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Abstract: The term convexity and theory of inequalities is an enormous and intriguing domain
of research in the realm of mathematical comprehension. Due to its applications in multiple areas
of science, the theory of convexity and inequalities have recently attracted a lot of attention from
historians and modern researchers. This article explores the concept of a new group of modified
harmonic exponential s-convex functions. Some of its significant algebraic properties are elegantly
elaborated to maintain the newly described idea. A new sort of Hermite–Hadamard-type integral
inequality using this new concept of the function is investigated. In addition, several new estimates
of Hermite–Hadamard inequality are presented to improve the study. These new results illustrate
some generalizations of prior findings in the literature.
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1. Introduction

In recent decades, the theory of convexity and inequalities has become an amazing
and deep source of attention and inspiration in different areas of science. The combined
study of these terminologies has had not only interesting and deep results in numerous
subjects of applied and engineering sciences but also contributed equally towards numerical
optimization. The concept of convexity is based and depends on the theory of inequalities
and also plays a prominent and meaningful role in this field. The novel literature on
inequalities always provides an excellent glimpse of the beauty and fascination of science.
Integral inequalities have many applications in probability theory, information technology,
statistics, numerical integration, stochastic processes, optimization theory, and integral
operator theory. For detailed concepts on inequalities, see [1–19]. In [20], İşcan explores
an extended form of convex function, namely the n-polynomial convex function. The
harmonic convex set in 2003 was first defined by Shi in [21]. On this harmonic convex set,
the harmonic convex function was introduced by Anderson et al. [22]. Noor [23] continued
his work on estimations and extensions and investigated the harmonic convex function in a
polynomial version and also made some improvements in the frame variational inequality
(see [24,25]).

Dragomir [26] was the first to define and research the term “exponential convex function”
in the literature. After Dragomir, Awan [27] conducted the study and refined this function.
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Kadakal [28] presented a revised definition of exponential convexity. The remarkable sig-
nificance and applications of exponential convexity are exploited in information sciences,
stochastic optimization, data mining, sequential prediction, and statistical learning.

The construction of this manuscript is as follows. In Section 2, we give some basic
definitions and concepts which will be required throughout the manuscript’s following
sections. In Section 3, we introduce the modified harmonic exp s-convex functions and
discuss some properties of it. In Section 4, using a newly introduced concept, a new sort
of Hadamard-type inequality is achieved. Next, we prove and examine some extensions
of the Hadamard-type inequality regarding the new definition with the help of Holder’s
inequality in Section 5. Finally, in Section 6, future scopes of the present study and a brief
conclusion are provided.

2. Preliminaries

For the reader’s interest and the quality of the manuscript, it will be best to study and
explain some ideas, concepts, definitions, corollaries, theorems, and remarks in this part.
The main aim of this part is to mention and discuss some already published definitions and
ideas, which we require in our study in the following sections. We start by introducing the
convex function and its generalizations in different versions and the Hermite–Hadamard-
type inequality. In addition, some theorems regarding harmonic convex functions are
added. We sum up this part by stating Holder’s and the power mean inequality, which will
be needed in our further investigation.

Definition 1 ([1]). Assume that X is a convex subset of a real vector space R. A function
Q : X→ R is convex if

Q(λv1 + (1− λ)v2) ≤ λQ(v1) + (1− λ)Q(v2), (1)

holds ∀ v1, v2 ∈ X, and λ ∈ [0, 1].

The Hermite–Hadamard-type inequality performs a good role in the literature due
to its importance and popularity. A lot of scientists have worked on numerous ideas and
definitions on the subject of inequalities. In the field of analysis, this inequality has great
interest due to its applications. This inequality states that, if function Q : X→ R is convex
for v1, v2 ∈ X with the condition v1 < v2, then

Q

(
v1 + v2

2

)
≤ 1

v2 − v1

∫ v2

v1

Q(χ)dχ ≤ Q(v1) +Q(v2)

2
. (2)

We recommend that readers refer to [29–32].

Definition 2 ([33]). Let s ∈ (0, 1]. A function Q : [0,+∞)→ R is s-convex in the second sense if

Q(λv1 + (1− λ)v2) ≤ λsQ(v1) + (1− λ)sQ(v2) (3)

holds ∀ v1, v2 ∈ [0,+∞), and λ ∈ [0, 1].

Definition 3 ([28]). Let X be a non-negative real interval. A function Q : X→ R is exponentially
convex if

Q(λv1 + (1− λ)v2) ≤
(

eλ − 1
)
Q(v1) +

(
e(1−λ) − 1

)
Q(v2), (4)

for all v1, v2 ∈ X, and λ ∈ [0, 1].
The notation EXPC(I) represents the family of all exponentially convex functions on the

interval X.
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Definition 4 ([34]). Let X ⊂ R \ {0} be a real interval. A function Q : X ⊆ (0,+∞) → R is
harmonically convex if

Q

(
v1v2

λv2 + (1− λ)v1

)
≤ λQ(v1) + (1− λ)Q(v2), (5)

holds for all v1, v2 ∈ X, and λ ∈ [0, 1].

Theorem 1 ([34]). Assume that a real-valued function Q on X ⊆ (0,+∞)→ R is harmonically
convex. If Q is defined on integrable space, i.e., L[v1, v2], for all v1, v2 ∈ X with v1 < v2, then

Q

(
2v1v2

v1 + v2

)
≤ v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx ≤ Q(v1) +Q(v2)

2
. (6)

Definition 5 ([20]). Let X be a non-negative real interval. A function Q : X→ [0, ∞). Then Q is
m-polynomial convex if

Q(λµ1 + (1− λ)v2) ≤
1
m

m

∑
η=1

[1− (1− λ)η ]Q(v1) +
1
m

m

∑
η=1

[1− λη ]Q(v2), (7)

holds for every v1, v2 ∈ X, m ∈ N, and λ ∈ [0, 1].

Definition 6 ([35]). Assume that Q : X = (0,+∞)→ [0, ∞). Then Q is m-polynomial exponen-
tial s-convex if

Q

(
λv1 + (1− λ)v2

)
≤ 1

m

m

∑
η=1

(
esλ − 1

)η
Q(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q(v2), (8)

holds ∀ v1, v2 ∈ X, m ∈ N, s ∈ [ln 2.5, 1], and λ ∈ [0, 1].

Definition 7 ([23]). Let us assume that Q : X→ [0, ∞). Then Q is m-polynomial harmonically
convex if

Q

(
v1v2

λv2 + (1− λ)v1

)
≤ 1

m

m

∑
η=1

[1− (1− λ)η ]Q(v1) +
1
m

m

∑
η=1

[1− λη ]Q(v2), (9)

holds for every v1, v2 ∈ X, m ∈ N, and λ ∈ [0, 1].

Remark 1. Assume that m = 1; then Definition 7 is referred to Definition 4.

Remark 2. If the following inequalities λ ≤ 1
m ∑m

η=1[1− (1− λ)η ] and 1− λ ≤ 1
m ∑m

η=1[1−
λη ] hold, then every harmonic convex function is an m-polynomial harmonic convex function.

Definition 8 ([36]). Let us assume that Q : X → [0, ∞). Then Q is m-polynomial harmonic
exponential convex if

Q

(
v1v2

λv2 + (1− λ)v1

)
≤ 1

m

m

∑
η=1

(
eλ − 1

)η
Q(v1) +

1
m

m

∑
η=1

(
e1−λ − 1

)η
Q(v2), (10)

holds for every v1, v2 ∈ X, m ∈ N, and λ ∈ [0, 1].

Remark 3 ([36]). Every nonnegative m-polynomial harmonic convex function is also an m-
polynomial harmonic exponential-type convex function. Indeed, for all λ ∈ [0, 1] this case is clear
from the following inequalities:
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1
n ∑m

η=1[1− (1−λ)η ] ≤ 1
m ∑m

η=1
(
eλ − 1

)η and 1
m ∑m

η=1[1−λη ] ≤ 1
m ∑m

η=1
(
e1−λ − 1

)η .

Theorem 2 ([37]). Assume that p > 1 and 1
p + 1

q = 1. If Q1 and Q2 are real functions defined on
Lebesgue measurable space of a and b, i.e., L[a, b], and if |Q1|p and |Q2|q are integrable functions
on [a, b], then

∫ b

a
|Q1(ν)Q2(ν)|dν ≤

( ∫ b

a
|Q1(x)|pdx

) 1
p
( ∫ b

a
|Q2(x)|qdx

) 1
q
. (11)

The equality holds if and only if A|Q1|p = B|Q2|q, almost everywhere, where A and B are constants.

3. Modified Harmonic Exponential s-Convex Function and Its Algebraic Properties

The term convexity has gained an amazing image due to many applications in the
realms of engineering, optimizations, and applied mathematics. Although many outcomes
have been deduced under convexity, the majority of the problems regarding real life
are nonconvex in nature. In the 20th century, many researchers gave attention to the
term convexity, such as Jensen, Hermite, Holder, and Stolz. Throughout this century, an
unprecedented amount of research was carried out, and important results were obtained in
the field of convex analysis.

We will provide our basic definition of the modified harmonic exp s-convex function
and its corresponding features as the main topic of this section.

Definition 9. Assume that Q : X = (0,+∞)→ [0, ∞). Then Q is modified harmonic exponential
s-convex if

Q

(
v1v2

λv2 + (1− λ)v1

)
≤ 1

m

m

∑
η=1

(
esλ − 1

)η
Q(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q(v2), (12)

holds ∀ v1, v2 ∈ X, m ∈ N, s ∈ [ln 2.5, 1], and λ ∈ [0, 1].

Remark 4. Assume that m = 1 in the above inequality (12); then

Q

(
v1v2

λv2 + (1− λ)v1

)
≤
(

esλ − 1
)
Q(v1) +

(
es(1−λ) − 1

)
Q(v2). (13)

Remark 5. Assume that m = 2 in the above inequality (12); then

Q

(
v1v2

λv2 + (1− λ)v1

)
≤
(

e2sλ − esλ

2

)
Q(v1) +

(
e2s(1−λ) − es(1−λ)

2

)
Q(v2). (14)

Remark 6. Assume that s = 1 in the above inequality (12); we obtain Definition 8.

Remark 7. Assume that m = 1 and s = 1 in the above inequality (12); we obtain Remark 3 in [36].

Remark 8. Assume that m = 2 and s = 1 in the above inequality (12); we obtain Remark 4 in [36].

That is the best advantage of the novel concept. If we take m and s at their given values,
then we obtain the new inequalities and discover their connections with previous results.

Lemma 1. Let us assume that λ ∈ [0, 1] and s ∈ [ln 2.5, 1]; then 1
m

m
∑

η=1
(esλ − 1)η ≥ λ and

1
m

m
∑

η=1
(es(1−λ) − 1)η ≥ (1− λ) hold.
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Lemma 2. The following inequalities 1
m

m
∑

η=1
(esλ − 1)η ≥ 1

n

m
∑

η=1
[1 − (1 − λ)η ] and

1
m

m
∑

η=1
(es(1−λ) − 1)η ≥ 1

m

m
∑

η=1
[1− λη ] hold, for all λ ∈ [0, 1] and s ∈ [ln 2.5, 1].

Proposition 1. Every harmonic convex function Q : I ⊂ (0,+∞) → [0, ∞) is a modified
harmonic exp s-convex function.

Proof. Since the given function is a harmonic convex, by definition, we have

Q

(
v1v2

λv2 + (1− λ)v1

)
≤ λQ(v1) + (1− λ)Q(v2).

Employing Lemma 1, we have

Q

(
v1v2

λv2 + (1− λ)v1

)
≤ 1

m

m

∑
η=1

(
esλ − 1

)η
Q(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q(v2).

Proposition 2. Every m-polynomial harmonically convex function is a modified harmonically exp
s-convex function.

Proof. Since the given function is m-polynomial harmonic convex, by definition, we have

Q

(
v1v2

λv2 + (1− λ)v1

)
≤ 1

m

m

∑
η=1

[1− (1− λ)η ]Q(v1) +
1
m

m

∑
η=1

[1− λη ]Q(v2).

Employing Lemma 2, we have

Q

(
v1v2

λv2 + (1− λ)v1

)
≤ 1

m

m

∑
η=1

(
esλ − 1

)η
Q(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q(v2).

Next, regarding this new definition, we add some examples.

Example 1. Let Q(x) = x2ex2
be a non-decreasing convex function on (0, 1); then it is har-

monic convex (see [38]). Employing Proposition 1, we claim that it is a modified harmonic exp
s-convex function.

Example 2. Let Q(x) = ex be a non-decreasing convex function; then it is harmonic convex
(see [38]). Employing Proposition 1, we claim that it is a modified harmonic exp s-convex function.

Example 3. Let Q(x) = sin(−x) be a non-decreasing convex function on (0, π
2 ); then it is

harmonically convex ∀x ∈ (0, π
2 ) (see [38]). Employing Proposition 1, it is a modified harmonic

exp s-convex function.

Example 4. Let Q(x) = x be a non-decreasing convex function on (0, ∞); then it is har-
monically convex for all x ∈ (0, ∞) (see [38]). Employing Remark 2, we claim that it is m-
polynomial harmonic convex. Employing Proposition 2, we claim that it is a modified harmonic exp
s-convex function.

Example 5. Let Q(x) = ln x be a harmonic convex on the interval (0, ∞) (see [38]). Employing
Remark 2 and Proposition 2, we obtain that Q(x) is a modified harmonic exp s-convex function.
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In addition, we add some properties regarding the newly introduced idea, namely the
modified harmonic exp s-convex function.

Theorem 3. The sum of two modified harmonic exp s-convex functions is a modified harmonic exp
s-convex function.

Proof. Let us assume that the functions Q and H are modified harmonic exp s-convex and
λ ∈ [0, 1]; then

(Q+H)

(
v1v2

λv2 + (1− λ)v1

)
= Q

(
v1v2

λv2 + (1− λ)v1

)
+H

(
v1v2

λv2 + (1− λ)v1

)
≤ 1

m

m

∑
η=1

(
esλ − 1

)η
Q(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q(v2)

+
1
m

m

∑
η=1

(
esλ − 1

)η
H(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
H(v2)

=
1
m

m

∑
η=1

(
esλ − 1

)η
[Q(v1) +H(v1)] +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
[Q(v2) +H(v2)]

=
1
m

m

∑
η=1

(
esλ − 1

)η
(Q+H)(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
(Q+H)(v2).

This completes the proof.

Remark 9. If we assume that m = 1, then we obtain Q+H as the harmonic exp s-convex function.

Remark 10. If we assume that s = 1, then we obtain Q + H as a modified harmonic exp
convex function.

Remark 11. If we assume that m = 1 and s = 1, then we obtain Q + H as a harmonic exp
convex function.

Theorem 4. Scalar multiplication of a modified harmonic exp s-convex function is a modified
harmonic exp s-convex function.

Proof. Let assume that the function Q is modified harmonic exp s-convex, λ ∈ [0, 1]; then

(cQ)
(

v1v2

λv2 + (1− λ)v1

)
≤ c
[

1
m

m

∑
η=1

(
esλ − 1

)η
Q(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q(v2)

]

=
1
m

m

∑
η=1

(
esλ − 1

)η
cQ(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
cQ(v2)

=
1
m

m

∑
η=1

(
esλ − 1

)η
(cQ)(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
(cQ)(v2).

This completes the proof.

Remark 12. If we assume that m = 1, then the scalar multiplication of a harmonic exp s-convex
function is a harmonic exp s-convex function.
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Remark 13. If we assume that s = 1, then the scalar multiplication of the modified harmonic exp
convex function is a modified harmonic exp convex function.

Remark 14. If we assume that m = 1 and s = 1, then scalar multiplication of a harmonically exp
convex function is a harmonic exp convex function.

Theorem 5. Assume that the function Q1 : X → [0,+∞) is harmonic convex and the function
Q2 : [0,+∞) → [0,+∞) is increasing and m-polynomial exp s-convex. Then Q2 ◦ Q1 : X →
[0,+∞) is a modified harmonic exp s-convex function.

Proof. For all v1, v2 ∈ X, and λ ∈ [0, 1], we have

(Q2 ◦Q1)

(
v1v2

λv2 + (1− λ)v1

)
= Q2

(
Q1

(
v1v2

λv2 + (1− λ)v1

))
≤ Q2(λQ1(v1) + (1− λ)Q1(v2))

≤ 1
m

m

∑
η=1

(
esλ − 1

)η
Q2(Q1(v1)) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q2(Q1(v2))

=
1
m

m

∑
η=1

(
esλ − 1

)η
(Q2 ◦Q1)(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
(Q2 ◦Q1)(v2).

Theorem 6. Let 0 < v1 < v2 and assume that non-negative real-valued function Qj is a class
of modified harmonic exp s-convex and Q(u) = supj Qj(u). Then the function Q is a modified
harmonic exp s-convex and U = {u ∈ [v1, v2] : Q(u) < +∞} is an interval.

Proof. Let v1, v2 ∈ U and λ ∈ [0, 1]; then

Q

(
v1v2

λv2 + (1− λ)v1

)
= sup

j
Qj

(
v1v2

(λv2 + (1− λ)v1)

)
≤ 1

m

m

∑
η=1

(
esλ − 1

)η
sup

j
Qj(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
sup

j
Qj(v2)

=
1
m

m

∑
η=1

(
esλ − 1

)η
Q(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q(v2) < +∞.

This shows simultaneously that U is an interval, since it contains every point between any
two of its points, and that Q is a modified harmonic exp s-convex function on U. This is the
required proof.

Theorem 7. If Q : X → [0,+∞) is modified harmonic exp s-convex, then the function Q is
bounded on [v1, v2].
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Proof. Let us assume that x ∈ [v1, v2] and L = max
{
Q(v1),Q(v2)

}
. Then ∃ λ ∈ [0, 1] such

that x = v1v2
λv2+(1−λ)v1

. Here, we clearly know about the obvious following inequalities, i.e.,

esλ ≤ e and es(1−λ) ≤ e; then

Q(x) = Q

(
v1v2

λv2 + (1− λ)v1

)
≤ 1

m

m

∑
η=1

(
esλ − 1

)η
Q(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q(v2)

≤ 1
m

m

∑
η=1

(
esλ − 1

)η
L +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
L

≤ 2L
m

m

∑
η=1

(e− 1)η = M.

4. Generalized Form of Hadamard Inequality via Modified Harmonic Exponential
s-Convex Function

Convexity is important and crucial in many branches of the pure and applied sciences.
Massive generalizations of mathematical inequalities for multiple convex functions have
significantly influenced traditional research. Numerous fields, including linear program-
ming, combinatorics, theory of relativity, optimization theory, quantum theory, number
theory, dynamics, and orthogonal polynomials are affected by and use integral inequalities.
This issue has received much attention from researchers. The Hadamard inequality is
the most widely used and popular inequality in the history and literature pertaining to
convex theory.

This purpose of this section is to establish a new kind of the Hadamard inequality
pertaining to modified harmonic exp s-convexity.

Theorem 8. Let non-negative real-valued Q be modified harmonic exp s-convex. If Q ∈ L[v1, v2], then

m

2
m
∑

η=1

(√
es − 1

)η
Q

(
2v1v2

v1 + v2

)
≤ v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx ≤

[
A1Q(v1) +A2Q(v2)

]
, (15)

where

A1 = 1
m

m
∑

η=1

1∫
0

(
esλ − 1

)ηdλ and A2 = 1
m

m
∑

η=1

1∫
0

(
es(1−λ) − 1

)η
dλ.

Proof. Since Q is modified harmonic exp s-convex, then we have

Q

(
xy

λy + (1− λ)x

)
≤ 1

m

m

∑
η=1

(
esλ − 1

)η
Q(x) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q(y),

which leads to

Q

(
2xy

x + y

)
≤ 1

m

m

∑
η=1

(√
es − 1

)η
Q(x) +

1
m

m

∑
η=1

(√
es − 1

)η
Q(y).

Employing the change in variables, we have

Q

(
2v1v2

v1 + v2

)
≤ 1

m

m

∑
η=1

[(√
es − 1

)η
][

Q

(
v1v2

(λv2 + (1− λ)v1)

)
+Q

(
v1v2

(λv1 + (1− λ)v2)

)]
. (16)
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Integrating inequality (16) w.r.t. λ on [0, 1] yields

m

2
m
∑

η=1

(√
es − 1

)η
Q

(
2v1v2

v1 + v2

)
≤ v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx.

This is the required inequality.
For the other inequality, first we suppose x = v1v2

λv2+(1−λ)v1
and employ Definition 9 for

the function Q; we have

v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

=
∫ 1

0
Q

(
v1v2

λv2 + (1− λ)v1

)
dλ

≤
∫ 1

0

[
1
m

m

∑
η=1

(
esλ − 1

)η
Q(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q(v2)

]
dλ

=
Q(v1)

m

m

∑
η=1

∫ 1

0

(
esλ − 1

)η
dλ +

Q(v2)

m

m

∑
η=1

∫ 1

0

(
es(1−λ) − 1

)η
dλ

=
[
A1Q(v1) +A2Q(v2)

]
.

This completes the proof.

Corollary 1. Assume that m = 1 in the above inequality (15); then

1

2
(√

es − 1
)Q( 2v1v2

v1 + v2

)
≤ v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx ≤

(
es − s− 1

s

)[
Q(v1) +Q(v2)

]
.

Remark 15. Assume that s = 1 in the above inequality (15); then we obtain Theorem 4.1 in [36].

5. Refinements of Hadamard Inequality Involving Modified Harmonic Exponential
s-Convex Function

In recognition of the importance of convexity, various researchers have created numer-
ous generalizations of convexity and validated a lot of features in these new generalized
cases. Convex sequences, their characteristics, and the accompanying inequalities with
applications have received increased attention from researchers. The most viewed and
discussed inequality in history connected with the field of convex analysis is the Hermite–
Hadamard inequality.

Given the following lemma, with the aid of Holder’s inequality and involving the newly
introduced concept, we obtained some extensions of the Hermite–Hadamard inequality.

Lemma 3 ([23]). Let us assume that ρ, σ ∈ [0, 1] and a non-negative real-valued function Q is a
differentiable mapping. If Q′ ∈ L[v1, v2], then the following identity holds:

ρQ(v1) + σQ(v2)

2
+

2− ρ− σ

2
Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

=
v1v2(v2 − v1)

4

∫ 1

0

[
4(1− ρ− λ)

((1− λ)v2 + (1 + λ)v1)2Q
′
(

2v1v2

(1− λ)v2 + (1 + λ)v1

)
(17)

+
4(σ− λ)

(λv1 + (2− λ)v2)2Q
′
(

2v1v2

λv1 + (2− λ)v2

)]
dλ.

For simplicity, we denote

Av1,v2 = (1− λ)v2 + (1 + λ)v1 and Bv1,v2 = λv1 + (2− λ)v2. (18)
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The following notations will be used in this way:

Γ(v) =
∫ +∞

0
e−λλv−1dλ, v > 0;

β(v1, v2) =
∫ 1

0
λv1−1(1− λ)v2−1dλ, v1, v2 > 0;

This is a hypergeometric function in integral form first introduced by Euler [39]. This
function states that

β(v1, v2) =
Γ(v1)Γ(v2)

Γ(v1 + v2)
, v1, v2 > 0;

2F1(v1, v2; v3; v) =
1

β(v2, v3 − v2)

∫ 1

0
λv2−1(1− λ)v3−v2−1(1− vλ)−v1 dλ,

where v3 > v2 > 0 and |v| < 1.

Theorem 9. Let us assume that ρ, σ ∈ [0, 1] and Q : [v1, v2] ⊆ (0,+∞)→ R is a differentiable
mapping such that Q′ ∈ L[v1, v2]. Suppose |Q′|q is modified harmonic exp s-convex; then for
p, q > 1 with 1

p + 1
q = 1, we have∣∣∣∣ρQ(v1) + σQ(v2)

2
+

2− ρ− σ

2
Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣
≤ v1v2(v2 − v1) (19)

×
[

ϕ
1
p
1
(
T1|Q′(v1)|q + T2|Q′(v2)|q

) 1
q + ϕ

1
p
2
(
T3|Q′(v1)|q + T4|Q′(v2)|q

) 1
q

]
,

where

ϕ1 =
∫ 1

0
|1− ρ− λ|pdλ =

(1− ρ)p+1 + ρp+1

p + 1
,

ϕ2 =
∫ 1

0
|σ− λ|pdλ =

(1− σ)p+1 + σp+1

p + 1
,

T1 =
1

2m

n

∑
η=1

∫ 1

0

1

A2q
v1,v2

(es(1−λ) − 1)ηdλ, T2 =
1

2m

m

∑
η=1

∫ 1

0

1

A2q
v1,v2

(es(1+λ) − 1)ηdλ,

T3 =
1

2m

m

∑
η=1

∫ 1

0

1

B2q
v1,v2

(es(2−λ) − 1)ηdλ, T4 =
1

2m

m

∑
η=1

∫ 1

0

1

B2q
v1,v2

(esλ − 1)ηdλ,

and Av1,v2 , Bv1,v2 are defined from (18).

Proof. From Lemma 3, we have∣∣∣∣ρQ(v1) + σQ(v2)

2
+

2− ρ− σ

2
Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣
≤ v1v2(v2 − v1)

4

[ ∫ 1

0

∣∣∣∣ 4(1− ρ− λ)

((1− λ)v2 + (1 + λ)v1)2

∣∣∣∣∣∣∣∣Q′( 2v1v2

(1− λ)v2 + (1 + λ)v1

)∣∣∣∣dλ

+
∫ 1

0

∣∣∣∣ 4(σ− λ)

(λµ1 + (2− λ)v2)2

∣∣∣∣∣∣∣∣Q′( 2v1v2

λv1 + (2− λ)v2

)∣∣∣∣dλ

]
.
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Employing the property of Hölder’s inequality and modified harmonic exp s-convex
function, we have∣∣∣∣ρQ(v1) + σQ(v2)

2
+

2− ρ− σ

2
Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣
≤ v1v2(v2 − v1)

{( ∫ 1

0
|1− ρ− λ|pdλ

) 1
p

×
[ ∫ 1

0

1

A2q
v1,v2

(
1

2m

m

∑
η=1

(
es(1−λ) − 1

)η
|Q′(v1)|q +

1
2m

m

∑
η=1

(
es(1+λ) − 1

)η
|Q′(v2)|q

)
dλ

] 1
q

+

( ∫ 1

0
|σ− λ|pdλ

) 1
p

×
[ ∫ 1

0

1

B2q
v1,v2

(
1

2m

m

∑
η=1

(
es(2−λ) − 1

)η
|Q′(v1)|q +

1
2m

m

∑
η=1

(
esλ − 1

)η
|Q′(v2)|q

)
dλ

] 1
q
}

=
v1v2(v2 − v1)

4

×
[

ϕ
1
p
1
(
T1|Q′(v1)|q + T2|Q′(v2)|q

) 1
q + ϕ

1
p
2
(
T3|Q′(v1)|q + T4|Q′(v2)|q

) 1
q

]
.

This completes the proof.

Corollary 2. Assume that m = 1 in inequality (19); then∣∣∣∣ρQ(v1) + σQ(v2)

2
+

2− ρ− σ

2
Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣
≤ v1v2(v2 − v1)

×
[

ϕ
1
p
1
(

D1|Q′(v1)|q + D2|Q′(v2)|q
) 1

q + ϕ
1
p
2
(

D3|Q′(v1)|q + D4|Q′(v2)|q
) 1

q

]
,

where

D1 =
1
2

∫ 1

0

1

A2q
v1,v2

(es(1−λ) − 1)dλ, D2 =
1
2

∫ 1

0

1

A2q
v1,v2

(es(1+λ) − 1)dλ,

D3 =
1
2

∫ 1

0

1

B2q
v1,v2

(es(2−λ) − 1)dλ, D4 =
1
2

∫ 1

0

1

B2q
v1,v2

(esλ − 1)dλ.

Corollary 3. Assume that ρ = σ in inequality (19); then∣∣∣∣ρQ(v1) +Q(v2)

2
+ (1− ρ)Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣
≤ v1v2(v2 − v1)ϕ

1
p

×
[(

T1|Q′(v1)|q + T2|Q′(v2)|q
) 1

q +
(
T3|Q′(v1)|q + T4|Q′(v2)|q

) 1
q

]
,

where ϕ1 = ϕ2 = ϕ.
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Corollary 4. Assume that ρ = σ = 0 in inequality (19); then∣∣∣∣Q( 2v1v2

v1 + v2

)
− 2v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣ ≤ v1v2(v2 − v1)
p
√

p + 1

×
[(

T1|Q′(v1)|q + T2|Q′(v2)|q
) 1

q +
(
T3|Q′(v1)|q + T4|Q′(v2)|q

) 1
q

]
.

Corollary 5. Assume that ρ = σ = 1
2 in inequality (19); then∣∣∣∣Q(v1) +Q(v2)

2
+Q

(
2v1v2

v1 + v2

)
− 2v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣
≤ v1v2(v2 − v1)

p

√
4

p + 1

×
[(

T1|Q′(v1)|q + T2|Q′(v2)|q
) 1

q +
(
T3|Q′(v1)|q + T4|Q′(v2)|q

) 1
q

]
.

Corollary 6. Assume that ρ = σ = 1
3 in inequality (19); then∣∣∣∣Q(v1) +Q(v2)

2
+ 2ψ

(
2v1v2

v1 + v2

)
− 3v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣
≤ 3v1v2(v2 − v1)

p

√√√√√4

(( 2
3
)p+1

+
(

1
3

)p+1

p + 1

)

×
[(

T1|Q′(v1)|q + T2|Q′(v2)|q
) 1

q +
(
T3|Q′(v1)|q + T4|Q′(v2)|q

) 1
q

]
.

Corollary 7. Assume that ρ = σ = 1 in inequality (19); then∣∣∣∣Q(v1) +Q(v2)

2
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣ ≤ v1v2(v2 − v1)
p
√

p + 1

×
[(

T1|Q′(v1)|q + T2|Q′(v2)|q
) 1

q +
(
T3|Q′(v1)|q + T4|Q′(v2)|q

) 1
q

]
.

Theorem 10. Assume that ρ, σ ∈ [0, 1] and Q : [v1, v2] ⊆ (0,+∞) → R is a differentiable
mapping such that Q′ ∈ L[v1, v2]. Suppose |Q′|q is modified harmonic exp s-convex; then for
p, q > 1 with 1

p + 1
q = 1, we have∣∣∣∣ρQ(v1) + σQ(v2)

2
+

2− ρ− σ

2
Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣
≤ v1v2(v2 − v1)

4
(20)

×
[

4
(v1 + v2)2

(
2F1

(
2p, 1; 2;

v1 − v2

v1 + v2

)) 1
p (

C5|Q′(v1)|q + C6|Q′(v2)|q
) 1

q

+
1
v2

1

(
2F1

(
2p, 1; 2;

v1 − v2

2v1

)) 1
p (

C7|Q′(v1)|q + C8|Q′(v2)|q
) 1

q

]
,

where

C5 =
1

2m

m

∑
η=1

∫ 1

0
|1− ρ− σ|q(es(1−λ) − 1)ηdλ,
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C6 =
1

2m

m

∑
η=1

∫ 1

0
|1− ρ− σ|q(es(1+λ) − 1)ηdλ,

C7 =
1

2m

m

∑
η=1

∫ 1

0
|σ− λ|q(es(2−λ) − 1)ηdλ,

C8 =
1

2m

m

∑
η=1

∫ 1

0
|σ− λ|q(esλ − 1)ηdλ.

Proof. According to the Lemma 3, we have∣∣∣∣ρQ(v1) + σQ(v2)

2
+

2− ρ− σ

2
Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣
≤ v1v2(v2 − v1)

4

[ ∫ 1

0

∣∣∣∣ 4(1− ρ− λ)

((1− λ)v2 + (1 + λ)v1)2

∣∣∣∣∣∣∣∣Q′( 2v1v2

(1− λ)v2 + (1 + λ)v1

)∣∣∣∣dλ

+
∫ 1

0

∣∣∣∣ 4(σ− λ)

(λv1 + (2− λ)v2)2

∣∣∣∣∣∣∣∣Q′( 2v1v2

λv1 + (2− λ)v2

)∣∣∣∣dλ

]
.

Employing the property of Hölder’s inequality and modified harmonic exp s-convex
function, we have∣∣∣∣ρQ(v1) + σQ(v2)

2
+

2− ρ− σ

2
Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣
≤ v1v2(v2 − v1)

4

{
4
( ∫ 1

0

1

A2p
v1,v2

dλ

) 1
p

×
[ ∫ 1

0 |1− ρ− σ|q
(

1
2m ∑m

η=1

(
es(1−λ) − 1

)η
|Q′(v1)|q + 1

2m ∑m
η=1

(
es(1+λ) − 1

)η
|Q′(v2)|q

)
dλ

] 1
q

+ 4
( ∫ 1

0

1

B2p
v1,v2

dλ

) 1
p

×
[ ∫ 1

0
|σ− λ|q

(
1

2m

m

∑
η=1

(
es(2−λ) − 1

)η
|Q′(v1)|q +

1
2m

m

∑
η=1

(
esλ − 1

)η
|Q′(v2)|q

)
dλ

] 1
q
}

=
v1v2(v2 − v1)

4

×
[

4
(v1 + v2)2

(
2F1

(
2p, 1; 2;

v1 − v2

v1 + v2

)) 1
p (

C5|Q′(v1)|q + C6|Q′(v2)|q
) 1

q

+
1
v2

1

(
2F1

(
2p, 1; 2;

v1 − v2

2v1

)) 1
p (

C7|Q′(v1)|q + C8|Q′(v2)|q
) 1

q

]
.

This completes the proof.
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Corollary 8. Assume that m = 1 in inequality (20); then∣∣∣∣ρQ(v1) + σQ(v2)

2
+

2− ρ− σ

2
Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣
≤ v1v2(v2 − v1)

4

×
[

4
(v1 + v2)2

(
2F1

(
2p, 1; 2;

v1 − v2

v1 + v2

)) 1
p (

D5|Q′(v1)|q + D6|Q′(v2)|q
) 1

q

+
1
v2

1

(
2F1

(
2p, 1; 2;

v1 − v2

2v1

)) 1
p (

D7|Q′(v1)|q + D8|Q′(v2)|q
) 1

q

]
,

where

D5 =
1
2

∫ 1

0
|1− ρ− σ|q(es(1−λ) − 1)dλ,

D6 =
1
2

∫ 1

0
|1− ρ− σ|q(es(1+λ) − 1)dλ,

D7 =
1
2

∫ 1

0
|σ− λ|q(es(2−λ) − 1)dλ, D8 =

1
2

∫ 1

0
|σ− λ|q(esλ − 1)dλ.

Corollary 9. Assume that ρ = σ in inequality (20); then∣∣∣∣ρQ(v1) +Q(v2)

2
+ (1− ρ)Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣
≤ v1v2(v2 − v1)

4

×
[

4
(v1 + v2)2

(
2F1

(
2p, 1; 2;

v1 − v2

v1 + v2

)) 1
p (

E1|Q′(v1)|q + E2|Q′(v2)|q
) 1

q

+
1
v2

1

(
2F1

(
2p, 1; 2;

v1 − v2

2v1

)) 1
p (

E3|Q′(v1)|q + E4|Q′(v2)|q
) 1

q

]
,

where

E1 =
1

2m

m

∑
η=1

∫ 1

0
|1− 2ρ|q(es(1−λ) − 1)ηdλ,

E2 =
1

2m

m

∑
η=1

∫ 1

0
|1− 2ρ|q(es(1+λ) − 1)ηdλ,

E3 =
1

2m

m

∑
η=1

∫ 1

0
|ρ− λ|q(es(2−λ) − 1)ηdλ,

E4 =
1

2m

m

∑
η=1

∫ 1

0
|ρ− λ|q(esλ − 1)ηdλ.

Corollary 10. Assume that ρ = σ = 0 in inequality (20); then∣∣∣∣Q( 2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣ ≤ v1v2(v2 − v1)

4

×
[

4
(v1 + v2)2

(
2F1

(
2p, 1; 2;

v1 − v2

v1 + v2

)) 1
p (

E5|Q′(v1)|q + E6|Q′(v2)|q
) 1

q

+
1
v2

1

(
2F1

(
2p, 1; 2;

v1 − v2

2v1

)) 1
p (

E7|Q′(v1)|q + E8|Q′(v2)|q
) 1

q

]
,
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where

E5 =
1

2m

m

∑
η=1

∫ 1

0
(es(1−λ) − 1)ηdλ,

E6 =
1

2m

m

∑
η=1

∫ 1

0
(es(1+λ) − 1)ηdλ,

E7 =
1

2m

m

∑
η=1

∫ 1

0
λq(es(2−λ) − 1)ηdλ,

E8 =
1

2n

m

∑
η=1

∫ 1

0
λq(esλ − 1)ηdλ.

Corollary 11. Assume that ρ = σ = 1
2 in inequality (20); then∣∣∣∣Q(v1) +Q(v2)

2
+Q

(
2v1v2

v1 + v2

)
− 2v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣ ≤ v1v2(v2 − v1)

2

×
[

1
v2

1

(
2F1

(
2p, 1; 2;

v1 − v2

2v1

)) 1
p (

E9|Q′(v1)|q + E10|Q′(v2)|q
) 1

q

]
,

where

E9 =
1

2q+1m

m

∑
η=1

∫ 1

0
|1− 2λ|q(es(2−λ) − 1)ηdλ,

E10 =
1

2q+1m

m

∑
η=1

∫ 1

0
|1− 2λ|q(esλ − 1)ηdλ.

Corollary 12. Assume that ρ = σ = 1
3 in inequality (20); then∣∣∣∣Q(v1) +Q(v2)

2
+ 2Q

(
2v1v2

v1 + v2

)
− 3v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣ ≤ 3v1v2(v2 − v1)

4

×
[

4
(v1 + v2)2

(
2F1

(
2p, 1; 2;

v1 − v2

v1 + v2

)) 1
p (

G1|Q′(v1)|q + G2|Q′(v2)|q
) 1

q

+
1
v2

1

(
2F1

(
2p, 1; 2;

v1 − v2

2v1

)) 1
p (

G3|Q′(v1)|q + G4|Q′(v2)|q
) 1

q

]
,

where

G1 =
1

3q2m

m

∑
η=1

∫ 1

0
(es(1−λ) − 1)ηdλ,

G2 =
1

3q2m

m

∑
η=1

∫ 1

0
(es(1+λ) − 1)ηdλ,

G3 =
1

3q2m

m

∑
η=1

∫ 1

0
|1− 3λ|q(es(2−λ) − 1)ηdλ,

G4 =
1

3q2m

m

∑
η=1

∫ 1

0
|1− 3λ|q(esλ − 1)ηdλ.



Axioms 2023, 12, 454 16 of 18

Corollary 13. Assume that ρ = σ = 1 in inequality (20); then∣∣∣∣Q(v1) +Q(v2)

2
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣ ≤ v1v2(v2 − v1)

4

×
[

4
(v1 + v2)2

(
2F1

(
2p, 1; 2;

v1 − v2

v1 + v2

)) 1
p (

G5|Q′(v1)|q + G6|Q′(v2)|q
) 1

q

+
1
v2

1

(
2F1

(
2p, 1; 2;

v1 − v2

2v1

)) 1
p (

G7|Q′(v1)|q + G8|Q′(v2)|q
) 1

q

]
,

where

G5 =
1

2m

m

∑
η=1

∫ 1

0
(es(1−λ) − 1)ηdλ,

G6 =
1

2m

m

∑
η=1

∫ 1

0
(es(1+λ) − 1)ηdλ,

G7 =
1

2m

m

∑
η=1

∫ 1

0
|1− λ|q(es(2−λ) − 1)ηdλ,

G8 =
1

2m

m

∑
η=1

∫ 1

0
|1− λ|q(esλ − 1)ηdλ.

6. Conclusions

The study of integral inequalities in association with convex analysis presents an
intriguing and stimulating area of study in the domain of mathematical interpretation. Due
to their pivotal role and beneficial importance in many disciplines of science, the subject
of inequalities has been described as an attractive field for mathematicians. Many mathe-
maticians try to use and employ new ideas in order to advance the theory of inequalities.
A great framework for starting and creating numerical tools for solving and researching
challenging mathematical problems is provided by the word inequalities. This work has
shown a new variant of Hadamard inequalities involving a new family of convex functions,
namely the modified harmonic exp s-convex function. A new class of these functions has
been investigated by introducing some algebraic properties. The new family of modified
harmonic exp s-convex functions is an extended and generalized class of functions, includ-
ing convex and harmonically convex functions, which have been proved. Furthermore,
the new type of Hadamard-type inequality and its estimations have been achieved. Many
researchers add efforts to the term inequality hypotheses to reveal a new dimension of
applied analysis because working on this hypothesis has its own importance and wide
scope. It is a fascinating and engrossing field of research for researchers. Now is the
time to explore the significance of convex analysis and inequalities along with innovative
numerical techniques.
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