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1. Introduction

Let Q) be a bounded domain in R",n € N, with a smooth boundary Q2 = I'. For

x € O, t € (0,00), we consider the following BVP:

Ot (U 4 Ayu) — Ay (u — jh(t — T)u(r)dr)
0

o)

Fpgdsut + [pa(s)0pu(t —s)ds = blulP™ 24, in Q x (0,00) 1)
!

u(x,t) =0, in T x (0, )

u(x,0) = ugp(x),0ru(x,0) = up(x), in Q)

dru(x, —t) = fo(x,t), inQx (0, 1),

where p > 0,11, b is a positive real number and # is a positive non-increasing function
defined on R.. The values (1, u1, fo) are initial data belonging to a suitable function space.
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Moreover, i : [11, 2] — R is a bounded function, where 7y and 1, are two real numbers
that satisfy 0 < 79 T». The exponent p(.) is given a measurable function on () satisfying

2<p1 <plx) <pr<oo,
with

p1 = ess inf p(x), p2 = esssup P(X),
xeQ) xeQ

we also assume that p(.) is log-continuous in Q) such that

V(a,b) € 2, |p(a) — p(b)| < with |a — b < 6, 2)

~ logla —b|’

where C >0, 0<J < 3.
We can consider the Equation (1) as a generalization of a viscoelastic equation

t
onu — Ay (u — /h(t — T)u(r)dr) + 181 (0su) + pago (dru(t — 1)) =0, (3)
0

for x € Qand t > 0, when & is of a general decay rate and g1, g» are non-linear functions.
The existence of global solutions and decay estimates has been discussed by Benaissa et al.
in [1].

Mustafa and Kafini [2] have discussed the following problem:

t
O — A2u — [h(t — T)A2u(T)dT + u1su
0

©
+ [u2(s)0su(t — s)ds = ulul?, in Q x (0,00)
T

(4)
u=73 = in 0020, +o0],
u(x,0) = up(x),9u(x,0) = up(x), in Q)
oru(x, —t) = fo(x, 1), inQx(0,12),

here 1, 12 and fy, as stated above under suitable conditions on the delay and source
terms, established an explicit and general decay rate result without imposing restrictive
assumptions on the behavior of the relaxation function at infinity.

Recently, many authors studied the existence and nonexistence of solutions for prob-
lems with variable exponents.

Messaoudi et al. in [3] used the Faedo—Galerkin method to find the existence of a weak
local solution of the following equation:

Ortut — Ayu + a|atu|m(")_28tu = b\u|”(")_2u.
Alaoui et al. [4] proposed the related system
oru — div(\vxu|m(x)_zvxu) = u|P) "2y 4 f, inQx (0,7T),

where w is a bounded domain in R” ,n > 1, with a smooth boundary d(). Under suitable
conditions on m and p and for f = 0, they showed that any solution with a nontrivial initial
datum blows up in finite time.

Our article is structured as follows. In Section 2, we describe our system and re-
view several pertinent features and definitions pertaining to fractional Sobolev spaces. In
Section 3, we discuss the local and global existence of solutions for Problem (1). As we will
see, Section 4 will concentrate on decay estimates for solutions to the issue.
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2. Preliminaries

Here, we state the results related with Lebesgue LP() (Q) and Soblev W'P() (Q0) spaces
with variable exponents (see [5-10]). Let p : 3 — [1, c0) be a measurable function. The
variable exponent Lebesgue space with p(.) is defined by

LPO(Q) = {w : ) — R measurable : /(.)|w|p(x)dx < 00},

equipped with a Luxemburg-type norm

. " | p)
HMHLP(X)(Q) :1nf{A>O/Q‘A‘ dxgl},

the space LP()(QQ) is a Banach space (see [9]).
Next, we define the variable-exponent Sobolev space W?() (Q)) as the following:

WP (Q) = {u e LPM(Q), Vi € LW)(Q)},
equipped with the norm
||”H1,p(x) = ||””Lp(x)(n) + ||VXMHLp(x>(Q)r

is a Banach space. Wé’p(B) (Q) is the space, which is defined as the closure of C§°(Q)) in

WrO(Q). Foru € W&’p(') we can define an equivalent norm
ullype) = 1Vaullpy,

the dual of Wé’p(x) (Q) is defined as W~ 17(¥)(Q), similar to Sobolev spaces, where

We also assume that

A - 1
— < — —
|p(a) —p(b)] < Tog(la = bm,Va,b € O, such that |[a — b| < 5 ®)

foralla,b € O, A >0and 0 < § < 1 with |a —b| < ¢ (log-Holder condition).

Lemma 1 (Poincaré’s inequality [5]). Let Q be a bounded domain of R" and suppose that p(.)
satisfies (5). Then,

Iy < () Vxtll vu e Wy (), ©)

where ¢ = c(p1, p2,|Q2|) > 0.
Next, we have a Sobolev—Poincaré’s inequality.

Lemma 2 (Sobolev-Poincaré’s inequality). Let q be a number with

2n
n—2

2<g<o(n=12),2<q< (n=3),

then there exists a constant Cs = Cs(Q), q) such that

lullg < el V2, foru € Hy(€). )
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Lemma 3 ([5]). If p: Q — [1, 00) is continuous,

2<p1 <plx)<p <

, >3, 8
T n—-2 "= ®)

satisfies, then the embedding H} (Q)) — LPO(Q) is continuous.

Lemma 4 ([5]). If po < coand p : QO — [1,00) is a measurable function, then CF°(Q)) is dense
in LPO)(Q).

Lemma 5 (Holder’s inequality [5]). Let p, q, s be measurable functions defined on Q) and

s(y) - p(y) + 1(y)’ fora.ey € Q.

If f e LPO(Q) and g € L1V (QQ), then
1£-8llscy < Mf 1l 18llg()-
Lemma 6 ([5]). If p > 1is a measurable function on (), then
min{ Jullf ) lul}?) } < pp)(0) < max{ ully) ullg)
forany u € LPO)(Q) and for a.e. x € Q.

Lemma 7 (Gronwall’s inequality). Let C > 0,u(t) and y(t) be continuous non-negative func-
tions defined for 0 < t < oo satisfying the inequality

u(t) < C+ /Ot u(s)y(r)dr,

then

u(t) < C exp (/Oty(r)dr).

Lemma 8 (Modified Gronwall’s inequality). Let u and h be continuous non-negative functions
defined for 0 < t < oo satisfying the inequality

0<u(t) <C+ /Otu(s)h(r)dr,

withC > 0

u(t) < <C_r - r/oth(r)dr) 771.

We have the following assumptions:

(A1) The relaxation function  : Ry — R, is a bounded function of C! so that
/ h(t)dt = p < Land 1 —/ h(t)dt =1, h(0) > 0, )
0 0
and we suppose that there exists a positive constant ¢ to satisfy

W (t) < —gh(t). (10)
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(A2) We assume
o
/ lpa|ds < pq.
T
Let  be a positive constant that satisfies
© T — T
/ |}12|d$+7€( 22 1) < H. (11)
T
Lemma 9. For h,'¥ € C!([0, o0, R) we have
/ /th(t S (r)draFdx = Sh()|[F ()22 — 2(H o¥)
o T2 2
1d f 2
+ 33 {(ho‘lf) - (/0 h(r)dr) ||T||L2:|’
where ,
(hou) = /Q (/ h(t —s)(u(t) — u(s))2ds> dx.
0
Lemma 10. Suppose that h satisfies (A1). Then, for u € H}(Q), we obtain
¢ 2
/ (/ Rt —s)(u(t) — u(s))ds) dx < c(ho V), (12)
0O \JO0
and
. ¢ 2
/ (/ 1 (- s)(u(t) u(s))ds) dx < —c(H o Vyu). (13)
0O \J0
3. Statement of the Existence Results with Their Proofs
3.1. Reformulate the Problem
Firstly, we introduce, similar to [11], the new variable
z(x,p,8,t) = dpu(x, t —ps), (x,0,5,t) € A% (0,1) x (1, 2) x (0,00),
which implies that
s0:z(x,0,5,t) +zp(x,0,5,t) = 0in QA x (0,1) x (11, 2) X (0, 00).
Hence, Problem (1) can be transformed as follows:
t
Ot — Ayt — Ayoyu — [h(t — T)Ayu(x, T)ds
0
T
Fprdsu+ [pa(s)z(x, 1,5, 8)dt = blulPP 2u,  inQ x (0,00)
T
$0:z(x,0,8,t) +2zp(x,0,5,t) =0, inQx(0,1) x (11, 72) % (0,00) (14)
u=0, on I'x]0, 00|,
z(x,0,s,t) = opu(x,t), in Q) x (0, 00)
u(x,0) = ugp(x),0ru(x,0) = up(x), in Q)

z(x,p,5,0) = fo(x,ps), inQ x (0,1) x (0, 7).
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The Lyapunov functional of solution for (14) is defined by
£(1) = 5ol + 5 I Vsdrulfa + 5 (1 /0 (x)dr ) [ Vsulfz + 5 (ho Vi)

/QP ||p 2/// 2%(x, 0,5, t)dsdpdx. (15)

Lemma 11. Assume that (u,z) is a solution of Problem (14) and suppose that (A1) — (A2) are
verified. Then, E(t), defined by (15), satisfies.

£(t) < - (m ~ [ma(s)lds - “22‘”) oyl

©
_ §/ / 2 1 2 Loy
3 o Tzz (x,1,s,t)dsdx 2h(if)||qu||Lz + 2(h o Vyu)
<0, Vt>0. (16)

Proof. We multiply (14); by d;u and integrate over () and use the integration by parts, and
we obtain

d b
p(x)
|30+ 31V 2wl + SVl — [ L pulr®]

+y1||8tu||%z —I—/yz(s)/Qz(x, 1,s,t)0rudsdx
T

t
:/ / h(t — ) Vu(T)Vyoiudodx. (17)
0O Jo
Owing to Lemma 9, the RHS of (17) can be rewritten as

t
/ / h(t—T)qu(T)antudo—dx
0OJo
1d t s
T 2dr {/0 h(T) | Vxu(T) |72 — (ho Viu)
1 ) 1,
- Eh(t)HvquLz + E(h o qu). 18)

Utilizing Young’s inequality, we have

/Hz(s)/QZ(x,l,s,t)atudsdx

< 1(/ |p2(s) |d5>/ Opuldx + = / / lu2(s)|1z°(x,1,s,t) ‘dsdx. (19)
2\ Jz >
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Multiplying (14), by (|p2(s)| + ¢)z and integrating over Q x (0,1) x (11, 72) with
respect to p, x and s, we obtain

1‘1//1/TZ( (s)] + 0)22(x, o, 5, t)dsdod
24t Jo Jo T15|M25)| 0)z"(x, p,5, t)dsdpdx

g o a1+ €5 s

=5 [ U291+ [ o sy

3 o [ Ua(e) + D)2 1,5, s

_ Hg(fz—n)+/:|y2(s)|ds] [ 2t

=5 [ U+ 0215, s, (20)

By combining (17)-(20) and using (9)-(11) give (16), which concludes the proof. [

3.2. Local Existence

We prove the existence of the local solution to the Problem (14).

Theorem 1. Let uy € HY(Q),u1 € Lo(Q) and fo € H}(Q, H'(0,1)) satisfies the compatibil-
ity condition

fO ('/ 0) = Uuj.
Suppose that (A1) — (A2) hold, hence the Problem (14) has a weak solution

ue 1R HY(Q)),
du € L™ (R+;H3(Q)), (21)
dyu € L2 (R+;H3(Q)).

Proof. To prove Theorem 1, we need the local existence of the solution of the following

related hyperbolic equation:
(Ontt, @) + (Vatt, V@) + (Vi0pu, Vi) + 1 (011, )

— /Ot h(t —s)(Vau(s), Vyg) + ./Ot 12(s)(z(x,1,s,t), @)ds
— b./ot (u|u|P(9‘)—1,q)), (22)

and
z(x,0,s,t) = dru(x, t). (23)

So, we start to prove the local solution of (14).

We shall use the standard of Faedo—-Galerkin method to assured the existence of the
local solution.

Introducing the sequence functions (¢;) having the following properties:

o Vje{l,...,m}, g€V,
e The family {¢1, ¢2,..., ¢k} is linearly independent,
*  Thespace Vi = [¢j] 1<j<nm Benerated by the family, {91, ¢2,..., ¢}, is dense in VP(¥),



Axioms 2023, 12, 444

8 of 22

Let uy = uy(t) be an approached solution of the Problem (14) such that forall1 < j <k,
the sequence ¢/ (x, p) as follows: ' '
¢ (x,0) = w.

We extend ¢/(x,0) by ¢/(x,p) over L?(Q x (0,1)) such that (¢/);<j< forms a basis

of L2(Q)) x H'(0,1) and show Z the sequence generated by {(])k } We may be construct

approximate solutions (uX,z¥),k = 1,2,... in the form
u(t) =Y (e, 2(t) = Y _ (e, k=1,2,...,

i=1 i=1

satisfy the system of equations

(aﬁuk, qof> + (quk mepj) + (anttuk mepj) + Uy (atuk, (pj)

t
—/ h(t—s) (qu quqof / ma(s)(z"(x,1,s,1), cp])ds (24)
_ b/ k|uk|p )
and
2K(x,0,5,1) = ik (x, 1), (25)

which is a nonlinear system of ordinary differential equations and will be completed by the
following initial conditions:

uF(x,0) = uf = Zw]k (t)¢! — ug when k — oo in H}(Q), (26)
and .
ok (x,0) = uk = fok( )¢;j — u1 whenk — coin L2 (), (27)
i=1
(satzk +2F, 4>) =0, 0<j<k (28)
k

25(0,p,5,0) = 25 = Z(fo,(P]')(Pj — foin H{(Q,H(0,1)) when k — +co.  (29)

Then, for any given ¢ € span{ ¢, ¢2, ¢3,...}, we have
(attuk, §0k> + (quk Vx<Pk) + (anttuk quqok> + up (le, <Pk)
t
—/ h(t—s)(qu quqo / Ha(s (x,1,5,t), ¢ )ds

— b/ kluk|p k) (30)

From the general results on systems of differential equations, we assured the existence
of the solution of (14) (note that det(¢;, ;) # 0 and det(¢;, ¢;) # 0) thanks to the linear
independence of @1, ¢y,...,¢m and ¢1,¢o, ..., ¢ in an interval [0, f,]. Owing to the
Galerkin method, we prove the result related to the existence of the local solution of (14).
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3.2.1. First Estimate
k ,k

By Lemma 11, since the sequences u;, u; converge, we find C; > 0 independent
of k, satisfying

£t - £40) <~ (i~ [l - L2 [ jouk (o) as

T [t
B g/g/[ /0 |Zk(x/ 1/5,P)‘2d5dxdp
1

1 st 1 st
=5 | IV Bads + 5 [ (r)ar

"2 — -1
<~ (i [ atortas S22 [t s

LT s ) Pasaxa 61
-2 Z°(x,1,s, sdxdp.

2 QO T 0 p p

Since & is a positive non-increasing function, we have

&0+ (= [ Inaolas - E2Z) [ ufs) s

g T ot
—l—g/Q /112/0 128 (x,1, 5, p)|?dsdxdp

<&ko) <, (32)
which
kpy — 1 k2. (g _ ' k2 1 Ky, L kN2
EX(t) = 50w F + 5 (1= | hdr JIVad[Fa + 5 (ho V) + S| V0| 7,

! 1 1 rn
— kip(x)—1,ky , k 7/ / / X )
b/o /Q'M | wo” + 2Jado Ju s(|pu2| + &) |z (x, k, 5, t)|“dsdkdx.

So, since (32), we obtain

1 1 t
L o2 + 2(1 - h(T)dT) IV,

K T—T t
+ (= [ hatotds = S22 oo 2as
T 0
1 1 1 1z
+f(hovxu’ﬂ+f||vxatuk||§z+f/ / /Zs(|y2|+§)|zk(x,k,s,t)|2dsdkdx
2 2 2 JaJo Jqy

T t
+g/ﬂ/r12/0 128 (x,1, 5, p)|?dsdxdp

t
§C1+b/ / |k [P =135,k
0 JQ
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Then, Young's inequality gives and Sobolev embedding
| / kP =14k, 1k dx |
Q

< [k o ax

1 - 1
< Cgmax(/ |uk\2”+dx,/ |uk 2P dx> + fs/ |0suk |2 dx
2 Q Q 2 Jo

1 - 1
< SCe (Va2 + [ Vo) + Selon .

Thus, there exist By > 0, 8o > 0 and ry > 0 such that

Vk2—|—8k2<B+ t
[t + ot < B+ 0 |

(e

2 Y()+1
> ds,
L2

where we note that By and B¢ are independent of k and r(. Since r¢ > 0, there exists enough
small time Ty := Ty (up, u1, u1) € (0, T) satisfying

(Bo + ,BoTo)irO — ToﬁoTo > 0.

Thus, we have by the modified Gronwall lemma (Lemma 8)

k||? k|2 — @
[ (e - )

Therefore, there exist constants ¢; = c;(ug,u1, 1) > 0(i = 1,2,3) such that for any
te [0, To]

2 2
oo, = ciona oo < 2

So, we obtain

o) t
[0 2 + 1Vt + 1 Vadui B + [ [ 124,15, p) Pasdxdp
1

1 ko)
‘ ? (33)
+/Q/o /Tl s(lual + 812" (x k, 5, 1) [“dsdkdx

< Ctﬁ‘
The estimate implies that the solution (uk, zk) exists in [0, T) and it yields
u* is bounded in L® (O, T; Hé (Q)) ,
9;u* is bounded in L® (O, T; LZ(Q)) ,
s(|ua(s)| + &)zF(x, &, s, t) is bounded in L* (0, T,L2(Q x (0,1) x (Tl,Tz))),

zk(x, 1,s,t) is bounded in LZ(Q x (1, 2) x (0,T)).
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3.2.2. Second Estimate

We replace ¢/ by —A,¢/ in (24), multiply by n{k and sum up over j to k, such that

1 1
5[||vxatuk||§2+ 1Ak 2 + \|Axatuk\|§z} + || VRt |2 + /0 h(t — 8) Mgtk A9k dxds

T
—l—/ 2/ szk(x,l,slt)vxatukdsdx: —b/ Axatukuk|uk|p(")*1dx. (34)
1 Q Q

Replacing ¢/ by —Ax¢/ in (26), we multiply by (|p2(s)| + &)c/F and sum up over j from
1 to k, and we obtain

s(lpas)] +) [ Vet Vaetdr + (|a(s)| +€) [ VazkVidtax = o,

Then, we obtain

s(p2(s)[ +8)

o1 A0 R

L2 2

Integrating over (0,1) x (11, 72) to find that

2dt// (|p2(s)| +¢) /‘sz xnst)‘ dsdrdx

- 5/ (ra(s)1 +2) [ [ 7224 e 1,0) s (35)

=5 [T U1+ ) [ [Vdnt | dsax
=0.

Combining (35) and (34), taking into consideration Lemma 9, we have

s vt (1 [ )|

7 [ s+ |9k, asis]

1 b k 2
3 [ U@l +8) [ [k 1,50 dsix
v Q

2 2
AxukHLZ + ‘ AxatukHLZ + (h ° Axuk)

't ' k k k||? %)
=— / 2(s) /Q Viz"(x,1,s,t)Vyoiu*dsdx — ylHantu H
T B

1 [t (|2
w3 [l +0) [ [Tadn| dsdx
T (@)
1
—ih(t)‘Ax

2 1 p(x)—1
k / k k, k|, k
u HL2+§<h OAxu)—b/QAxatuu ‘u ‘ dx.
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By using Young’s inequality and the first estimation, we have
& k k
/ yz(s)/ Vz"(x,1,s,t)V0u*dsdx
T
§4117/ 2 (s |/|v Ay dsdx+17// 120) [ Va2 (1,5, ) ? dsdx
<y1\|antuH +17/ / 6 |‘sz x,1,s, t)) dsdx

M1
<l -
_417C2+8/Q/[1 |y2(s)|’sz (x,l,s,t)’ dsdx

t 2
<C(e) +e/ /2|y2(s)|‘vxzk(x,1,s,t)‘ dsdx, & > 0. (37)
(@) T

The first estimation and Young’s inequality give us

’/ AxuFuF k[P -1y
Ja

1 1

< EbsHAxatukH%z + ECS /Q |1k 2P ) dx

< 1beHAxatuk||%z + 1C£ max(/ |uk|2p+dx,/ |uk|2pdx> (38)
2 2 Q Q
bE k2

< EHAxatu ||L2 +C(¢e), e>0.

Combining (32)—(38) with (31), we obtain

1d t

24t {”vx k||L2+ < /O h(T)dT)’
2

/ / ([u2(s)] +¢) /Q’szk(X,k,S,t)‘ dsd;cdx]

2 2
Aik||+ ‘ AxatukHLz + (h ° Axuk)

(39)
1 K 2
7/ (lp2(s |+§—2£)/ ’sz (x,l,s,t)‘ dsdx
2 0
<— 1h(t)‘ AyuF +1(h’oA uk) +§|\A k|2, +Ce, e >0
=75 X 12 2 X 7 x0t 12 e :
We multiply (24) by 17{1( and summing over j from 1 to k, we obtain
2
||attuH22 + Hvxattuk :/ AxuF oy ukdx
/ h(t—t / qu )anttu dxdt
(40)

—],11/ ot attukdx—/ / u2(s)z"(x,1,s, t)attukdsdx

k‘p( dx.

+b/ attu M

Differentiating (28) with respect to ¢, we obtain

(szlft + z’t‘p,qyf) =0.
We multiply by (|u2(s)| + &)d¥ and sum up over j from 1 to k, to have

s(|p2(s)] +¢) lpa(s)[+¢ d

2 dt‘ 2 =0

’szt +

4o
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We integrate over (0,1) x (13, T2) with respect to x and s, to obtain

st L s+ €) [ [Vaebns, [

1 2
+ E/ (|na2(s)| + &) /Q‘szf(x,l,s,t)‘dsdx

1 (|2
E/ (|lp2(s)| +¢) /Q‘anttu ’ dsdx

= 0. (41)
Summing (40) and (41), we have
2
||8ttuk||%2 + Hvxattu 2dt/ / (lu2(s)| +¢) / ‘szt X,K,8,t) ddedx
1 (o
+ E/ (\yz(s)|+§)/ ‘szt(x,l,s,t)) dsdx
T Q
t
= /Axattukdx—/ h(t—T)/ quk(r)vxattuk(t)dxd*r
- yl/ ot attukdx—/ H2(s)z"(x,1,s, t)attukdsdx
ty
k plx)= k|2
+ b/ | dx+f/ (|y2(s)|+§)/ |V o[ dsdx. 42)
Q 2 Jg Q
Utilizing Young's inequality, the right hand side of (42) can be written as
k k2 k
’/QAxattu < €| Vadptt 22 + C(e) |Vt |Pa, >0, 43)
and
t
/ h(t — 1) / A (T)3uuk () dxdT
0
/ (t—1) / VtF (1) V ufy (t)dxdt
2 B2 2
< k P k
_SHanttu L2+4U(1+£)Hvxu I,
iy
+ o 1+ (hon ) £> 0. (44)

Thanks to the Young, Poincaré’s inequalities and the first estimate, we have

2
]
+4£ atu

iz +Cle), (45)

M1 / atukattukdx < yleHGttuk
JO

< £V1H3ttuk
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and

/ u2(s)z"(x,1,s, t)attukdsdx
T
2 k|2
gscs/T |y2(s)|/Q’Vx8ttu | dsdx
1

4 [Tla)] [ [0 asa
e . Ha(Ss QZ X, 1,s, sax

2 k2, 1 (o k 2
<eCimg /Q‘anttu ‘ +§/T |y2(s)|/0‘z (x,l,s,t)’ dsdx. (46)
1

So, thanks to Young’s inequality, the nonlinear term can be estimated as
|b/ﬂattukuk!uk|p(x)fl| < Cpn||Vxduu||* + C (1), 7 > 0. (47)

Taking into account (38)—(47) into (42) satisfies
1 /= k 2
g (@) +2) [ |90 (a1 0 dsds

Zdt/rl/ (Ip2(s)] +2) /]antz szt)‘ dsdrdx

B 1+ &) ||
’7

2
0|22 + Hvxattuk

< e||anttuk||%2 +C(e )||quk||L2 +eHVx8ttu

+ﬁ<1+ )(hoV u)
sylHattukHLz+C(e)+eC§y1 /Q‘anttuk‘2+418/Tj2|y2(s)|/Q‘zk(x,l,s,t)’zdsdx

+ Cpn|| Vx0ueut]|7, + C(n).

_I_

L2

L2 (48)

Then, let the first estimate hold, then (48) will be

2
(1= epn) [l + (1 = 2+ Copr)e = Cy) | Ve

2

Zdt/ / (Ju2(s)[+ ) /)antz X, %, t)‘ dsdrdx
+§/T1 <Iﬂz(s)|+é‘>/(vxatz (x,1,s,t)‘ dsdx

lj<1+ )(hovxu) i /:yz(s)|/Q‘zk(x,l,s,t)rdsdx—l—C(e,;y).

(49)
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Therefore, by (39) and (49)

1d . :
2dt[”w‘ ||Lz+( /Oh(r)dT)‘

/T] /015(|V2(5)|+€)/Q‘szk(x,k,s,t)‘zdsdxdx

L Sl +0) [ \vxz’%x,k,s,t)\zdsdxdx]

1 rh 3 2
5 [ as) |+ &= 26) [ |V 1,s, 0| dsx
2 T Q

2
Auk‘
R |

o (o)

1 (™ . 2
+*/ (|V2(S)|+§)/ ’szt(X,l,s,t)’ dsdx
2 Jq A
2
+ (1 —ep1) |9psu]|72 + (1 — (2+ C3ur)e — Cpq)HvxattukHz
b
AxukHLz + *(h’ oAxuk) + jHAxatukH% + ,8 <1 +2 ) (ho V. )

1
+4€/ |pa(s |/‘ xlst)’dsdx+C(£;7)£17>0 (50)

< —5h(o)

Choosing ¢, 77 tow positive small enough such that (1 —ey) > 0and (1 — (2 + C2)e —
Cpn) > 0 and integrating over (0, t), we obtain

1 « t
5 [Vxu ||L2+ /Oh(T)dT ‘
w rl ‘ 2
[0 [ ) +8) [ [V s, )| dsana
T 0 (@)
T 1 k 2
b [T [ s +0) [ [75nks0) dseas]
T 0 (@)
1 t ty X 2
w5 | [ +e—20) [ 922015, dsdxdp
2 Jo T o)
1 rt o P 2
3 ) [Tl o) [ [Vasttn 15,0 asixde
t
+(1—epm) / ||attu||L2+(1—(2+C52y1)£—Cp17)/0 ||,
1 1 t , k ﬁ 1 t L
S_E/Oh(ﬂ’ de“rg/o(h o Aaul)ds + (14— /O(hovxu )ds

+§/t 1 Axdut|2 ds+l/t/T2| (s)|/ (x5 )‘zdsdxd L TC(e, 1), &1 > 0
2 0 x0Ut L2 48 0 - ,142 o) 7L /P P /T] 7 /17 7

2
k
|, +]

AxatukHiz + (h o Axuk)

(51)

2
ds

Axu
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By using Gronwall’s lemma and taking h; = {h(t)| forall t > t;}, we have
' 2 ! k||? k|2 k||? k||? k
/0 ||8ttu||L2 —|—/0 Hvxattu HLZdS+ ||qu ||L2 + HAu HL2 HZ + (hOAxM )
T 1 2
/ / s(|y2(s)\+§)/ ‘szk(x,k,s,t)’ dsdxdx
151 0 Q
%) 1 2
/ / s(|y2(s)\+§)/Q‘szk(x,k,s,t)’ dsdxdx

1 : 2
+ 5// (Ip2(s)| + & —2¢) /Q‘szk(X,l,S,p)‘dsdxdp

+

+

+ %// (Ip2(s)[ +¢) /Q’szlf(x,l,s,p)’zdsdxdp

< (52)
The estimate (52) yields
(uk> is uniformly bounded in L* (0, T, H%(Q)) ,
(atuk> is uniformly bounded in L (0, T; Hg(Q)) , (53)

(a”uk) is uniformly bounded in L? (O, T; Hé (Q)) )
We see that, by the estimates (26) and (47), we have a subsequence {u"} of {uk } and
a function 1 where
u™ — u weakly star in L (O, T; H2(0)>,
o™ — 0;u weakly star in L™ (O, T; HS(Q)) , (54)

uj; — oyu weakly star in L? (O, T; Hcl) (Q))

Since Hé (Q) — L?(Q) is compact and from the Aubin-Lions theorem, we deduce
et u™ — u strongly in L2 (0, T; Hé(Q)),
ul — dpu strongly in L2 (0, T; LZ(Q)),
and consequently, by making use of Lion’s lemma ([12], Lemma 1.3), we have
[ (£)[PO 1 (£) = JulPO) 1w weakly in L2 (0 T; LZ(Q)> (55)
We multiply (24) by 6(t) € D(0, T) and integrate over (0, T), we have
T . T .
/0 (30 (1), ) (1)t + /0 (V. (), Vo) ()
+ /O T(vxattuk, Vel )6(t)d / ! / “n(t— 1) (Axuk(r),Aij>9(t)det

T t2
+y1/ (atuk,w] dt+/ / Ha(s (x,1,5,1), w ) (t)dsdt
0

- /O ! (uk(s)(uk(s) p(x)l,wj>9(t)dxdt, (56)
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we multiply (28) by 6(t) € D(0, T) and integrate over (0, T) x (0,1), to obtain

T /1 ,
/0 /0 (satzk + zﬁ,q)])G(t)dde =0. (57)
The convergence of (54) and (55) are sufficient to pass the limit in (56) and (57) to obtain
T T
/ (atu,w)G’(t)dt—i—/ (Vat, V)0 (t)dt
0 0
T T ot
+ /0 (V3duett, Vx)0(£)dt — / / h(t — 7)(Vxu(t), Vxw)0(t)drdt
+y1/ (D¢, )0 dt+/ / 12(8)(2(x, 1,5, ), w)0(£)dsd

- b/ (s)|P0)=1 w)6(¢)dxdt,

/ / sz + zx, $)0()dtdx = 0.

Integrating over (0, T), we have

and

T t
/0 <attu+Axu—Axattu—/o h(t — T)Ayu(t)dt
T
+y18tu+/ 2yz(s)(z(x,1,s,if)ds,w))ﬁ(t)alt
— / wlulPO)=1 )6 (1) dxdt.

Consequently, we find the local existence of the problem. [J

3.3. Global Existence

We are now ready to treat the global existence result.
Firstly, we define the following functionals:

I(#)

t
(1= [ h)ar) 19l + Vbl fa + (o V) =b [ @z, (58)

1 t b N
1) = 5 (1= [ HO)r) Va4 31Vl + 30 Vi) = [ sz, (59

We note that

E(t) = ||8tu|\L2+ HV |22 4 J(t) 2/ / / Z%(x,p,s,t)dsdpdx, (60)

Lemma 12. Suppose that (A1)-(A2). Assume that (up,u1) € H}(Q) x L?(Q) such that
1(0) > 0,

and
0<1, (61)
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where

p1-2 P22
2py 2 2p2 2
0 = cfl( 50) ,cf( 50) ,
max{ =2 (0) P (0)

with c, as the best embedding constant of H} (Q) — L,)(Q), then I(t) > 0 forall t € [0, T].
Proof. By continuity, there exists T*, such that

I(t) >0, forall t € [0, T"]. (62)

Now, we have for all t € [0, T*|

1 t 2 1 2
1) = () = 5= [ h)an) Vsl + 5 Va0l
1 b
- _ p(x)
+2(hovxu) /Qp(x)|u| dx
1 t , 1 , 1
> 5 (0= [ )|Vl + 5|V drul 2 + 5 (ho Vin)
b t
— (= [ BTl + 1V Dl + (10 Ty~ 109
S P1—2b

t b
((1—/0 B |V st 22 + |V sdsu] 22 + (honu)) + 1),
1

Using (62), we obtain

2p11
IV D)2 + || V]2 < plp_l%j(t) forall t € [0, T*). (63)

By the definition of E, we have

p1— 2b Top1— 2b

||Vx8tu||%z + Hqu”% <

E(0) forallte[0,T]. (64)

On the other hand, we obtain

2
J @ < max{ 2 s 2, 2 7 5

-2 2 -2
< max{ e |V |23 7%, 2| Vo |22 | < || V2

N A -
< max{cf1 (plrilzé’(O)> ,652<P2p_225(0)> } X Hqulliz.

Then, we have

/Q|u|p(x)dx < 0|V, forallt e [0,T"].

Since 0 < 1, then

[Pz < |V, foralt€ (0,77,
o)
This implies that

I(t) >0, forallte[0,T"].

By repeating the above procedure, we can extend T* to T.
Consequently, the local solution can be extend to be global in time. O
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4. Asymptotic Behavior

In this section, by constructing a suitable Lyapunov function, we obtain an asymptotic
behavior result for our problem.

Theorem 2. Suppose that (A1) — (A2) hold. Then, £(t) energy functional (15) satisfies,

E(t) < Cre ™Mt ¢, ViSO, (65)

where C1, Cp and kq are positive constants.

Proof. Firstly, we defined the function of Lyapunov as follows:

L) =€) +e( [ g+ | Toiduix), (66)

where ¢ is a positive real number.
We prove that L(t) and £(t) are equivalent, meaning that there exist two positive
constants By and B, depending on such that for t > 0

B1E(t) < L(t) < BE(t). (67)

From the Young's inequality, we obtain
1 1
L(0) < £ + ¢ 5 1Pwul -+ 0l | + €| 5 V2ruls + 61V
By using the Poincaré inequality, we obtain
1 2 2 1 2 2
L(t) = &(t) +e| 55110eullz +0Cp || Vxrt|[12 | +e| 5[ Vxdeulz + 8[| Vacul[12 .

From (15), we have

24

L(t) < £ +e{15(t) +(scp5(t)} —|—£[25

Lew +(55(t)}
< BE(t),

On the other hand, we have

1 1
L) 2 (1) ¢ g5 Puuls + Ol | e 35 IV 0uus + &Vl

1 2 1
> £(1) e[z(sﬂatuHé +(scp||vxu|y§2] e[zéuvxatuniz +5|vxu|iz}
> Bi&(t),

such that By =1 — § —de(1+Cp).
Now, we have

dL(t)  dE(t
dg)—dg)—|—£</Qattuudx+||8tu||%z+/Qquattquudx+|Vx8tu|%z>, (68)

and
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/(attu—Axattu)u dx
Q
t
:/ Axu(x,t)der/ u/ h(t — T)Ayu(t)dtdx (69)
+/pt18tuxt) xtdx—/ /;12 xtlst)dtdx+b/|u|p
< | Vaul2 / Vo [ i t—r)vxumdsdx+u%||atu|m+JCV1\|vxu||iz

+p2pll (5/// (x,p,s,t)dsdpdx.
1

The last term of relation (69) can be estimated as follows.

t
‘/ qu/ h(t — T)Vu(t)drdx (70)
</ (/ (t— )| Vu(T) — Vyu(t )|ds>dx+/ T)dt|Viul
<471 =D Vau|22 + E(hovxu) for 7 > 0.
So,
dL(t
B < o) Vauls + (@ + ol + (1 +0)|Vaanl
t
—e/ qu/ h(t — 7)Vyu(t)dsdx
2epl 2 2
+ Vl ||at”||L2 +‘5€CV1HVx”||L2 + mCE(O) — llosul|T2 = [[Vxoru|| 12
—68/ / / s(ua(s) +0)z%(x, p,s,t)dsdpdx
OJo T
< [(14e(1+ 7)) (1 = 1) +e5Cp] | V|72
€ 2 2epql
+(1+€+ﬂ15)llatullu+2pli<35( )
1 %)
—(55/ / / s(ua(s) +0)2%(x, p,s,t)dsdpdx
O Jo 1
&
+ 1+ @)(hovxu) — [[9eullz2 — [V xdeul[72 (71)
b
F A+ Tl + [ s uP e — (e 4 (1= )| Taalfz ~ (ho V),
then il
% < AE(t) + o, (72)
with

A =min{—-1; - —(e+ (1 —-1)} <O, (73)
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and

0=[(1+e(l+n))(1—1) +edCp)||Vyu|?
2epl
2p1 —2b

+ (14 i)(h oVyu)+ (1+ S)IIantuH%z

< Cte,

+ (1 e+ prs) [duml| 7 + CE(0)

From (67), we have
dL(t
O < kL +o (74)
where k; = %;\. Thus, with a simple integration of differential Inequality (74) between 0

and t, we obtain the following estimate for the function L:

L(t) < Coe M1t + k%’ Vi > 0. (75)

Finally, by combining (67) and (75), we obtain

E(t) < Cre Rt + ?QB{ vt > 0. (76)

This completes the proof of Theorem 2. []

5. Conclusions

This manuscript examines the existence (in time) of a weak solution and the derivation
of qualitative properties of that solution for an attractive topic introduced as a nonlinear
viscoelastic wave equation with a variable exponent and a minor damping component.
Here, using the energy method in conjunction with the Faedo—Galerkin method, both the
local and global existence of the solution are established. The estimate of the solution’s
stability is then obtained by introducing an adequate Lyapunov functional.

First, the initial BVP (1) is considered. Next, it is transformed to an associate BVP (14)
in order to deal with distributed delay. As the main results of the manuscript, Theorem 1
includes sufficient conditions such that the Problem (14) has a weak solution. Theorem 2
includes sufficient conditions such that the energy function £(t) satisfies the estimate (15)
to extend the results in [13,14]. The existence of different types of damping terms makes
the problem very interesting in the application point of view. We showed the interaction
between them to find a sharp decay rate.
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