the intuitionistic fuzzification of real data. The third is to use SDM methods
constructed by fpfs- or ifpifs-matrices to use multiple pseudo-similarities similar to FPFS-AC
and FPFS-CMC [12,13]. The fourth, to reduce the negative effects of the inconsistent data in
the used datasets on the classification success, is to develop an effective preprocessing step
that eliminates or excludes inconsistent data from the evaluation using rough sets [41,42].
The fifth is to develop similar classifiers constructed by interval-valued intuitionistic fuzzy
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parameterized interval-valued intuitionistic fuzzy soft matrices [43] modeling further un-
certainties than intuitionistic fuzzy uncertainties. To struggle with different uncertainties,
the sixth is to consider the new concepts, such as picture fuzzy sets [44,45], Pythagorean
fuzzy sets [46,47], Fermatean fuzzy sets [48], q-rung orthopair fuzzy sets [49,50], T-spherical
fuzzy sets [51,52], interval-valued fuzzy sets [53,54], interval-valued intuitionistic fuzzy
sets [55], and bipolar fuzzy sets [56–58]. Finally, IFPIFSC can be customized to produce
nearly 100% performance, especially for medical diagnosis problems. Classifiers whose
codes are not shared privately or on online platforms, such as MathWorks and GitHub, are
not included in the scope of this study.
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fpfs-set [7] Fuzzy Parameterized Fuzzy Soft Set
fpfs-matrix [8] Fuzzy Parameterized Fuzzy Soft Matrix
ifs-set [17] Intuitionistic Fuzzy Soft Set
ifps-set [18] Intuitionistic Fuzzy Parameterized Soft Set
ifpfs-set [19] Intuitionistic Fuzzy Parameterized Fuzzy Soft Set
ifpifs-set [20] Intuitionistic Fuzzy Parameterized Intuitionistic Fuzzy Soft Set
ifpifs-matrix [21] Intuitionistic Fuzzy Parameterized Intuitionistic Fuzzy Soft Matrix
SDM Soft Decision-Making
kNN [59,60] k-Nearest Neighbor
Fuzzy kNN [23] Fuzzy k-Nearest Neigbors
FSSC [24] Fuzzy Soft Set Classifier
FussCyier [25] Fuzzy Soft Set Classifier Using Distance-Based Similarity Measure
HDFSSC [26] Hamming Distance-Based Fuzzy Soft Set Classifier
FPFSCC [10] Fuzzy Parameterized Fuzzy Soft Chebyshev Classifier
FPFSNHC [9] Fuzzy Parameterized Fuzzy Soft Normalized Hamming Classifier
FPFS-EC [11] Fuzzy Parameterized Fuzzy Soft Euclidean Classifier
FPFS-CMC [12] Comparison Matrix-Based Fuzzy Parameterized Fuzzy Soft Classifier
FPFS-AC [13] Fuzzy Parameterized Fuzzy Soft Aggregation Classifier
FPFS-kNN [14] Fuzzy Parameterized Fuzzy Soft k-Nearest Neighbor
SVM [27] Support Vector Machines
DT [28] Decision Trees
BT [29] Boosting Trees
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RF [30] Random Forests
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IFPIFSC (In this paper) Intuitionistic Fuzzy Parameterized Intuitionistic Fuzzy Soft Classifier
UCI-MLR [22] UC Irvine Machine Learning Repository
Acc Accuracy
Pre Precision
Rec Recall
MacF Macro F-score
MicF Micro F-score
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