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Abstract: A Bayesian semiparametric model framework is proposed to analyze multivariate longitu-
dinal data. The new framework leads to simple explicit posterior distributions of model parameters.
It results in easy implementation of the MCMC algorithm for estimation of model parameters and
demonstrates fast convergence. The proposed model framework associated with the MCMC al-
gorithm is validated by four covariance structures and a real-life dataset. A simple Monte Carlo
study of the model under four covariance structures and an analysis of the real dataset show that the
new model framework and its associated Bayesian posterior inferential method through the MCMC
algorithm perform fairly well in the sense of easy implementation, fast convergence, and smaller root
mean square errors compared with the same model without the specified autoregression structure.

Keywords: Bayesian semiparametric method; covariance structure; Dirichlet process; linear mixed
model; longitudinal data; MCMC algorithm
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1. Introduction

Longitudinal data arise from repeated observations from the same individual or group
of individuals at different time points. The structure of longitudinal data is shown in the
following Table 1. The basic tasks of analyzing longitudinal data can be summarized as
(1) studying the trend in the covariance structure of the observed variables with respect
to time; (2) discovering the influence of covariates on the observable variables; and (3)
determining the within-group correlation structures [1].

Table 1. Longitudinal data structures.

Observation Object
Number of Observations

1 · · · k

1 t11, x1,11, . . . , xp,11, y11 · · · t1k, x1,1k, . . . , xp,1k, y1k
...

...
...

i ti1, x1,i1, . . . , xp,i1, yi1 . . . tik, x1,ik, . . . , xp,ik, yik
...

...
...

n tn1, x1,n1, . . . , xp,n1, yn1 . . . tnk, x1,nk, . . . , xp,nk, ynk

Note: In Table 1, tij stands for the j-th observation time of the individual i; (x1,ij, . . . , xp,ij) for the p-dimensional
covariate of individual i at tij; and yij for the j-th observation of individual i.
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Longitudinal data are often highly unbalanced. It is usually difficult to apply tradi-
tional multiple regression techniques to analyze highly unbalanced data directly. Statisti-
cians developed various Bayesian statistical inference models for longitudinal data analy-
sis [2]. A parametric assumption may result in modeling bias and may relax the assumption
about parametric structure. Nonparametric methods have the characteristics of robustness
because they do not require model assumptions. Semiparametric models integrate the
characteristics of parametric and nonparametric models and have the characteristics of
flexibility and ease of interpretation. Nonparametric statistical methods and semiparamet-
ric statistical methods are not only hot spots in current statistical research but also widely
used in many practical applications. Xiang et al. [3] summarize some common outcomes
of nonparametric regression analysis of longitudinal data. Bayesian methods for paramet-
ric linear mixed models have been widely used in different areas. Assuming a normal
random effect and using the standard Gibbs sampling to realize some simple posterior
inference, Quintana et al. [4] extend the general class of mixed models for longitudinal data
by generalizing the GP part to the nonparametric case. The GP is a probabilistic approach
to learning nonparametric models. Cheng et al. [5] propose the so-called LonGP, which is
a flexible and interpretable nonparametric modeling framework. It provides a versatile
software implementation that can solve commonly faced challenges in longitudinal data
analysis. It also develops a fully Bayesian, predictive inference for LonGP, which can
be employed to carry out model selection. Kleinman and Ibrahim [6] relax the normal
assumption by assuming a Dirichlet process prior with a Gaussian measure of zero mean,
semiparametrically modeling the random effects distribution [7]. Although a parametric
model may have limitations in some applications, it is simpler than a nonparametric model
whose scope may be too wide to draw a concise conclusion. Nonparametric regression
has a fatal weakness, known as the “curse of dimensionality”, which refers to the fact that
when the independent variable X is multivariate, the estimation accuracy of the regression
function becomes very poor as the dimension of X increases. To solve this problem, the
semiparametric model is a good compromise maintaining some excellent characteristics of
parametric and nonparametric models [8]. There is a lot of literature on the semiparametric
modeling of longitudinal data. Most of the existing literature employs random effects to
model within-group correlations [9].

Semiparametric linear mixed models generalize traditional linear mixed models by
modeling a covariate effect with a nonparametric function and parametrically modeling
other covariate effects. Semiparametric linear mixed models mainly use frequentist meth-
ods for statistical inference and assume normal random effects [10]. In this paper, we
employ a Bayesian semiparametric framework for linear mixed models given by Quin-
tana et al. [4] by imposing stronger conditions on the random effect to obtain an explicit
solution to posterior distributions of the model parameters and fast convergence of the
MCMC algorithm in the posterior inference of model parameters. The proposed framework
generalizes the default priori of variance components and adjusts the inference of fixed
effects associated with nonparametric random effects. The latter includes the extrapolation
of nonparametric mean functions over time [11,12]. The stochastic process approach in [4]
is a good choice for characterizing the intragroup correlation. The Gaussian process (GP)
covariance has an exponential form and is uniquely determined by two parameters. GP
can specify autoregressive correlation (the AR covariance structure, [13]). A nonparametric
Dirichlet process (DP) priori assigned to the covariance parameter results in an Ornstein–
Uhlenbeck process (OUP). A partial Dirichlet process mixture (DPM) is performed on the
OUP. By imposing stronger conditions on the random effect and decomposing the OUP
into some single Gaussian variables, we can substantially simplify the MCMC sampling in
the posterior inference. The framework of our proposed semiparametric autoregression
model (SPAR) is demonstrated in Figure 1.

This paper is organized as follows. Section 2 briefly introduces some basic theoretical
background and principles. Section 3 introduces the model setup using a partial Dirichlet
process mixture in terms of the OUP, and the Bayesian semiparametric autoregressive model
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is proposed with a recommended solution. In Section 4, the Dirichlet process and Dirichlet
process mixture (DPM) are simply introduced. The formulation of the semiparametric
autoregressive model is given in Section 5. Section 6 derives the marginal likelihood, prior
determination, and posteriori inference. Section 7 gives a simple Monte Carlo study and a
real dataset application based on the proposed model. Some concluding remarks are given
in the last section.

Figure 1. Bayesian semiparametric autoregression model (SPAR model).

2. Theoretical Basis
2.1. A General Linear Hybrid Model Containing an AR Structure

For an observation object i (i = 1, 2, . . . , n), we denote the observation time points
by
{

ti1, ti2, . . . , tini

}
. Let yi = (yi1, yi2, . . . , yini )

′ (ni × 1) be the observation vector from
object i. At time point tij, we consider the possible time-dependent covariate vector
x′ij = (1, xi1(tij), xi2(tij), . . . , xip(tij)). Let yi = (yi1, yi2, . . . , yini )

′ (ni × 1) be the observa-
tion vector from object i. At time point tij, we consider the possible time-dependent
covariate vector x′ij = (1, xi1(tij), xi2(tij), . . . , xip(tij)). Let E(yij) = x′ijβ. Define the
ni × (p + 1)-dimensional fixed-effect design matrix X i = (xi1, xi2, . . . , xini )

′. Assume
E(yi) = X iβ. Define the corresponding ni × q(q ≤ p)-dimensional random effects design
matrix Zi = (zi1, zi2, . . . , zini )

′, where z′ij = (1, zi1(tij), zi2(tij), . . . , ziq(tij)). The general
linear mixed model containing an AR covariance structure is

yi = X iβ + Zibi + Si + εi,

bi|τ ∼ N(0, D(τ)),

Si|θ ∼ N(0, Ci(θ)),

εi ∼ N(0, σ2 Ini ),
(1)

where X iβ stands for the fixed effect and Zibi for the random effect, Si is a stochastic
process characterizing the correlation among the ni observations from object i, εi is the error
term, i = 1, 2, . . . , ni. Ci(θ) is an ni × ni structural covariance matrix, and vectors τ and
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θ contain the variance–covariance parameters of the random vector bi and the stochastic
process Si, respectively. Ini stands for the identity matrix of dimension ni × ni. The AR
structure is usually specified by a GP with zero mean. The GP is uniquely determined by a
covariance function containing parameter θ = (σs, ρ) . The vector Si is a GP corresponding
to the i-th object. Si is generated sequentially by the GP {si(t) : t > 0} at the observation
time points {ti1, ti2, . . . , tini}, i.e.,

Si =
(

si(ti1), si(ti2), . . . , si(tini )
)

.

To specify the AR structure, it is assumed that the above GP possesses stationarity:

Cov(si(til), si(tik)) = σ2
s ρ(|til − tik|). (2)

When the model has a structured covariance function, the covariance matrix of yi is

Cov(yi) = ZiD(τ)Z′i + Ci(θ) + σ2 Ini . (3)

2.2. The Principle for Bayesian Inference

The Bayesian method assumes a piori distribution on the unknown parameter θ and
a joint distribution p(x, θ) between an observable variable X and the parameter θ. The
Bayesian method is based on the posterior distribution π(θ|x) of the unknown parameter
θ after observed data are available. The joint distribution, the priori distribution, and the
posterior distribution are related to each other as follows:

p(x, θ) = π(θ|x)pX(x),

pX(x) =
∫

Θ
p(x, θ)dθ =

∫
Θ

p(x|θ)π(θ)dθ,

where pX(x) stands for the sample marginal density of x. We use the posterior distribution
π(θ|x) to carry out statistical inference for the parameter θ:

π(θ|x) = p(x, θ)

pX(x)
=

p(x|θ)π(θ)∫
Θ p(x|θ)π(θ)dθ

(4)

Equation (4) is the well-known Bayesian formula. Bayesian statistical inference assumes that
the posterior distribution of the unknown parameter θ, π(θ|x) contains all the available
information. As a result, the point estimation, interval estimation, hypothesis testing,
and predicting inference of θ can be implemented as usual. Because

π(θ|x) = π(θ)p(x|θ)∫
Θ π(θ)p(x|θ)dθ

∝ π(θ)p(x|θ),

we construct the Bayesian estimate for θ after observing data x by their conditional expecta-
tion:

θ̂ = E(θ|x) =
∫

Θ π(θ)p(x|θ)θdθ∫
Θ π(θ)p(x|θ)dθ

∝
∫

Θ
π(θ)p(x|θ)θdθ. (5)

In general, the Bayesian estimate ĝ(θ) for a function of θ, g(θ) can be obtained as follows:

ĝ(θ) = E[g(θ)|x] =
∫

Θ π(θ)p(x|θ)g(θ)dθ∫
Θ π(θ)p(x|θ)dθ

∝
∫

Θ
π(θ)p(x|θ)g(θ)dθ.

Obviously, the estimator ĝ(θ) is the usual expectation of g(θ) with respect to the posterior
distribution π(θ|x):

ĝ(θ) =
∫

Θ
g(θ)π(θ|x)dθ = E[g(θ)|x]. (6)
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2.3. The MCMC Sampling and Its Convergence

When the posterior distribution π(θ|x) in (6) is difficult to compute, estimating multi-
ple parameters given by g(θ) can be realized by the Markov Chain Monte Carlo (MCMC)
method [14] following these steps: (1) establish a Markov chain, the stationary distribution
for π(θ|x); (2) use the Markov chain for the posterior distribution π(θ|x) to carry out
sampling to obtain an MCMC sample {θ0, θ1, . . . , θn}; and (3) obtain the MCMC estimator
ĝ(θ) for g(θ) by

ĝ(θ) = ḡ(θ) =
1
n

n

∑
i=1

g(θi).

The MCMC sample can estimate the parameter function g(θ) more and more effec-
tively when the sample size n becomes larger and larger. The MCMC sample {θ0, θ1, θ2, . . . , }
possesses some properties, such as stability, normal recurrence, periodicity, and irreducibil-
ity. The choice of the initial value θ0 has little impact on the estimate of θt. Gibbs sampling is
one of the MCMC algorithms. It is used to construct a multivariate probability distribution
of a random sample. The defect of the standard Gibbs sampling is that it cannot process the
nonconjugated distribution. Because the prior distribution of parameter ρ in the model in
this paper is nonconjugated, the improved version of the Gibbs algorithm is adopted [15].

With regard to the convergence of the MCMC sampling, we consider three convergence
criteria: (1) Combine the posterior sampling trend graph with the energy graph of the
MCMC sampling process for convergence assessment. By observing the posterior sampling
trend graph of a random variable, we can determine if the information of the sampling
tends to be stable as the number of iterations increases. (2) Compare the overall distribution
of energy levels in real data with energy changes between successive samples. If the
two distributions are similar to each other, we can conclude that the algorithm converges.
(3) Draw the trajectory of the negative evidence lower bound (ELBO, [16]) obtained in
the optimization process to verify the convergence of the algorithm. Minimizing the KL
(Kullback–Leibler) divergence is equivalent to minimizing the negative ELBO [17,18].

3. The OU Process

The random process Si in the general linear mixed model (1) is a Gaussian process
(GP). A GP can be regarded as an infinite dimensional extension of the multivariate Gaus-
sian distribution, and its probability characteristics are uniquely determined by the mean
function and covariance function. In particular, a GP with zero mean is completely de-
termined by its covariance function [18]. To give a simple review of GP and keep the
notation Si specially used in model (1), we return to a general notation X(t) for GP to
avoid a mix-up with the model parameter in model (1). X(t) in this section can be con-
sidered as a copy of Si in model (1). If random process {X(t), t ∈ T} is a GP, any finite

observation vector x =
(

X(t1), . . . , X(tn)
)′

has a multivariate Gaussian distribution. Let

E[X(t)] = mX(t), var[X(t)] = σ2
X(t). The joint density function of the multivariate Gaus-

sian random vector is

f (x(t1), . . . x(tn)) = (2π)−
n
2 |CX |−

1
2 exp

{
−1

2
(x−mX)

′C−1
X (x−mX)

}
,

where x =
(

x(t1), . . . , x(tn)
)′

, mean vector mX = (mX(t1), . . . , mX(tn))
′, and CX stands for

the covariance matrix. Let cij = cov
(

X(ti), X(tj)
)
= E

[
(X(ti)−mX(ti))(X(tj)−mX(tj))

]
.

When the Gaussian process {Xt = X(t), t ∈ T} has a zero mean and it is smooth, we have
cij = E[X(ti)X(tj)] and
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E[X(t)] = 0

var[X(t)] = σ2
X

RX(Xt, Xs) = E[(Xt)(Xs)] = RX(t− s), t > s,

CX(Xt, Xs) = σ2
XRX(t− s) = CX(t− s), t > s,

where RX(Xt, Xs) and CX(Xt, Xs) stand for the GP autocorrelation function and the au-
tocovariance function, respectively, which only depend on the time interval t − s. Thus,
RX(t− s) = ρ(|t− s|), and cij = cov

(
X(ti), X

(
tj
))

= σ2
Xρ(|ti − tj|). The correlation coeffi-

cient between X(ti) and X(tj) is denoted by ρ(|ti− tj|). It is assumed that ρ(|ti − tj|) = ρ|ti−tj |

in this paper. A zero-mean smooth GP {X(t), t ∈ T} is an Ornstein–Uhlenbeck (OU) pro-
cess [19]. An OU process can be regarded as a continuous analogy of the discrete-time
first-order autoregressive AR(1) process.

To understand some properties of the AR(1) process, we express the AR(1) process as

Xt = φ1Xt−1 + εt, t ≥ 1, X0 = ε0, (7)

where |φ1| < 1 is a weight parameter to ensure stability, and ε0, ε1, ε2, . . . are uncorrelated
random variables satisfying

E(εt) = 0, t ≥ 0, Var(εt) =


σ2

1−φ2
1
, t = 0,

σ2, t ≥ 1.
.

It is assumed that the random error satisfies cov(εt, εt+k) = 0, k 6= 0. Therefore,

cov(Xt, Xt+k) = cov

(
t

∑
i=0

φt−iεi,
t+k

∑
i=0

φt+k−iεi

)

=
t

∑
i=0

φt−iφt+k−icov(εi, εi)

= σ2φ2t+k
1

(
1

1− φ2
1
+

t

∑
i=1

φ−2i
1

)
=

σ2φk
1

1− φ2
1

.

The autocorrelation function ρk is assumed to follow the first-order difference equation

ρk = φ1ρk−1, k ≥ 1, ρ0 = 1,

so that we have the following solution:

ρk = φk
1, k ≥ 0.

As shown in Figure 2 below, when |φ1| < 1, the absolute correlation between X(ti) and
X(tj) of X(t) at two different time points ti and tj approaches 0 when the time is increasing.

The above AR(1) process (7) is a special case of an OU process by taking φ1 = 1− θ
and µ = 0, that is,

Xt+1 = Xt + θ(µ− Xt) + εt+1, X0 = ε0.

Therefore, the exponential covariance matrix constructed by the OU process can be used
to describe the correlation in longitudinal data. An OU process is showed in Figure 3.
It is obvious that when X(t) moves toward its mean position with the increase in time
t, the correlation between X(ti) and X(tj) at two different time points becomes weaker
and weaker.
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Figure 2. Example of an AR(1) process.

Figure 3. Example of an OU process.

4. Dirichlet Process and Dirichlet Process Mixture
4.1. Dirichlet Process

A Dirichlet process (DP) is a class of stochastic processes whose trace is a probability
distribution. DP is often used in Bayesian inference to describe the prior knowledge of
random variables.

Definition 1. Given a measurable set C, a basis distribution G0, and a positive real number α,
a Dirichlet process DP(G0, α) is a random process whose realization is a probability distribution on
C. For any measurable finite partition of C, {Bi}n

i=1, if G ∼ DP(G0, α), then

(G(B1), . . . , G(Bn)) ∼ Dir(αG0(B1), . . . , αG0(Bn)).
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where Dir stands for the Dirichlet distribution. A DP is specified by the basis distribution G0 and
the concentration parameter α.

A DP can also be regarded as an infinite dimensional generalization of the n-dimensional
Dirichlet distribution. A DP is the conjugate priori of an infinite, nonparametric discrete
distribution. An important application of DP is to use it as a prior distribution for infinite
mixture models. A statistically equivalent description of DP is based on the stick-breaking
process, described as follows. Given a discrete distribution

G(ρ) =
∞

∑
i=1

wkδρk (ρ)

where δρk is an indicator function, namely

δρk =

{
1, θ = ρk;
0, θ 6= ρk.

ρk
iid∼ G0, wk = vk ∏k−1

i=1 (1− vi), vi
iid∼ Beta(1, α), the probability distribution G defined in

this way is said to obey the Dirichlet process, denoted as G∼DP(G0, α). A DP can be
constructed by a stochastic process. It possesses some advantages in its application in
Bayesian model evaluation, density estimation, and mixed model clustering [20].

4.2. Dirichlet Process Mixture

We consider a set of i.i.d. sample data {y1, . . . , yn} as a part of an infinitely exchange-
able sequence. yi follows the probability distribution F(y; θ) with parameter θ ∈ Θ, that is,
yi|θ ∼ F(y; θ). It may be assumed that the prior distribution of θ is an unknown random
probability measure G, and G can be constructed by DP, that is, θ|G ∼ G, G ∼ DP(G0, α).
Thus, a Dirichlet process can be obtained using the hybrid (DPM) model definition:

yi|θ ∼ F(y; θ), θ|G ∼ G, G ∼ DP(G0, α),

where G0 and α are the basis distribution and model parameter, respectively. In general,
the distributions F and G0 will depend on additional hyperparameters not mentioned
above. Since the trace of DP is discretized with probability 1, the above model can be
regarded as a countably infinite mixture. We can integrate the distribution G in the above
DPM to obtain the prior distribution of θ:

θi|(θ1, . . . , θi−1) ∼
1

α + i− 1

i−1

∑
j=1

δθj +
α

α + i− 1
G0

=
i− 1

α + i− 1

(
1

i− 1

i−1

∑
j=1

δθj

)
+

α

α + i− 1
G0,

where δθj (j = 1, . . . , i− 1, i = 2, 3, . . .) represents the point quality at θj. This is a mixture
of two distributions with weights p = (i− 1)/(α + i− 1) and 1− p = α/(α + i− 1).

Let
{

f (·|θ) : θ ∈ Θ ⊂ <d
}

be a family of density functions with parameter θ. We
assume that the density function of the observed data yi follows the probability distribution
family F = { f (·|G) : G ∈ P} defined by

f (yi|G) =
∫

f (yi|θ)dG(θ), (8)

which is called the DPM density of yi, where G(θ) is the distribution of θ. F is the nonpara-
metric family of mixed distributions. The distribution G can be made random by assuming
that G comes from a DP. In practice, to obtain the DPM density functions of y1, . . . , yn, it
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is necessary to introduce the latent variable θi related to yi. That is, after introducing θi,
the joint density function of {yi : i = 1, . . . , n} is ∏n

i=1 f (yi|θi), where {θi : i = 1, . . . , n} is
a sample from the distribution G. The joint density function of {yi : i = 1, . . . , n} can be
expressed as ∏n

i=1 f (yi|G). We assign the prior distribution DP(G0, α) to the distribution G
with G ∼ DP(G0, α). The Bayesian model is set up as follows:

yi|(β, Si, bi, θ, σ) ∼ F(θ, β, Si, bi, σ),

θk|G ∼ G, k = 1, 2, . . .

G(·) =
∞

∑
k=1

wkδθk (·),

wk = νk

k−1

∏
i=1

(1− νi),

νi
iid∼ Beta(1, α),

θk
iid∼ G0, k = 1, 2, . . .

(9)

where {y1, . . . , yn} is a set of observations and {θ1, . . . , θn} is a set of latent variables. Based
on the discretization of DP, we can obtain the DPM density function of Si by

p(Si|G) =
∫

p(Si|θ)G(dθ) =
∞

∑
k=1

wk p(Si|θk).

A semiparametric model can be set up by replacing the DP mixture on θ with the DP
mixture on any subset of w = {wk : k ≥ 1} (given by (9)), depending on θ. Let θi = (wi, η)
with a prior distribution η. The above DP mixture is only performed on the parameter wi.
The joint density function ∏n

i=1 f (yi|η, G) of {yi : i = 1, . . . , n} can be obtained. The prior
distribution of η and G are prespecified. As a result, the semiparametric model can be
determined [21].

5. Formulation of the Semiparametric Autoregressive Model
5.1. The Partial Dirichlet Process Mixture of Stochastic Process

The stochastic process in (1) is semiparameterized to generalize the general linear
mixed model for longitudinal data. A nonparametric DP prior is assigned to the covariance
parameter (σ2

s , ρ) of Si. To reduce the number of unknown parameters, a partial Dirichlet
process mixture is performed on Si, i.e., only a nonparametric DP prior is assigned to the
parameter ρ. The semiparametric process is created as follows. First, we consider the OU
process Si associated with object i to have a covariance matrix Ci(θ) = σ2

s C̃i(ρ), where
θ = (σ2

s , ρ). The (k, l)-element of the matrix C̃i(ρ) is given by ρ|til−tik |. The matrix C̃i(ρ)
associated with the random process Si has the following form:

1 ρ|ti2−ti1| ρ|ti3−ti1| · · · ρ

∣∣∣tini
−ti1

∣∣∣
ρ|ti1−ti2| 1 ρ|ti3−ti2| · · · ρ

∣∣∣tini
−ti2

∣∣∣
...

...
...

...

ρ

∣∣∣ti1−tini

∣∣∣
ρ

∣∣∣ti2−tini

∣∣∣
ρ

∣∣∣ti3−tini

∣∣∣ · · · 1

; (10)

Second, we give the parameter ρ a nonparametric DP prior:

ρ|G ∼ G, G ∼ DP(G0, α), (11)

where G0 is a known probability distribution, α is a constant, and the probability distribu-
tion G is generated by DP(G0, α) satisfying

G(·) =
∞

∑
k=1

wkδφk (·),

wk = νk

k−1

∏
i=1

(1− νi),

νi
iid∼ Beta(1, α),

φk
iid∼ G0,

(12)



Axioms 2023, 12, 431 10 of 37

where δφ(·) is the point quality of φ, and G is a random probability distribution.
Using the discretization of DP, for any parameter φ, we assume that f (·|φ) is a density

function depending on the parameter φ. Let φ|G ∼ G, G ∼ DP(G0, α). The DPM density
function can be obtained:

p(·|G) =
∫

p(·|φ)G(dφ) =
∞

∑
k=1

wk p(·|φk), (13)

where φk
iid∼ G0. After embedding the above conditional prior into the distribution of the

random process Si, we formulate the DPM model for Si as

Si|(σ2
s , ρ) ∼ N(0, σ2

s C̃i(ρ)), ρ|G ∼ G, G ∼ DP(G0, α). (14)

Using the discretization of the distribution function G, we obtain the DPM density of the
random process Si as follows.

p(Si|σ2
s , G) =

∫
N(Si|0, σ2

s C̃i(ρ))dG(ρ) =
∞

∑
k=1

wk N
(

Si|0, σ2
s C̃i(ρ̃k)

)
. (15)

This is an infinitely countable mixture of multivariate Gaussian density functions, where

ρ̃k
iid∼ G0, N(·|0, σ2

s C̃i(ρ)) represents a multivariate Gaussian density function with a zero-
mean vector and a covariance matrix of σ2

s C̃i(ρ). It can be seen that after the semiparametric
treatment of the stochastic process Si, its distribution is a mixture of stochastic processes,
which is a more general mixture of OU processes.

Since G is discretized with probability 1, it provides an automatic clustering effect on
the autocorrelation structure of the objects. After the OU process Si is semiparameterized,
the covariance between any two time points til , tik can be obtained by

cov(si(til), si(tik)|σ2
s , G) =

∫
cov(si(til), si(tik)|σ2

s , ρ) dG(ρ)

=
∫

σ2
s ρ|til−tik | dG(ρ) =

∞

∑
k=1

wkσ2
s ρ̃
|til−tik |
k .

(16)

After semiparameterization of the OU process Si, it not only contains an AR structure
but also has an automatic clustering effect. If the observations {yi : i = 1, . . . , n} from
model (1) are obtained at equal interval time points, the covariance matrix structure of yi
becomes AR(1).

5.2. The Framework of a Hierarchical Model

We introduce potential parameters ρ1, ρ2, . . . , ρn (corresponding to n objects) and semi-
parameterize the general linear mixed model (1) with observations y1, y2, . . . , yn satisfying
the following model:

yi = X iβ + Zibi + Si + εi,

bi|τ ∼ N(0, D(τ)),

Si|(σ2
s , ρi) ∼ N

(
0, σ2

s C̃i(ρi)
)

,

ρi|G ∼ G,

G ∼ DP(G0, α),

εi ∼ N(0, σ2 Ini ).

(17)

This is converted to a hierarchical model as follows:
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yi|(β, bi, Si, σ2)
ind∼ N(X iβ + Zibi + Si, σ2 I),

Si|(σ2
s , ρi)

ind∼ N
(

0, σ2
s C̃i(ρi)

)
,

{ρ1, ρ2, . . . , ρn}|G
iid∼ G,

G ∼ DP(G0, α),

bi|τ
iid∼ N(0, D(τ)),

(σ2, β, τ, σ2
s ) ∼ p(σ2)× N(β0, B)× p(τ)× p(σ2

s ),

(18)

where “ind” means independent only, Si and bi(1 ≤ i ≤ n) are independent of each other,
and p(σ2), N(β0, B), p(τ), and p(σ2

s ) are the prior distributions of parameters σ2, β, τ,
and σ2

s , respectively. If bi is a scalar quantity corresponding to the random intercept of the
model, we have τ = σ2

b . This model generalizes the exponential covariance function of the
OU process. It realizes the automatic clustering effect between objects through parameter
ρi. We call model (18) the Bayesian semiparametric autoregressive model, or simply the
SPAR (semiparametric autoregressive) model.

Note that the SPAR model (18) is a parallel version of Quintana et al.’s [4] with
additional conditions that the random effects {Si : i = 1, . . . , n} have a common vari-
ance component σ2

S , and the autocorrelation parameters (ρ1, ρ2, . . . , ρn) are assumed to be
conditional i.i.d. with DP(G0, α). This is different from model (3) in Quintana et al. [4],
which assumes that the random-effect parameters (φ1, . . . , φn) are conditional i.i.d. with
DP(G0, α), where φi = (σ2

i , ρi) with var(Si) = σ2
i C̃i(ρi) in our notation. The simpler as-

sumptions help simplify the posterior inference. Quintana et al.’s [4] model assumptions do
not lead to explicit posterior distributions of model parameters. Their posterior inference
on model parameters may have to be performed by nonparametric MCMC algorithms.
Because no explicit expressions related to posterior inference on model parameters are
given by [4], we are not able to conclude if Quintana et al.’s [4] Bayesian posterior inference
is a complete semiparametric MCMC method or a combination of semiparametric and
nonparametric MCMC methods. By imposing simpler assumptions on the parameters in
model (18), we are able to obtain the explicit posterior distributions of all model parameters
in the subsequent context and conclude that our approach to handling the SPAR model (18)
is a complete semiparametric MCMC method.

In the SPAR model (18), the random process part is an OU process mixture. The corre-
lation matrix C̃i(ρi) possesses the following form:

C̃i(ρi) =



1 ρ
|ti2−ti1|
i ρ

|ti3−ti1|
i · · · ρ

|til−ti1|
i · · · ρ

|tini
−ti1|

i

ρ
|ti1−ti2|
i 1 ρ

|ti3−ti2|
i · · · ρ

|til−ti2|
i · · · ρ

|tini
−ti2|

i
...

...
...

...
...

ρ
|ti1−tik |
i ρ

|ti2−tik |
i ρ

|tk3−tik |
i · · · ρ

|til−tik |
i · · · ρ

|tini
−tik |

i
...

...
...

...
...

ρ
|ti1−tini

|
i ρ

|ti2−tini
|

i ρ
|ti3−tini

|
i · · · ρ

|til−tini
|

i · · · 1


. (19)

Using the property of the OU process structure, C̃i(ρi) can be analyzed backwards. The in-

verse matrix of C̃i(ρi) is a tridiagonal. Denote by rik = ρ
|ti,k+1−tik |
i (k = 1, 2, . . . , ni − 1). We

have the (k, l)-th element of C̃i(ρi) given by{
C̃i(ρi)

}
kl = ρ

|til−tik |
i = ρ

|ti,k+1−tik |+|ti,k+2−ti,k+1|+···+|til−ti,l−1|
i = rikri,k+1 . . . ri,l−1. (20)
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So, C̃i(ρi) can be rewritten as

1 ri1 ri1ri2 · · · ri1 . . . ri,l−1 · · · ri1 . . . ri,ni−1
ri1 1 ri2 · · · ri2 . . . ri,l−1 · · · ri2 . . . ri,ni−1
...

...
...

...
...

...
ri1 . . . ri,k−1 ri2 . . . ri,k−1 ri3 . . . ri,k−1 · · · rik . . . ri,l−1 · · · rik . . . ri,ni−1

...
...

...
...

...
...

ri1 . . . ri,ni−1 ri2 . . . ri,ni−1 ri3 . . . ri,ni−1 · · · ril . . . ri,ni−1 · · · 1


.

Using the correlation theory of the anticorrelation random variables [22], we can
compute the elements of the inverse matrix C̃−1

i (ρi) of C̃i(ρi) as follows:{
C̃−1

i (ρi)
}

11
=

1
1− r2

i1
,

{
C̃−1

i (ρi)
}

kk
=

1− r2
i,k−1r2

ik

1− r2
i,k−1 − r2

ik + r2
i,k−1r2

ik
, k = 2, 3, . . . , ni − 1,

{
C̃−1

i (ρi)
}

kk+1
= − rik

1− r2
ik

, k = 1, 2, . . . , ni − 1,

{
C̃−1

i (ρi)
}

nini
=

1
1− r2

i,ni−1
.

(21)

C̃−1
i (ρi) turns out to be a tridiagonal matrix.

The random process corresponding to the i-th object Si = (si1, si2, . . . , sini )
′ satisfies

the conditional distribution:

Si|σ2
s , ρi ∼ Nni

(
0, σ2

s C̃i(ρi)
)

.

So, the conditional density function is

f (Si|σ2
s , ρi) = f (si1, . . . , sini |σ

2
s , ρi) = f (si1|σ2

s , ρi) · · · f (sini |si1, . . . , si,ni−1, σ2
s , ρi). (22)

When the inverse matrix of the covariance matrix C̃i(ρi) of the random process Si has the
above tridiagonal form, based on the property of the multivariate normal distribution, the
conditional density function f (Si|σ2

s , ρi) of Si can be decomposed into the product of ni
univariate Gaussian density functions as follows:

si1 ∼ N(0, σ2
s ),

si2|(si1 = s̃1) ∼ N
(

s̃1ri1, σ2
s (1− r2

i1)
)

,

...

sik|(si1 = s̃1, . . . , si,k−1 = s̃k−1) ∼ N
(

s̃k−1ri,k−1, σ2
s (1− r2

i,k−1)
)

,

...

sini |(si1 = s̃1 . . . , si,ni−1 = s̃ni−1) ∼ N
(

s̃ni−1ri,ni−1, σ2
s (1− r2

i,ni−1)
)

.

(23)

It is known that rik = ρ
|ti,k+1−tik |
i , k = 1, 2, . . . , ni − 1. Hence,
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si1 ∼ N(0, σ2
s ),

si2|(si1 = s̃1) ∼ N
(

s̃1ρ|ti2−ti1|, σ2
s

(
1− ρ2|ti2−ti1|

))
,

...

sik|(si,k−1 = s̃k−1) ∼ N
(

s̃k−1ρ
|tik−ti,k−1|
i , σ2

s

(
1− ρ

2|tik−ti,k−1|
i

))
,

...

sini |(si,ni−1 = s̃ni−1) ∼ N
(

s̃ni−1ρ
|tini
−ti,ni−1|

i , σ2
s

(
1− ρ

2|tini
−ti,ni−1|

i

))
.

(24)

As a result, the conditional density function of Si in the random process f (Si|σ2
s , ρi) can be

decomposed as follows:

f (Si

∣∣∣σ2
s , ρi) =N

(
si1

∣∣∣0, σ2
s

)
· · ·N

(
sik

∣∣∣s̃k−1ρ
|tik−ti,k−1|
i , σ2

s

(
1− ρ

2|tik−ti,k−1|
i

))
· · ·

N
(

sini

∣∣∣s̃ni−1ρ
|tini
−ti,ni−1|

i , σ2
s

(
1− ρ

2|tini
−ti,ni−1|

i

))
.

(25)

The above decomposition greatly simplifies the computation of the distribution of the
random process Si, which can be obtained by direct computation of the distribution of a
single Gaussian variable.

6. The Marginal Likelihood, Prior Determination, and Posteriori Inference

Let y = (y1, y2, . . . , yn), b = (b1, b2, . . . , bn), S = (S1, S2, . . . , Sn), and ρ = (ρ1, ρ2, . . . , ρn).
Denote by Ψ = (β, σ2, σ2

s , ρ, τ), which represents the parameter vector in model (18). A
random process that specifies the AR structure in the SPAR model (18) is

Si|σ2
s , ρi ∼ N

(
0, σ2

s C̃i(ρi)
)

, ρi|G ∼ G0, G ∼ DP(G0, α). (26)

The marginal distribution of the covariance parameter ρi can be obtained from the joint
distribution of all terms in (26) as follows:

ρ1 ∼ G0, ρi|(ρ1, ρ2, . . . , ρi−1) ∼
α

α + i− 1
G0 +

1
α + i− 1

i−1

∑
k=1

δρk (27)

for i = 2, . . . , n. We assume that {S1, S2, . . . , Sn} is a sample from the multivariate Gaussian
distribution. It can be regarded as a part of an exchangeable sequence. By using the
exchangeable property, the corresponding order i of the observation yi can be considered
as the last one in all n observations from n objects. Then, yi is the corresponding vector Si.
Or we can consider it as the last one that gives us ρ(−i). The conditional prior score of ρi is

ρi|ρ(−i) ∼
α

α + i− 1
G0 +

1
α + i− 1 ∑

k 6=i
δρk , (28)

where ρ(−i) represents all other ρ’s except ρi. According to the product formula, we have

p(ρ) = p(ρ1, ρ2, . . . , ρn) = p(ρ1)p(ρ2|ρ1) · · · p(ρn|ρ1, ρ2, . . . , ρn−1).

Based on the above conditional prior distributions, we can obtain the prior distribution
p(ρ) of parameter ρ. Compute the likelihood function of the SPAR model (18) as follows:
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L(Ψ|y, b, S) = f (y, b, S|Ψ)

= f (y|b, S, Ψ) f (b|Ψ) f (S|Ψ)

= f (y|b, S, β, σ2) f (b|τ) f (S|σ2
s , ρ).

(29)

Let
p(Ψ) = p(β, σ2, σ2

s , ρ, τ) = p(β)p(σ2)p(σ2
s )p(ρ)p(τ),

This implies that the prior distributions of each parameter are independent of each other.
The joint posterior of the SPAR model is computed as follows:

p(Ψ, b, S|y) ∝ p(y, b, S|Ψ)p(Ψ)

=

{
n

∏
i=1

f (yi, bi, Si|Ψ)

}
p(Ψ)

=

{
n

∏
i=1

f
(

yi|β, Si, bi, σ2
)

f (bi|τ) f
(

Si|σ2
s , ρi

)}
p(Ψ).

(30)

That is, the joint posterior distribution is the product of the likelihood function and the prior
distribution. The first term of the likelihood function is the density function of the estimated
n-dimensional Gaussian distribution N(X iβ + Zibi + Si, σ2 I) at yi. The second term is in
bi, the density function of the estimated q-dimensional Gaussian distribution N(0, D(τ)).
The third term is the product of the ni univariate Gaussian distribution density functions.

To estimate the joint posterior distribution of the SPAR model (18), it is necessary to
use the Bayesian theorem to obtain the conditional distribution of parameters in the model:

p(β|y, b, S, σ2, σ2
s , ρ, τ),

p(bi|y, β, b−i, S, σ2, σ2
s , ρ, τ),

p(Si|y, β, b, S−i, σ2, σ2
s , ρ, τ),

p(σ2|y, β, b, S, σ2
s , ρ, τ),

p(σ2
s |y, β, b, S, σ2, ρ, τ),

p(ρi|y, β, b, S, σ2, σ2
s , ρ−i, τ),

p(τ|y, β, b, S, σ2, σ2
s , ρ).

(31)

The MCMC algorithm is employed to estimate these conditional distributions. The condi-
tional distribution of a parameters is denoted by p(·|∗) in the subsequent context.

7. A Monte Carlo Study
7.1. Simulation Design

To verify that the SPAR model (18) can effectively simulate the correlation structure in
the longitudinal data, the empirical sample data were generated under the four situations of
zero mean and covariance structure being compound symmetric (CS), autoregressive (AR),
mixed CS and AR, and nonstructured, respectively. The MCMC method was employed to
estimate the covariance matrix and the correlation matrix in the four different cases, respec-
tively, and compared with the traditional Bayesian inverse-Wishart estimation method.

Consider a brief form of the SPAR model (18):

yi = (β + bi)e + Si + εi, (32)

where β represents a fixed intercept, e is an ni × 1 vector of ones, bi ∼ N(0, σ2
b ) is a random

intercept, and Si is an OU process corresponding to yi. Convert the above model into a
hierarchical model:
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yi|(β, bi, Si, σ2)
ind∼ N

(
(β + bi)e + Si, σ2 I

)
,

Si|(σ2
s , ρi)

ind∼ N
(

0, σ2
s C̃(ρi)

)
,

{ρ1, ρ2, . . . , ρn}|G
iid∼ G,

G ∼ DP(G0, α),

bi
iid∼ N(0, σ2

b ),

β ∼ N(µ0, σ2
0 ),

σ2 ∼ IG(α0, β0),

σ2
s ∼ IG(α1, β1).

(33)

For the special case of balanced sample design with ni = m (i = 1, 2, . . . , n) and tij = tj for
i = 1, 2, . . . , n, the joint posterior distribution of model (18) can be easily computed by

p(β, σ2, σ2
s , ρ, b, S|y) = p(y|β, b, S, σ2)p(b)p(S|σ2

s , ρ)p(β, σ2, σ2
s , ρ)

p(y)

∝ p(y|β, b, S, σ2)p(b)p(S|σ2
s , ρ)p(β, σ2, σ2

s , ρ)

=

{
n

∏
i=1

f
(

yi|β, bi, Si, σ2
)

f (bi) f
(

Si|σ2
s , ρi

)}
p(β)p(σ2)p(σ2

s )p(ρ).

(34)

To realize the Bayesian inference of the model, it is necessary to use the Bayesian theorem
to obtain the conditional distribution of each parameter. The lengthy derivations of all
conditional probability distributions are given in the Appendix A at the end of the paper.

Performing a posteriori inference on the covariance matrix Σ = (σij) (m × m) is
equivalent to estimating the posteriori mean of Σ:

Σ̂ = E{Σ|y} = E
{

σ2
b A + σ2

s C̃(ρ) + σ2 I
∣∣∣y}, m×m (35)

where A = ee′. The posteriori estimate for the correlation matrix R can be obtained by
using Σ̂ to calculate the estimated R̂ of the correlation matrix R:

R̂ = R0Σ̂R0, R0 = diag
(

σ̂
− 1

2
11 , . . . , σ̂

− 1
2

mm

)
, Σ̂ =

(
σ̂ij

)
: m×m. (36)

The mean square error loss function is used to evaluate the performance of the poste-
rior mean:

MSE(Σ) =

(
1

m2

m

∑
i=1

m

∑
j=1

(σ̂ij − σij)
2

) 1
2

. (37)

Compared with the Bayesian estimates of the covariance matrix and correlation matrix
under other loss functions [23], the most common one is the entropy loss function defined by

L1(Σ̂, Σ) = tr(Σ̂Σ−1)− log|Σ̂Σ−1| −m. (38)

The quadratic loss function is given by

L2(Σ̂, Σ) = tr(Σ̂Σ−1 − I)2. (39)

The Bayesian estimates of the covariance matrices based on the loss functions L1(Σ̂, Σ) and
L2(Σ̂, Σ) are given by

Σ̂ =
[

E
(

Σ−1|y
)]−1

and vec(Σ̂) =
[

E
(

Σ−1 ⊗ Σ−1|y
)]−1

vec
[

E
(

Σ−1|y
)]

, (40)

respectively, where vec stands for the column vectorization of a matrix, and “⊗” denotes
the Kronecker product of matrices. Similarly, the Bayesian estimate of correlation moment
R under various loss functions can be obtained.
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7.2. Simulation Specification and Display of Empirical Results

In the simulation, we firstly set up the four different covariance structures as in the
following Equations (41) and the priors as given in the following Equations (43)–(46). Then,
we run the MCMC training trial 2000 times. After seeing the convergence trend approach
relative stability after 2000 training trials, we generated 20 datasets consisting of 100 sample
points of length 6 for each object. This is equivalent to the longitudinal data structure in
Table 1, with n = 100, p = 6, and k = 1 for each generated longitudinal dataset.

The four covariance matrices are designed as follows:

Σ1(i, j) = 10I(i = j) + 7I(i 6= j)

Σ2(i, j) = 10× 0.4|i−j|

Σ3(i, j) = 0.3Σ1(i, j) + 0.7Σ2(i, j)

Σ4(i, j) =
10√

1 + |i− j|
.

(41)

The root mean square error (RMSE) for estimating Σ is computed by

RMSE =
1

20

20

∑
k=1

MSE, MSE =

√√√√ 1
36

6

∑
i=1

6

∑
j=1

(Σij − Σ̂ij)2. (42)

The RMSE for estimating the correlation matrix R is computed similarly.
For each of the four different covariance structures, we used the R-package (called

Pandas, available upon request) to perform a preliminary analysis on the simulated data
with a specified prior distribution, respectively. Then, we employed the MCMC algorithm
to perform the sampling estimation on each parameter in the model. We used the three
methods mentioned before to perform the convergence assessment on the sampling results.
Finally, we obtained the estimates for the four types of covariance and correlation matrices.
The estimation error was computed based on three types of loss functions. The inverse-
Wishart estimation error was also obtained for comparison.

For the case of the CS covariance structure , the prior distribution of the parameter in
the model is specified as follows:

G0 = N(0, 10), α = 0.75,

bi
iid∼ N(0, 7),

β ∼ N(0, 25),

σ2 ∼ IG(3, 2),

σ2
s ∼ IG(6, 10).

(43)

Each parameter in the model is sampled and estimated using the MCMC method. The last
1000 iterations were taken to draw the posterior sampling trend diagram, as shown in
Figure 4.

The negative ELBO loss histogram and energy graph estimated by the model with the
CS structure are shown in Figures 5 and 6, respectively, where the energy graph in Figure 6
was generated by the Python package PyMC3 (https://www.pymc.io/projects/docs/en/
v3/pymc-examples/examples/getting_started.html) (accessed on 26 April 2023), which
displays two simulated density curves: the blue one stands for the energy value at each
MCMC sample point subtracted by the average energy (like conducting data centerization);
the green one stands for the difference of the energy function (like deriving the derivative
of a differential function). A normal energy distribution from an MCMC sampling indicates
the sampling process tends to a stable point. It implies convergence of the MCMC sampling.
More details on energy computation in MCMC sampling by PyMC3 can be found on
this website (https://www.pymc.io/projects/docs/en/v3/api/inference.html#module-
pymc3.sampling). Figures 5 and 6 incorporate both popular methods for evaluating the
convergence of the MCMC sampling in our Monte Carlo study. All energy graphs in the

https://www.pymc.io/projects/docs/en/v3/pymc-examples/examples/getting_started.html
https://www.pymc.io/projects/docs/en/v3/pymc-examples/examples/getting_started.html
https://www.pymc.io/projects/docs/en/v3/api/inference.html#module-pymc3.sampling
https://www.pymc.io/projects/docs/en/v3/api/inference.html#module-pymc3.sampling
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subsequent context have the same interpretation as they do here. We skip the tedious
interpretations for all other energy graphs to save space.

Figure 4. Sampling results under the CS structure: The left panel gives the sampling distributions
(smoothed by the kernel density estimation) for the parameters and the DP, which contain six pairs
of DPs (each subject is observed for p = 6 variables in the simulation), each pair consisting of a DP
generated from model (18) with the CS structure and a DP generated from the traditional model
with the inverse-Wishart structure (sampling population specified by Equations (23), (24) and (43)).
The orange line stands for sampling distribution under the SPAR model (18), and the blue line for
the inverse-Wishart model; the right panel gives the the graphs of two Markov chains under the
SPAR model (orange) and the inverse-Wishart model (blue), respectively, as well as the Markov
chain for each individual DP (different color for each). Each graph in the right column shows the
relationship between each estimated parameter (the ordinate) versus the number of random samples
in the abscissa, ranging from 1 to 1000. Each graph in the left column presents the kernel-estimated
density function of the parameter from the last 1000 samples.

As can be seen from Figures 5 and 6, after several iterations of the MCMC algorithm,
the negative ELBO loss is stable between 0 and 25, and the sample energy conversion
distribution is basically consistent with the true energy distribution. Based on the sampling
distribution and the trend graph, we can conclude that the MCMC algorithm is convergent.



Axioms 2023, 12, 431 18 of 37

Figure 5. Negative ELBO loss histogram: in Figure 5, the horizontal axis stands for the number of
iterations in the MCMC sampling with size n = 100, the vertical axis for the negative ELBO loss.

Figure 6. Energy graph: in Figure 6, the estimated distribution of energy is based on 1000 samples
with size n = 100.

For the case of the AR covariance structure, the prior distribution of each parameter in
the model is specified as follows:

G0 = N(0.4, 10), α = 0.75,

bi
iid∼ N(0, 0.01),

β ∼ N(0, 10)

σ2 ∼ IG(1.25, 0.01)

σ2
s ∼ IG(3.76, 9.566)

(44)

Each parameter in the model is sampled and estimated using the MCMC method. The last
1000 iterations were taken to draw the posterior sampling trend diagram, as shown in
Figure 7. Note that the DP-estimated density curves show different central locations
from those in Figure 4, because they are generated from different prior distributions with
different covariance structures (see the difference between Equations (43) and (44)).
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Figure 7. Sampling results under the AR structure: The left panel gives the sampling distributions
(smoothed by the kernel density estimation) for the parameters and the DP, which contain six pairs
of DPs (each subject is observed p = 6 variables in the simulation), each pair consisting of a DP
generated from model (18) with the AR structure and a DP generated from the traditional model
with the inverse-Wishart structure (sampling population specified by Equations (23), (24) and (44)).
The orange line stands for sampling distribution under the SPAR model (18) and the blue line for the
inverse-Wishart model; the right panel gives the the graphs of two Markov chains under the SPAR
model (orange) and the inverse-Wishart model (blue), respectively, as well as the Markov chain for
each individual DP (different color for each). Figures 4 and 7 have the same structure in both axes for
the two columns of graphs.

The histogram of negative ELBO loss and the energy graph for when the AR structure
is estimated are shown in Figures 8 and 9, respectively. They show that the histogram of the
negative ELBO loss tends to be stable after several iterations, which is basically below 50,
and the sample energy conversion distribution is basically consistent with the true energy
distribution. Based on the posteriori sampling and the trend graph, it can be concluded
that the algorithm converges quickly.
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Figure 8. Negative ELBO loss histogram: in Figure 8, the horizontal axis stands for the number of
iterations in the MCMC sampling with size n = 100, the vertical axis for the negative ELBO loss.

Figure 9. Energy graph: In Figure 9, the estimated distribution of energy is based on 1000 samples
with size n = 100.

For the covariance of the mixed structure of CS and AR, the prior distribution of each
parameter in the model is specified as follows:

G0 = N(0.4, 10), α = 0.75,

bi
iid∼ N(0, 2.1),

β ∼ N(0, 10),

σ2 ∼ IG(15.2, 14),

σ2
s ∼ IG(3.82, 6.867).

(45)

Each parameter in the model is sampled and estimated using the MCMC method. The last
1000 iterations were taken to draw the posterior sampling trend graph, as shown in
Figure 10. The negative ELBO loss histogram and the model energy graph are shown
in Figures 11 and 12, respectively.

As can be seen from the histogram of the negative ELBO loss in Figure 11, the negative
ELBO loss is basically under control between 0 and 30, after several iterations of the
algorithm, and the sample energy conversion distribution is basically consistent with the
true energy distribution. Based on the posteriori sampling and the trend graph, we can
conclude that the algorithm is convergent.
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Figure 10. Sampling results under the mixed structure of CS and AR: The left panel gives the
sampling distributions (smoothed by the kernel density estimation) for the parameters and the DP,
which contain six pairs of DPs (each subject is observed p = 6 variables in the simulation), each
pair consisting of a DP generated from model (18) with the mixed structure of CS and AR and a
DP generated from the traditional model with the inverse-Wishart structure (sampling population
specified by Equations (23), (24) and (45)). The orange line stands for sampling distribution under the
SPAR model (18) and the blue line for the inverse-Wishart model; the right panel gives the the graphs of
two Markov chains under the SPAR model (orange) and the inverse-Wishart model (blue), respectively, as
well as the Markov chain for each individual DP (different color for each). Figures 4 and 10 have the same
structure in both axes for the two columns of graphs.

Figure 11. Negative ELBO loss histogram: in Figure 11, the horizontal axis stands for the number of
iterations in the MCMC sampling with size n = 100, the vertical axis for the negative ELBO loss.
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Figure 12. Energy graph: in Figure 12, the estimated distribution of energy is based on 1000 samples
with size n = 100.

For the case of independent structure covariance, the prior distributions of the param-
eters in the model are specified as follows:

G0 = N(0.672, 10), α = 0.75,

bi
iid∼ N(0, 1.106),

β ∼ N(0, 20),

σ2 ∼ IG(2.22, 7.48),

σ2
s ∼ IG(3.20, 3.443).

(46)

The MCMC method was used to sample and estimate each parameter in the model. The last
1000 iterations were taken to draw the posterior sampling trend graph shown in Figure 13.

The negative ELBO loss histogram and the model energy graph are shown in
Figures 14 and 15, respectively. It can be seen that the negative ELBO loss approaches
0 quickly. Based on the posterior sampling and the trend diagram, we can conclude that
the algorithm is convergent.

Figure 13. Cont.
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Figure 13. Sampling results under the independent structure: The left panel gives the sampling
distributions (smoothed by the kernel density estimation) for the parameters and the DP, which
contain six pairs of DPs (each subject is observed p = 6 variables in the simulation), each pair
consisting of a DP generated from model (18) with the independent structure and a DP generated
from the traditional model with the inverse-Wishart structure (sampling population specified by
Equations (23), (24) and (46)). The orange line stands for sampling distribution under the SPAR model
(18) and the blue line for the inverse-Wishart model; the right panel gives the the graphs of two
Markov chains under the SPAR model (orange) and the inverse-Wishart model (blue), respectively, as
well as the Markov chain for each individual DP (different color for each). Figures 4 and 13 have the
same structure in both axes for the two columns of graphs.

Figure 14. Negative ELBO loss histogram: in Figure 14, the horizontal axis stands for the number of
iterations in the MCMC sampling with size n = 100, the vertical axis for the negative ELBO loss.

Figure 15. Energy graph: in Figure 15, the estimated distribution of energy is based on 1000 samples
with size n = 100.
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The above model is applied to the estimation of covariance matrices, correlation matri-
ces, and model errors. We compare it with with the inverse-Wishart method. The outcomes
of the estimation errors are shown in Table 2:

Table 2. Estimated RMSE, L1, and L2 based on covariance matrix Σ.

Loss Function Model C1 C2 C3 C4

RMSE SPAR 0.9960 0.1037 0.8995 1.5358
Inv-W 2.9691 2.9352 3.4804 3.3285

L1 SPAR 0.1810 0.1201 1.3217 0.9558
Inv-W 1.8389 1.4632 3.0516 1.2926

L2 SPAR 0.1289 0.1345 1.7575 0.6044
Inv-W 0.2405 0.9576 2.8083 1.7565

C1 represents the covariance of the complex symmetry (CS) structure; C2 represents the AR structure covariance;
C3 represents the mixed structure covariance of CS and AR; C4 represents independent structure covariance; and
Inv-W = inverse-Wishart.

Similarly, the estimation results of the four corresponding correlation matrices are
shown in Table 3:

Table 3. Estimated RMSE, L1, and L2 based on correlation matrix R.

Loss Function Model C1 C2 C3 C4

RMSE SPAR 0.1628 1.1417 0.3775 0.1542
Inv-W 0.2308 2.4152 0.9115 0.2771

L1 SPAR 0.0956 0.5482 0.0631 1.2354
Inv-W 0.1519 1.1424 0.1756 1.9137

L2 SPAR 0.1013 0.9809 0.4937 0.5854
Inv-W 0.1238 1.1935 0.5205 0.6484

C1 represents the covariance of the complex symmetry (CS) structure; C2 represents the AR structure covariance;
C3 represents the mixed structure covariance of CS and AR; and C4 represents independent structure covariance.

In Tables 2 and 3, the covariance models are compared with each other based on
three types of loss functions. In estimating the four covariance structures, the SPAR model
performs better than the traditional inverse-Wishart method for each covariance structure.
The estimation error of the SPAR model is much smaller than that of the inverse-Wishart
method. When estimating the correlation matrix, except for the relatively poor SPAR
performance under the strict AR structure, all other models perform roughly the same
based on the quadratic loss function L2(Σ̂, Σ). Based on the comparison of the estimation
errors in Tables 2 and 3, the SPAR model shows fairly good performance in estimating the
covariance matrix and correlation matrix.

7.3. Analysis of a Real Wind Speed Dataset

To verify the effectiveness of the SPAR model built in this paper in practical application,
we employ the Hongming data, which contain the ground meteorological data of Dingxin
Station, Jinta County, Jiuquan City, Gansu Province, China. We use the SPAR model and
the MCMC method to estimate the covariance matrix and correlation matrix under four
different covariance structures (CS, AR, the mixture of CS and AR, and unstructured) and
compare the estimates with those from the traditional Bayesian estimation by the inverse-
Wishart method. The covariance structure of the four cases is shown in Equation (41),
and the mean square error is shown in Equation (42). The real data are arranged into a
longitudinal data structure, as shown in Table 1 with n = 100, p = 6, and k = 1. The
following graphs are plotted in the same way as in the corresponding graphs in the Monte
Carlo study in Section 7.2 but with real data input in the same Python program.

For the case of CS covariance structure , each parameter in the model is sampled and
estimated using the MCMC method. The last 1000 iterations are taken to draw the posterior
sampling trend diagram, as shown in Figure 16.
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Figure 16. Sampling results under the CS structure: The left panel gives the sampling distributions
(smoothed by the kernel density estimation) for the parameters and the DP, which contain six pairs
of DPs (each subject is observed p = 6 variables in the simulation), each pair consisting of a DP
generated from model (18) with the CS structure and a DP generated from the traditional model with
the inverse-Wishart structure (sampling population specified by Equations (23), (24) and (43)). The
real blue line stands for sampling distribution under the SPAR model (18) and the dotted blue line for
the inverse-Wishart model; the right panel gives the the graphs of two Markov chains under the SPAR
model (real line) and the inverse-Wishart model (dotted line), respectively, as well as the Markov
chain for each individual DP (different color for each). Figures 4 and 16 have the same structure in
both axes for the two columns of graphs.

The negative ELBO loss histogram and the model energy graph are shown in
Figures 17 and 18, respectively. It can be seen that the negative ELBO loss approaches
0 quickly, and the sample energy conversion distribution is basically consistent with the
true energy distribution. Based on the posterior sampling and the trend diagram, we can
conclude that the algorithm is convergent.

For the case of the AR covariance structure, each parameter in the model is sampled
and estimated using the MCMC method. The last 1000 iterations are taken to draw the
posterior sampling trend diagram, as shown in Figure 19:
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Figure 17. Negative ELBO loss histogram: in Figure 17, the horizontal axis stands for the number of
iterations in the MCMC algorithm with size n = 100, the vertical axis for the negative ELBO loss.

Figure 18. Energy graph: In Figure 18, the estimated distribution of energy is based on 1000 samples
with size n = 100.

Figure 19. Cont.
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Figure 19. Sampling results under the AR structure: The left panel gives the sampling distributions
(smoothed by the kernel density estimation) for the parameters and the DP, which contain six pairs
of DPs (each subject is observed p = 6 variables in the simulation), each pair consisting of a DP
generated from model (18) with the AR structure and a DP generated from the traditional model with
the inverse-Wishart structure (sampling population specified by Equations (23), (24) and (44)). The
real blue line stands for sampling distribution under the SPAR model (18) and the dotted blue line for
the inverse-Wishart model; the right panel gives the the graphs of two Markov chains under the SPAR
model (real line) and the inverse-Wishart model (dotted line), respectively, as well as the Markov
chain for each individual DP (different color for each). Figures 4 and 19 have the same structure in
both axes for the two columns of graphs.

The negative ELBO loss histogram and the energy graph estimated by the model under
the AR structure are shown in Figures 20 and 21, respectively. It shows that the histogram
of the negative ELBO loss approaches 0 quickly. Based on the posteriori sampling and the
trend graph, it can be concluded that the algorithm converges quickly.

Figure 20. Negative ELBO loss histogram: in Figure 20, the horizontal axis stands for the number of
iterations in the MCMC algorithm with size n = 100, the vertical axis for the negative ELBO loss.

Figure 21. Energy graph: in Figure 21, the estimated distribution of energy is based on 1000 samples
with size n = 100.
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For the covariance of the mixed structure of CS and AR, each parameter in the model
is sampled and estimated using the MCMC method. The last 1000 iterations are taken to
draw the posterior sampling trend graph, as shown in Figure 22. The negative ELBO loss
histogram and the model energy graph are shown in Figures 23 and 24, respectively.

Figure 22. Sampling results under the mixed structure of CS and AR: The left panel gives the
sampling distributions (smoothed by the kernel density estimation) for the parameters and the DP,
which contain six pairs of DPs (each subject is observed p = 6 variables in the simulation), each
pair consisting of a DP generated from model (18) with the mixed structure of CS and AR and a
DP generated from the traditional model with the inverse-Wishart structure (sampling population
specified by Equations (23), (24) and (45)). The real blue line stands for sampling distribution under
the SPAR model (18) and the dotted blue line for the inverse-Wishart model; the right panel gives the
the graphs of two Markov chains under the SPAR model (real line) and the inverse-Wishart model
(dotted line), respectively, as well as the Markov chain for each individual DP (different color for
each). Figures 4 and 22 have the same structure in both axes for the two columns of graphs.
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Figure 23. Negative ELBO loss histogram: in Figure 23,the horizontal axis stands for the number of
iterations in the MCMC algorithm with size n = 100, the vertical axis for the negative ELBO loss.

Figure 24. Energy graph: in Figure 24, the estimated distribution of energy is based on 1000 samples
with size n = 100.

As can be seen from the histogram of the negative ELBO loss in Figure 23, the negative
ELBO loss approaches 0 quickly after several iterations of the algorithm. Based on the
posteriori sampling and the trend graph, we can conclude that the algorithm is convergent.

For the case of independent structure covariance, the MCMC method is used to sample
and estimate each parameter in the model. The last 1000 iterations are taken to draw the
posterior sampling trend graph shown in Figure 25.

Figure 25. Cont.
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Figure 25. Sampling results under an independent structure: The left panel gives the sampling
distributions (smoothed by the kernel density estimation) for the parameters and the DP, which
contain six pairs of DPs (each subject is observed p = 6 variables in the simulation), each pair
consisting of a DP generated from model (18) with the independent structure and a DP generated
from the traditional model with the inverse-Wishart structure (sampling population specified by
Equations (23), (24) and (46)). The real blue line stands for sampling distribution under the SPAR
model (18) and the dotted blue line for the inverse-Wishart model; the right panel gives the the graphs
of two Markov chains under the SPAR model (real line) and the inverse-Wishart model (dotted line),
respectively, as well as the Markov chain for each individual DP (different color for each). Figures 4
and 25 have the same structure in both axes for the two columns of graphs.

The negative ELBO loss histogram and the model energy graph are shown in
Figures 26 and 27, respectively. It can be seen that the negative ELBO loss approaches 0
quickly. Based on the posterior sampling and trend diagram, we can conclude that the
algorithm is convergent.

Figure 26. Negative ELBO loss histogram: in Figure 26, the horizontal axis stands for the number of
iterations in the MCMC algorithm with size n = 100, the vertical axis for the negative ELBO loss.
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Figure 27. Energy graph: in Figure 27, the estimated distribution of energy is based on 1000 samples
with size n = 100.

In Tables 4 and 5, the covariance models are compared with each other based on three
types of loss functions, RMSE, L1, and L2. When using the four covariance structures
based on either the covariance matrix or the correlation matrix, the SPAR model always
performs better than the traditional inverse-Wishart method—it always has a smaller value
of RMSE, L1, or L2 when comparing the SPAR model with the Inv-W model under the
same covariance structure C1, C2, C3, or C4 in Tables 4 and 5.

Table 4. Estimated RMSE, L1, and L2 based on covariance matrix Σ.

Loss Function Model C1 C2 C3 C4

RMSE SPAR 0.0831 0.0962 0.08837 0.0981
Inv-W 0.4120 0.6826 0.3181 0.4064

L1 SPAR 0.1360 0.1996 0.1465 0.2508
Inv-W 46.6743 16.8967 19.0260 14.3543

L2 SPAR 0.0870 0.0826 0.2084 0.3517
Inv-W 661.4643 142.3157 450.6686 340.6994

C1 represents the covariance of the complex symmetry (CS) structure; C2 represents the AR structure covariance;
C3 represents the mixed structure covariance of CS and AR; C4 represents independent structure covariance; and
Inv-W = inverse-Wishart.

Table 5. Estimated RMSE, L1, and L2 based on correlation matrix R.

Loss Function Model C1 C2 C3 C4

RMSE SPAR 0.0187 0.5359 0.1976 0.1985
Inv-W 0.6585 0.6486 0.6515 0.7580

L1 SPAR 0.0066 0.1670 0.0662 0.1846
Inv-W 0.0968 4.8245 0.3174 0.8035

L2 SPAR 0.0036 0.0132 0.0080 0.0939
Inv-W 0.0079 1.3683 0.1202 0.3488

C1 represents the covariance of the complex symmetry (CS) structure; C2 represents the AR structure covariance;
C3 represents the mixed structure covariance of CS and AR; and C4 represents independent structure covariance.

8. Concluding Remarks

The SPAR model (18) provides an explicitly complete semiparametric solution to
the estimation of model parameters through the MCMC algorithm. Compared with the
model formulation in Quintana et al. [4], the MCMC algorithm for posterior inference on
model (18) is easier to implement and may converge faster because of the explicit simple
posterior distributions of the model parameters. An effective and fast-converging MCMC
algorithm plays an important role in Bayesian statistical inference. The SPAR model (18)
gains some trade-off in easy implementation and fast convergence in the MCMC algorithm
by imposing simpler assumptions on model parameters.
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With regard to the option of choosing the initial values for estimating model parame-
ters by the MCMC algorithm, we recommend using a numerical optimization method such
as the maximum posteriori (MAP) estimation to obtain an estimator as the initial value of a
parameter. It is likely to speed up the convergence speed of the sampling parameter. We
employ the Gibbs sampling algorithm when estimating the parameters in the model. The
convergence diagnosis of Markov chains generated by the MCMC algorithm is assessed by
the posterior sampling trend plot, negative ELBO histogram, and the energy graph, which
show the observation of fast convergence of the MCMC sampling process. By applying the
SPAR model to four different covariance structures through both Monte Carlo study and a
real dataset, we illustrate its effectiveness in handling nonstationary forms of covariance
structures and its domination over the traditional inverse-Wishart method.

It should be pointed out that the effectiveness and fast convergence of the MCMC
algorithm depend on both model assumption and the priors of model parameters. Our
Monte Carlo study was carried out by choosing normal priors for the model parameters
and the inverse Gamma distribution for the variance components. This choice led to the
easy implementation of the MCMC algorithm. It will be an interesting future research
direction to develop some meaningful criteria for model and algorithm comparison in the
area of Bayesian nonparametric longitudinal data analysis. The main purpose of our paper
is to give an easily implementable approach to this area with a practical illustration. We can
conclude that the complete semiparametric approach to Bayesian longitudinal data analysis
in this paper is a significant complement to the area studied by some influential peers, such
as Mukhopadhyay and Gelfand (1997, [21]), Quintana et al. (2016, [4]), and others.
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Appendix A. Derivations of Conditional Probability Distributions in Section 7.1
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Combining (A1) with (A2), we have
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The complete posterior distribution of β can be expressed as

β ∼ N(µβ, σ2
β). (A5)

The conditional distribution of σ2 is computed as follows:
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This shows that the posterior distribution of σ2 is an inverse gamma distribution. We use
the following notation:

σ2 ∼ IG
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The conditional distribution of bi is computed as follows:

p(bi|∗) ∝ f (yi|β, bi, Si, σ2)p(bi)
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Combining (A8) with (A9), we have
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Let
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The posterior distribution of bi is given by

bi ∼ N(µb, σ2
b ). (A12)

/The conditional distribution of Si = (si1, . . . , sim)
′ is obtained by

p(Si|∗) ∝ p(yi|β, bi, Si, σ2)p(Si|σ2
s , ρi). (A13)

It is necessary to compute the conditional distribution of each component of Si separately:
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Let

σ−2
si1

=
n
σ2 +

1
σ2

s
, µsi1 =

σ2
si1

σ2

n

∑
i=1

(yi1 − β− bi). (A15)

We obtain the posteriori distribution for si1:

si1 ∼ N(µsi1 , σ2
si1
). (A16)
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Similarly, the posterior distribution of si2 is obtained by

p(si2|∗) ∝
n

∏
i=1

p
(

yi2|β, b, si2, σ2
)

p
(

si2|ŝi1, σ2
s , ρ
)

= exp

{
− 1

2σ2

n

∑
i=1

(yi2 − β− bi − si2)
2

}
exp

−
(

si2−ŝi1ρ
|ti2−ti1 |
i

)2

2σ2
s

(
1−ρ

2|ti2−ti1 |
i

)
·

(2π)−
n+1

2 σ−nσ−1
s

(
1− ρ

|ti2−ti1|
i

)−1

∝ exp

{
− 1

2σ2

n

∑
i=1

(yi2 − β− bi − si2)
2

}
exp

−
(

si2−ŝi1ρ
|ti2−ti1 |
i

)2

2σ2
s

(
1−ρ

2|ti2−ti1 |
i

)


= exp

{
− 1

2

[
1

σ2

n

∑
i=1

(yi2 − β− bi)
2 +

ns2
i2

σ2 − 2si2
σ2

n

∑
i=1

(yi2 − β− bi)

]}
·

exp

− 1
2

 s2
i2+

(
ŝi1ρ
|ti2−ti1 |
i

)2
−2si2 ŝi1ρ

|ti2−ti1 |
i

σ2
s

(
1−ρ

2|ti2−ti1 |
i

)

.

(A17)

After removing the constant term, the posterior distribution of si2 is proportional to

exp

− 1
2

 n
σ2 +

1

σ2
s

(
1−ρ

2|ti2−ti1 |
i

)
s2

i2 − 2

 1
σ2

n

∑
i=1

(yi2 − β− bi) +
ŝi1ρ
|ti2−ti1 |
i

σ2
s

(
1−ρ

2|ti2−ti1 |
i

)
si2

.

Let
σ−2

si2
=

n
σ2 +

1

σ2
s

(
1− ρ

2|ti2−ti1|
i

)
µsi2 = σ2

si2

σ2
s

σ2

n

∑
i=1

(yi2 − β− bi) +
ŝi1ρ

|ti2−ti1|
i

σ2
s

(
1− ρ

2|ti2−ti1|
i

)
.

(A18)

We obtain the posteriori distribution for si2:

si2 ∼ N(µsi2 , σ2
si2
). (A19)

Similarly, the posteriori distribution of sij(j = 1, . . . , m) can be obtained:

µsij = σ2
sij

 1
σ2

n

∑
i=1

(yij − β− bi) +
ŝi,j−1ρ

|tij−ti,j−1|
i

σ2
s

(
1− ρ

2|tij−ti,j−1|
i

)


σ−2
sij

=
n
σ2 +

1

σ2
s

(
1− ρ

2|tij−ti,j−1|
i

)
sij ∼ N(µsij , σ2

sij
).

(A20)
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Combining the above derivations, we can obtain the conditional distribution of σ2
s as follows:

p(σ2
s |∗) ∝ f (S|σ2

s , ρ)p(σ2
s )

=
n

∏
i=1

f (si1) f (si2|si1) · · · f (sim|si1, si2, . . . , si,m−1)

= (2π)−
m
2 σ−m

s

m

∏
j=2

√
1− ρ

2|tij−ti,j−1|
i

βα1
1

Γ(α1)
(σ2

s )
−α1−1 exp

{
− β1

σ2
s

}
·

exp

−
1

2σ2
s

s2
i1 +

m

∑
j=2

(
sij − ŝi,j−1ρ

|tij−ti,j−1|
i

)2

1− ρ
2|tij−ti,j−1|
i




= exp

−
1
σ2

s

1
2

s2
i1 +

m

∑
j=2

(
sij − ŝi,j−1ρ

|tij−ti,j−1|
i

)2

1− ρ
2|tij−ti,j−1|
i

+ β1


·

(2π)−
m
2

βα1
1

Γ(α1)

m

∏
j=2

√
1− ρ

2|tij−ti,j−1|
i (σ2

s )
−m

2 −α1−1

∝ (σ2
s )
−m

2 −α1−1 exp

− 1
σ2

s

 1
2

s2
i1 +

m

∑
j=2

(
sij−ŝi,j−1ρ

|tij−ti,j−1 |
i

)2

1−ρ
2|tij−ti,j−1 |
i

+ β1


.

(A21)

The posterior distribution of σ2
s is actually an inverse gamma distribution:

σ2
s ∼ IG

m
2
+ α1,

1
2

s2
i1 +

m

∑
j=2

(
sij − ŝi,j−1ρ

|tij−ti,j−1|
i

)2

1− ρ
2|tij−ti,j−1|
i

+ β1

. (A22)

The posterior distribution of ρi is obtained as follows:

p(ρi|∗) = p(ρi|S, σ2
s , ρ−i) = p(ρi|Si, σ2

s , ρ−i)

=
p(Si|σ2

s , ρi)p(ρi|ρ−i)p(σ2
s , ρ−i)

p(Si|σ2
s )p(σ2

s , ρ−i)
∝ f (Si|σ2

s , ρi)p(ρi|ρ−i),
(A23)

which can be expressed as follows:

p(ρi|Si, σ2
s , ρ−i) ∼ ∑

j 6=i
qijδρj + ri Hi, qij = b f (Si|σ2

s , ρj)

ri = bα
∫

f (Si|σ2
s , ρ)g0(ρ)dρ, Hi ∼

f (Si|σ2
s , ρ)g0(ρ)∫

f (Si|σ2
s , ρ)g0(ρ)dρ

,

(A24)

where g0 is the probability density function of the base distribution G0, b is the constant
satisfying the equation ∑j 6=i qij + ri = 1, and Hi is the marginal distribution of the parameter
ρ based on the prior G0 and the variable Si.
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