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Abstract: In this paper, the notion of generalized quasi-weakly contractive operators in metric-like
spaces is introduced, and new conditions for the existence of fixed points for such mappings are
investigated. A non-trivial example which highlights the novelty of our principal idea is constructed.
It is observed comparatively that the proposed concepts herein subsume some important results
in the corresponding literature. As an application, one of our obtained findings is utilized to setup
novel criteria for the existence of solutions to two-point boundary value problems of a second order
differential equation. To attract new researchers in the directions examined in this article, a significant
number of corollaries are pointed out and discussed.
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1. Introduction

The Banach fixed point theorem (also known as the contraction mapping principle)
is an essential tool in the theory of metric spaces. It ensures the existence and uniqueness
of fixed points of specific mappings of metric spaces (MSs) and provides a useful search
method to find these fixed points. In efforts to explore more fixed point results, several
researchers have established generalizations of MSs. The idea of a contraction mapping
principle in quasi-metric spaces was introduced by Bakhtin [1]. The latter notion was
extended to b-metric spaces by Czerwik [2]. As an improvement of MSs and the corre-
sponding fixed point results, the concept of cone MSs was initiated by Huang and Zhang [3].
In a related development, Mustafa and Sims [4] recently coined a novel approach to gen-
eralized MSs. One of the earliest generalizations is the quasi-MS defined by Wilson [5].
In a similar approach, Matthews [6] introduced the concept of partial MS as a part of the
investigation into denotational semantics of data flow networks. The main contribution
in [6] is the establishment of the fact that self-distance in the partial metric space is not
necessarily zero. As a refinement of the partial MS, Amini-Harandi [7] proposed the notion
of metric-like space (MlS) by relaxing the axiom of non-negativity and small self-distances
in partial MS. In another direction, Alber et al. [8] introduced the idea of weak contraction
mappings in the context of Hilbert space by defining additional algebraic structure on the
space. Following this, Cho [9] established some fixed point results for weakly contractive
mappings in MS which extended some known results. A general remark on invariant
point results for weakly contractive operators was made by Aguirre and Reich [10], which
formed one of the good reference notes in the literature.
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It is noted from the review of the existing literature that little or no work has been
conducted on the quasi-weakly contractive operator as a result of MlS. Hence, motivated by
the idea in [9], in this manuscript we introduce a new concept of a generalized quasi-weakly
contractive operator in MlS and investigate the existence and uniqueness of fixed points
of such operators. The idea proposed in this manuscript generalizes several well-known
findings in the corresponding literature. Substantial examples are presented to verify our
proposed idea and compare it to other corresponding results. A few corollaries which
compare our new concepts to other well-known ideas in the literature are presented and
analyzed. As an application, in order to investigate new existence conditions for the
solution of a class of boundary value problems, one of our obtained corollaries is used.
Our proposed ideas herein extend the results of [9,11] and some references therein from
complete MS to σ-complete MlS.

The paper is organized as follows: Section 1 presents the introduction and review
of the related literature. In Section 2, the fundamental concepts needed in the sequel are
collated. The main findings of the paper are discussed in Section 3. Some consequences of
our obtained invariant point results in partial metric spaces are established in Section 4.
In Section 5, one of the results obtained herein is applied to investigate new conditions for
the existence of a solution to a boundary value problem of the second order.

2. Preliminaries

In this section, we record basic ideas needed in later sections.

Definition 1 ([6]). Let Ω be a nonempty set. A function ρ : Ω×Ω −→ R+ is called a partial
metric on Ω if, for all l, m, z ∈ Ω, the following conditions are satisfied:

(1) ρ(l, l) = ρ(m, m)⇔ l = m;
(2) ρ(l, l) ≤ ρ(l, m);
(3) ρ(l, m) = ρ(m, l);
(4) ρ(l, z) ≤ ρ(l, m) + ρ(m, z)− ρ(m, m).

The pair (Ω, ρ) is called a partial MS. Note that if ρ(l, m) = 0, then l = m. An example
of a partial metric defined on R+, is ρ(l, m) = max{l, m}, l, m ≥ 0. For more examples of
partial metrics, see [9]. Let the sequence in Ω be {ly}y∈N. Then,

(1) {ly}y∈N is convergent to l if lim
y→∞

ρ(l, ly) = ρ(l, l);

(2) {ly}y∈N is said to be a Cauchy sequence if lim
y,i→∞

ρ(ly, li) exists and is finite;

(3) If each Cauchy sequence in Ω converges to a point l ∈ Ω, then Ω is complete. such
that

lim
y,i→∞

ρ(ly, li) = ρ(l, l).

Remark 1. A partial MS Ω is complete if and only if there exists l ∈ Ω such that for every Cauchy
sequence {ly}y∈N in Ω,

lim
y,i→∞

ρ(ly, li) = ρ(l, l).

Definition 2 ([7]). A mapping σ : Ω×Ω −→ R+ is said to be an Ml on Ω if for any l, m, z ∈ Ω,
the following hold:

(σ1) σ(l, m)= 0⇒ l = m;
(σ2) σ(l, m) = σ(m, l);
(σ3) σ(l, z) ≤ σ(l, m) + σ(m, z).

The pair (Ω, σ) is called an MlS.



Axioms 2023, 12, 397 3 of 16

Definition 3 ([7]). A sequence {ly}y∈N in an MlS (Ω, σ) converges to a point l ∈ Ω if σ(l, l) =
lim

y→∞
σ(ly, l).

Definition 4 ([7]). A sequence {ly}y∈N in an MlS (Ω, σ) is called a σ-Cauchy sequence if the
limit lim

y,i→∞
σ(ly, li) exists and is finite. If there is any l ∈ Ω such that for each σ-Cauchy sequence

{ly}∞
y=0,

lim
y→∞

σ(ly, l) = lim
y,i→∞

σ(ly, li),

then, the MlS (Ω, σ) is said to be complete.

Remark 2 ([7]). Every partial MS is an MlS, but the converse is not always true. The example
given here recognizes this observation.

Example 1 ([7]). Let Ω = {0, 1}, and let

σ(l, m) =

{
2, if l = m = 0;
1, otherwise.

Then, (Ω, σ) is an MlS, but since σ(0, 0) 
 σ(0, 1), (Ω, σ) is not a partial MS.

Remark 3 ([7]). An Ml on Ω satisfies all the conditions of a metric except that σ(l, l) may be
positive for l ∈ Ω.

Definition 5 ([12]). Let (Ω, d) be an MS. A self-mapping Υ : Ω −→ Ω is said to be a quasi-
contraction if there exists λ ∈

[
0, 1

2

)
such that for all l, m ∈ Ω,

d(Υl, Υm) ≤ max{d(l, m), d(l, Υl), d(m, Υm), d(l, Υm), d(m, Υl)}.

Definition 6 ([8]). Let (Ω, d) be an MS. A mapping Υ : Ω −→ Ω is said to be weakly contractive,
if for all l, m ∈ Ω,

d(Υl, Υm) ≤ d(l, m)− λ(d(l, m)),

where λ : R+ −→ R+ is a continuous and non-decreasing function such that λ(0) = 0 and
lim

t→+∞
λ(t) = +∞.

Definition 7. A function f : Ω −→ [0, ∞], where Ω is an MS, is called lower semi-continuous if,
for all l ∈ Ω and {ly}y∈N ⊂ Ω with lim

y→∞
ly = l, we have

f (l) ≤ lim inf
y→∞

ly.

Let Ψ = {ψ : [0, ∞) → [0, ∞)|ψ be continuous and ψ(t) = 0 ⇔ t = 0}. In addition, let
Φ = {φ : [0, ∞) −→ [0, ∞)|φ be lower semi-continuous and φ(t) = 0⇔ t = 0}.

Cho [9] obtained the following result in the context of MS.

Definition 8 ([9]). Let Ω be an MS with metric d, Υ : Ω −→ Ω be a mapping, and let
ϕ : X → [0, ∞) be a lower semi-continuous function. Then, Υ is called a generalized weakly
contractive mapping if it satisfies the following condition:

ψ(d(Υl, Υm) + ϕ(Υl) + ϕ(Υm)

≤ ψ(M(l, m, ϕ))− φ(N (l, m, ϕ)) (1)
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for all l, m ∈ Ω, where ψ ∈ Ψ, φ ∈ Φ and

M(l, m, ϕ) = max


d(l, m) + ϕ(l) + ϕ(m) + d(l, Υl) + ϕ(l) + ϕ(Υl),

d(l, Υm) + ϕ(m) + ϕ(Υm),
1
2 [d(l, Υm) + ϕ(l) + ϕ(Υm) + d(m, Υl) + ϕ(m) + ϕ(Υl)

,

N (l, m, ϕ) = max{d(l, m) + ϕ(l) + ϕ(m), d(m, Υm) + ϕ(m) + ϕ(Υm)}.

The main result of [9] is as follows.

Theorem 1 ([9]). Let Ω be a complete MS. If Υ is a generalized weakly contractive mapping, then
there exists a unique z ∈ Ω such that z = Υz and ϕ(z) = 0.

Lemma 1. Let (Ω, σ) be an MlS, and let {ly}y∈N be a sequence in Ω such that if {ly}y∈N is not
a σ-Cauchy sequence in (Ω, σ). Then, there exist ε+ > 0 and two subsequences {ly(k)}k∈N and
{li(k)}y∈N of {ly}k∈N, where y, i are positive integers with y(k) > i(k) > k such that

σ(li(k), ly(k)) ≥ ε+ (2)

and
σ(li(k)−1, ly(k)) < ε+. (3)

Moreover, suppose that

lim
y→∞

σ(ly, ly+1) = 0. (4)

Then, the following hold:

(1) lim
k→∞

σ(li(k), ly(k)) = ε+;

(2) lim
k→∞

σ(li(k), ly(k)+1) = ε+;

(3) lim
k→∞

σ(li(k−1), ly(k)) = ε+;

(4) lim
k→∞

σ(li(k)−1, ly(k+1)) = ε+.

Proof. Suppose that {ly}y∈N is not a σ-Cauchy sequence in (Ω, σ). Then, there exist ε+ > 0
and sequences {ly(k)}k∈N and {li(k)}k∈N of positive integers y, i with y(k) > i(k) > k,
such that

σ(li(k), ly(k−1)) < ε+, σ(li(k), ly(k)) ≥ ε+,

for all k ∈ N. Then,

ε+ ≤ σ(li(k), ly(k)) ≤ σ(ly(k), ly(k−1)) + σ(ly(k−1), li(k))

< ε+ + σ(ly(k), ly(k−1)). (5)

Applying (4), we deduce from (5) that

lim
k→∞

σ(li(k), ly(k)) = ε+. (6)

Moreover,

σ(li(k), ly(k)) ≤ σ(li(k), ly(k+1)) + σ(ly(k+1), ly(k))

and

σ(li(k), ly(k+1)) ≤ σ(li(k), ly(k)) + σ(ly(k), ly(k+1)).
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Letting k→ ∞ in the above two expressions and employing (4) and (6), we have

lim
k→∞

σ(li(k), ly(k+1)) = ε+.

In similar steps, we can show that the sequences in (3) and (4) tend to ε+.

3. Main Results

In this section, we introduce the concept of a generalized quasi-weakly contractive
operator in the framework of MlS and examine the conditions for the existence of a fixed
point of such an operator.

Definition 9. Let (Ω, σ) be an MlS. A self-mapping Υ : Ω −→ Ω is called a generalized quasi-
weakly contractive operator, if it satisfies the following condition:

ψ(σ(Υl, Υl) + σ(Υl, Υm) + ϕ(Υl) + ϕ(Υm)) ≤ ψ(C(l, m, ϕ))− φ(L(l, m, ϕ)), (7)

for all l, m ∈ Ω, where ψ ∈ Ψ, φ, ϕ ∈ Φ and

C(l, m, ϕ) = max


σ(l, l) + σ(l, m) + ϕ(l) + ϕ(m), σ(l, Υl) + ϕ(l) + ϕ(Υl),

+σ(m, m)σ(m, Υm) + ϕ(m) + ϕ(Υm),
1
2 [σ(l, Υm) + ϕ(l) + ϕ(Υm)
+σ(m, Υl) + ϕ(m) + ϕ(Υl)]

 (8)

L(l, m, ϕ) = max
{

σ(l, l) + σ(l, m) + ϕ(l) + ϕ(m),
σ(m, m) + σ(m, Υm) + ϕ(m) + ϕ(Υm)

}
. (9)

The following is the main result of this paper.

Theorem 2. Let (Ω, σ) be a σ-complete MlS. If Υ is a generalized quasi-weakly contractive operator,
then there exists a unique u ∈ Ω such that u = Υu and ϕ(u) = 0.

Proof. Starting from an arbitrary point l := l0 ∈ Ω, we will construct a recursive sequence
{ly}y∈N in the following manner:

l0 := l and ly = Υly−1, for all n ∈ N.

We presume that ly 6= ly−1 for all y ∈ N. In fact, if for some y ∈ N, it is observed that
the expression ly = ly−1 = Υly−1, then the proof is finished.

By replacing l = ly−1 and m = ly in (8), we obtain

C(ly−1, ly, ϕ) = max



σ(ly−1, ly−1) + σ(ly−1, ly) + ϕ(ly−1) + ϕ(ly),
σ(ly−1, Υly−1) + ϕ(ly−1) + ϕ(Υly−1),
σ(ly, ly) + σ(ly, Υly) + ϕ(ly) + ϕ(Υly),

1
2 [σ(ly−1, Υly) + ϕ(ly−1) + ϕ(Υly)
+σ(ly, Υly−1) + ϕ(ly) + ϕ(Υly−1)]



= max



σ(ly−1, ly−1) + σ(ly−1, ly) + ϕ(ly−1) + ϕ(ly),
σ(ly−1, ly) + ϕ(ly−1) + ϕ(ly),

σ(ly, ly) + σ(ly, ly+1) + ϕ(ly) + ϕ(ly+1),
1
2 [σ(ly−1, ly+1) + ϕ(ly−1) + ϕ(ly+1)

+σ(ly, ly) + ϕ(ly) + ϕ(ly)]


. (10)
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We observe that

1
2
[σ(ly−1, ly+1) + ϕ(ly−1) + ϕ(ly+1) + σ(ly, ly) + ϕ(ly) + ϕ(ly)]

≤ 1
2
[σ(ly−1, ly) + σ(ly, ly+1) + ϕ(ly−1) + ϕ(ly+1) + σ(ly, ly) + ϕ(ly) + ϕ(ly)]

≤ max{σ(ly−1, ly) + ϕ(ly−1) + ϕ(ly),

σ(ly, ly) + σ(ly, ly+1) + ϕ(ly) + ϕ(ly+1)}.

Hence, (10) becomes

C(ly−1, ly, ϕ) = max{σ(ly−1, ly−1) + σ(ly−1, ly) + ϕ(ly−1) + ϕ(ly),

σ(ly, ly) + σ(ly, ly+1) + ϕ(ly) + ϕ(ly+1)}).

Similarly, we obtain

L(ly−1, ly, ϕ) = max
{

σ(ly−1, ly−1) + σ(ly−1, ly) + ϕ(ly−1) + ϕ(ly),
σ(ly, Υly) + ϕ(Υly) + σ(ly, ly) + ϕ(ly)})

}

= max
{

σ(ly−1, ly−1) + σ(ly−1, ly) + ϕ(ly−1) + ϕ(ly),
σ(ly, ly) + σ(ly, ly+1) + ϕ(ly+1) + ϕ(ly)

}
.

Consequently, (7) gives

ψ(σ(ly, ly) + σ(ly, ly+1) + ϕ(ly) + ϕ(ly+1))

= ψ(σ(Υly−1, Υly−1) + σ(Υly−1, Υly) + ϕ(Υly−1) + ϕ(Υly) (11)

≤ ψ(C(ly−1, ly, ϕ))− φ(L(ly−1, ly, ϕ)).

If

σ(ly−1, ly−1) + σ(ly−1, ly) + ϕ(ly−1) + ϕ(ly)

< σ(ly, ly) + σ(ly, ly+1) + ϕ(ly) + ϕ(ly+1)

for some positive integer y, then it follows from (11) that

ψ(σ(ly, ly) + σ(ly, ly+1) + ϕ(ly) + ϕ(ly+1))

≤ ψ(σ(ly, ly) + σ(ly, ly+1) + ϕ(ly) + ϕ(ly+1))

− φ(σ(ly, ly) + σ(ly, ly+1) + ϕ(ly) + ϕ(ly+1))

which implies that

φ(σ(ly, ly) + σ(ly, ly+1) + ϕ(ly) + ϕ(ly+1)) = 0.

Hence,

σ(ly, ly) + σ(ly, ly+1) + ϕ(ly) + ϕ(ly+1) = 0,

from which we notice that

ly = ly+1, σ(ly, ly) = 0 and ϕ(ly) = ϕ(ly+1) = 0

which is a contradiction. Therefore,

σ(ly, ly) + σ(ly, ly+1) + ϕ(ly) + ϕ(ly+1)

≤ σ(ly−1, ly−1) + σ(ly−1, ly) + ϕ(ly−1) + ϕ(ly) (12)
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for all y = 1, 2, 3, . . .
Hence,

C(ly−1, ly, ϕ) = σ(ly−1, ly−1) + σ(ly−1, ly) + ϕ(ly−1) + ϕ(ly)

and

L(ly−1, ly, ϕ) = σ(ly−1, ly−1) + σ(ly−1, ly) + ϕ(ly−1) + ϕ(ly).

From (11), we have

ψ(σ(ly, ly) + σ(ly, ly+1) + ϕ(ly) + ϕ(ly+1))

≤ ψ(σ(ly−1, ly−1) + σ(ly−1, ly) + ϕ(ly−1) + ϕ(ly)) (13)

− φ(σ(ly−1, ly−1) + σ(ly−1, ly) + ϕ(ly−1) + ϕ(ly)).

It follows from (12) that the sequence {σ(ly, ly) + σ(ly, ly+1) + ϕ(ly) + ϕ(ly+1)} is
bounded below and non-increasing.

Therefore,

σ(ly, ly) + σ(ly, ly+1) + ϕ(ly) + ϕ(ly+1)→ η as n→ ∞,

for some η ≥ 0.
Suppose that η > 0. Taking limit in (13) as y→ ∞, using the continuity of ψ and the

lower semi-continuity of φ, lead to

ψ(η) ≤ ψ(η)− lim inf
y→∞

φ(σ(ly−1, ly−1) + σ(ly−1, ly) + ϕ(ly−1) + ϕ(ly))

≤ ψ(η)− φ(η) < ψ(η),

which is a contradiction. Thus, lim
y→∞

(σ(ly, ly)+σ(ly, ly+1)+ ϕ(ly)+ ϕ(ly+1)) = 0, from which

we have

lim
y→∞

σ(ly, ly) = lim
y→∞

σ(ly, ly+1) = 0 (14)

and
lim

y→∞
ϕ(ly) = lim

y→∞
ϕ(ly+1) = 0. (15)

Now, we prove that the sequence {ly}y∈N is Cauchy. Assume that {ly}y∈N is not
Cauchy. Then, by Lemma 1, there exist ε+ > 0 and subsequences {ly(k)}k∈N and {li(k)}k∈N
of {ly}y∈N such that (2) and (3) hold.

From (8), we have

C(ly(k), li(k), ϕ) = max



σ(ly(k), ly(k)) + σ(ly(k), li(k)) + ϕ(ly(k)) + ϕ(li(k)),
σ(ly(k), Υly(k)) + ϕ(ly(k)) + ϕ(Υly(k)),

σ(ly(k), ly(k)) + σ(li(k), Υli(k)) + ϕ(li(k)) + ϕ(Υli(k)),
1
2 [σ(ly(k), Υli(k)) + ϕ(ly(k)) + ϕ(Υli(k)) + σ(li(k), Υly(k))

+ϕ(li(k)) + ϕ(Υly(k))].



= max



σ(ly(k), ly(k)) + σ(ly(k), li(k)) + ϕ(ly(k)) + ϕ(li(k)),
σ(ly(k), ly(k)+1) + ϕ(ly(k)) + ϕ(ly(k)+1),

σ(li(k), li(k)) + σ(li(k), li(k)+1) + ϕ(li(k)) + ϕ(li(k)+1)
1
2 [σ(ly(k), li(k)+1) + ϕ(ly(k)) + ϕ(li(k)+1) + σ(li(k), ly(k)+1)

+ϕ(li(k)) + ϕ(ly(k)+1)]}


. (16)
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As k→ ∞ in (16), applying Lemma 1 and using Equations (14) and (15) yield

lim
k→∞
C(ly(k), li(k), ϕ) = ε+. (17)

On similar steps, it follows from (9) that

L(ly(k), li(k), ϕ) = max

{
σ(ly(k), ly(k)) + σ(ly(k), li(k)) + ϕ(ly(k)) + ϕ(li(k)),
σ(li(k), li(k)) + σ(li(k), Υli(k)) + ϕ(li(k)) + ϕ(Υli(k))

}

= max

{
σ(ly(k), ly(k)) + σ(ly(k), li(k)) + ϕ(ly(k)) + ϕ(li(k)),

σ(li(k), li(k)) + σ(li(k), li(k)+1) + ϕ(li(k)) + ϕ(li(k)+1)

}
.

Thus,

lim
k→∞
L(ly(k), li(k), ϕ) = ε+. (18)

From (7), we have

ψ(σ(ly(k)+1, ly(k)+1) + σ(ly(k)+1, li(k)+1) + ϕ(ly(k)+1) + ϕ(li(k)+1)

≤ ψ(C(ly(k), li(k), ϕ))− φ(L((ly(k), li(k), ϕ)). (19)

Letting k → ∞ in (19), and using Lemma 1, the continuity of ψ, the lower semi-
continuity of φ and by using Equations (15), (17) and (18), we obtain ψ(ε+) ≤ ψ(ε+)−
φ(ε+), which is a contradiction because φ(ε+) > 0. Therefore, {ly}y∈N is a Cauchy se-
quence. The completeness of Ω implies that there exists u ∈ Ω such that lim

y→∞
ly = u. Given

that φ is lower semi-continuous, ϕ(u) ≤ lim inf
y→∞

ϕ(ly) ≤ lim
y→∞

ϕ(ly) = 0, from which it

follows that ϕ(u) = 0.
Now, from (8), we obtain

C(ly(k), u, ϕ) = max


σ(ly, ly) + σ(ly, u) + ϕ(ly) + ϕ(u),

σ(ly, Υly) + ϕ(ly) + ϕ(Υly),
σ(u, u) + σ(u, Υu) + ϕ(u) + ϕ(Υu),

1
2 [σ(ly, Υu) + ϕ(ly) + ϕ(Υu) + σ(u, Υly)

+ϕ(u) + ϕ(Υly)]



= max


σ(ly, ly) + σ(ly, u) + ϕ(ly) + ϕ(u),

σ(ly, ly+1) + ϕ(ly) + ϕ(ly+1),
σ(u, u) + σ(u, Υu) + ϕ(u) + ϕ(Υu),

1
2 [σ(ly, Υu) + ϕ(ly) + ϕ(Υu) + σ(u, ly+1)

+ϕ(u) + ϕ(ly+1)]

,

from which we have

lim
y→∞
C(ly, u, ϕ) = lim

y→∞
max{σ(u, u), σ(u, u) + σ(u, Υu) + ϕ(Υu),

1
2
[σ(u, u) + σ(u, Υu) + ϕ(Υu)]}

= σ(u, u) + σ(u, Υu) + ϕ(Υu). (20)
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In like manner, we have

lim
y→∞
L(ly, u, ϕ) = lim

y→∞
max{σ(ly, ly) + σ(ly, u) + ϕ(ly) + ϕ(u),

σ(u, u) + σ(u, Υu) + ϕ(u) + ϕ(Υu)}
= max{σ(u, u), σ(u, u) + σ(u, Υu) + ϕ(Υu)}
= σ(u, u) + σ(u, Υu) + ϕ(Υu). (21)

Therefore, from (7), we have

ψ(σ(ly+1, ly+1) + σ(ly+1, Υu) + ϕ(ly+1) + ϕ(Υu))

= ψ(σ(Υly, Υly) + σ(Υly, Υu) + ϕ(Υly) + ϕ(Υu)) (22)

≤ ψ(C(ly, u, ϕ))− φ(L(ly, u, ϕ)).

Letting y → ∞ in (22) and employing the continuity of ψ, the lower continuity of φ
and using Equations (20) and (19), we have

ψ(σ(u, u) + σ(u, Υu) + ϕ(Υu))

≤ ψ(σ(u, u) + σ(u, Υu) + ϕ(Υu))− φ(σ(u, u) + σ(u, Υu) + ϕ(Υu)). (23)

The expression (23) implies that

φ(σ(u, Υu) + ϕ(Υu) + σ(u, u)) = 0 and hence

σ(u, Υu) + ϕ(Υu) + σ(u, u) = 0.

Therefore, u = Υu, ϕ(Υu) = 0 and σ(u, u) = 0.
To see uniqueness, suppose that p is another fixed point of Υ with l = u and m = p.

Then, p = Υp and ϕ(p) = 0. Now, using (7), we have

ψ(σ(u, u) + σ(p, u)) = ψ(σ(Υu, Υu) + σ(Υp, Υu))

= ψ(σ(Υu, Υu) + σ(Υu, Υp) + ϕ(Υu) + ϕ(Υp)

≤ ψ(C(u, p, ϕ))− φ(L(u, p, ϕ))

= ψ(σ(u, u) + σ(p, u))− φ(σ(u, u) + σ(p, u)).

Consequently, u = p.

We construct the following example to verify the hypotheses of Theorem 2.

Example 2. Let Ω = {0, 1, 2} together with the metric σ : Ω×Ω ∈ R+ defined by σ(0, 0) =
σ(1, 1) = 0, σ(2, 2) = 9

20 , σ(0, 2) = σ(2, 0) = 2
5 , σ(1, 2) = σ(2, 1) = 3

5 , σ(0, 1) = σ(1, 0) = 1
2 .

Then, (Ω, σ) is a σ-complete MlS. Notice that σ(2, 2) 6= 0. Hence, σ is not a metric. In addition,
σ(2, 2) > σ(2, 0), implying that σ is not a partial metric. Define a self-mapping Υ : Ω −→ Ω by
Υ(0) = Υ(1) = 0 and Υ(2) = 1.
To see that Υ is a generalized quasi-weakly contractive operator, let ψ(t) = 4t

5 , φ(t) = 2t
5 and

ϕ(t) = 3t
5 . We then consider the following cases:

Case 1: l, m ∈ Ω, l = m;
Case 2: l, m ∈ Ω, l 6= m.

We demonstrate using the following Table 1 that inequality (7) is satisfied for each of the above
cases.
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Table 1. Table of values for Cases 1 and 2.

Cases l m LHS of (7) RHS of (7)

Case 1

0 0 0 0
1 1 0 0.48
2 2 0.96 1.32

Case 2

0 1 0 0.44
0 2 0.88 1.14
1 0 0 0.44
1 2 0.88 1.14
2 0 0.88 1.1
2 1 0.88 1.14

In the following Figure 1, we illustrate the validity of contractive inequality (7) using
Example 2.

Figure 1. Illustration of contractive inequality (7) using Example 2.

Therefore, all the hypotheses of Theorem 2 are satisfied, and Υ has a fixed point, l = 0.
Consequently, Υ is a generalized quasi-weakly contractive operator.

To see that the generalized quasi-weakly contractive operator introduced in this manuscript is
not the generalized weakly contractive operator introduced by Cho [9], let Ω be equipped with the
Euclidean metric d. Then, (Ω, d) is a complete MS. However, taking any points l, m ∈ {1, 2} ⊂ Ω,
we see that

ψ(σ(Υl, Υm) + ϕ(Υl) + ϕ(Υm) =
4
5

(
8
5

)
=

32
25

>
28
25

=
4
5

(
14
5

)
− 2

5

(
14
5

)
=

4
5

(
max

(
14
5

,
14
5

,
8
5

,
11
5

))
− 2

5

(
max

(
14
5

,
8
5

))
= ψ(M(l, m, ϕ))− φ(N (l, m, ϕ)).

Therefore, the generalized quasi-weakly contractive operator is not the generalized weakly
contractive mapping defined by Cho [9], and so Theorem 1 due to Cho [9] is not applicable to this
example.

In what follows, we present some consequences of Theorem 2.

Corollary 1. Let (Ω, σ) be a σ-complete MlS. Suppose that the self-mapping Υ satisfies the
following condition:
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ψ(σ(Υl, Υl) + σ(Υl, Υm) + ϕ(Υl) + ϕ(Υm))

≤ ψ(C(l, m, ϕ))− φ(C(l, m, ϕ)), (24)

for all l, m ∈ Ω, where ψ ∈ Ψ and φ, ϕ ∈ Φ. Then, there exists a unique u ∈ Ω such that u = Υu
and ϕ(u) = 0.

By taking φ(t) = 0, for all t ∈ R+, we have the next result.

Corollary 2. Let (Ω, σ) be a σ-complete MlS. Assume that the self-mapping Υ satisfies the follow-
ing condition:

ψ(σ(Υl, Υl) + σ(Υl, Υm) + ϕ(Υl) + ϕ(Υm)) ≤ ψ(C(l, m, ϕ)), (25)

for all l, m ∈ Ω, where ψ ∈ Ψ. Then, there exists a unique u ∈ Ω such that u = Υu and ϕ(u) = 0.

Corollary 3. Let (Ω, σ) be a σ-complete MlS. Suppose that the self-mapping Υ satisfies the
following condition:

σ(Υl, Υl) + σ(Υl, Υm) + ϕ(Υl) + ϕ(Υm)) ≤ C(l, m, ϕ), (26)

for all l, m ∈ Ω. Then there exists a unique u ∈ Ω such that u = Υu and ϕ(u) = 0.

Proof. Take ψ(t) = t for all t ∈ R+ in Corollary 2.

Corollary 4. Let (Ω, σ) be a σ-complete MlS. Suppose that the self-mapping Υ satisfies the
following condition:

ψ(σ(Υl, Υl) + σ(Υl, Υm) + ϕ(Υl) + ϕ(Υm))

≤ ψ(σ(l, l) + σ(l, m) + ϕ(l) + ϕ(m))− φ(σ(l, l) + σ(l, m) + ϕ(l) + ϕ(m)),

for all l, m ∈ Ω, where ψ ∈ Ψ and φ, ϕ ∈ Φ. Then, there exists a unique u ∈ Ω such that u = Υu
and ϕ(u) = 0.

Corollary 5. Let (Ω, σ) be a σ-complete MlS. Suppose that the self-mapping Υ satisfies the
following condition:

ψ(σ(Υkx, Υkl) + σ(Υkx, Υkm) + ϕ(Υkl) + ϕ(Υkm))

≤ ψ(C(l, m, ϕ))− φ(L(l, m, ϕ)),

for all l, m ∈ Ω, where ψ ∈ Ψ, φ, ϕ ∈ Φ and k is a positive integer. Then, there exists a unique
u ∈ Ω such that u = Υu, and ϕ(u) = 0.

Proof. Let S = Υk. Then, by Theorem 2, S has a unique fixed point, say u. Then Υku =
Su = u and

ϕ(u) = ϕ(Su) = ϕ(Υku) = 0.

Since Υk+1u = Υu,

STu = Υk(Υu) = Υk+1u = Υu,

and so Υu is a fixed point of S. By the uniqueness of a fixed point of S, Υu = u.

We construct the following example to support the hypothesis of Corollary 1.

Example 3. Let Ω = {0, 1, 2, 3} and σ(l, m) = l + m, for all l, m ∈ Ω. Then, (Ω, σ) is a
σ-complete MlS. Note that σ is not a metric, since for l = 1 = m, σ(1, 1) = 2 > 0. Similarly, σ is
not a partial metric, since for l = 2 and m = 1, σ(2, 2) > σ(2, 1). Now, define the self-mapping
Υ : Ω −→ Ω by Υl = l2

3(1+l) for all l ∈ Ω. In addition, let ψ(t) = 4
5 t, φ(t) = t

2 and ϕ(t) = 9
10 t.
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Obviously, ψ ∈ Ψ, φ, ϕ ∈ Φ. To show that the contractive inequality (24) holds, we consider the
following cases:

Case 1: l, m ∈ Ω, l = m;
Case 2: l, m ∈ Ω, l 6= m.

We demonstrate using the following Table 2 that inequality (24) is satisfied for each of the above
cases.

Table 2. Illustration of the contractive inequality (24).

Cases l m LHS of (24) RHS of (24)

Case 1

0 0 0 0
1 1 0.7733 1.74
2 2 2.0622 3.48
3 3 3.48 5.22

Case 2

0 1 0.2533 1.265
0 2 0.6755 2.5933
0 3 1.14 3.9375
1 0 0.52 1.17
1 2 1.1955 2.5933
1 3 1.66 3.9375
2 0 1.3866 2.34
2 1 1.64 2.91
2 3 2.5266 4.05
3 0 2.34 3.51
3 1 2.5933 4.08
3 2 3.0155 4.65

In the following Figure 2, we illustrate that under the above cases, inequality (24) using
Example 3 is satisfied.

Figure 2. Illustration of contractive inequality (24) using Example 3.

Hence, all the assumptions of Theorem 2 are satisfied. We therefore see that u = 0 is a fixed
point of Υ.
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4. Applications to Fixed Point Results in Partial MS

In this section, we give some applications to fixed point theorems in partial metric
spaces. To deduce partial metric version of our results, we consider an auxiliary function
ρq : Ω×Ω −→ R+ given as

ρq(l, l) + ρq(l, m) = 2ρ(l, m)− 2ρ(l, l) + ρ(m, m). (27)

It is clear that the mapping ρq is an Ml on Ω.
Consistent with [6], we have the following observation.

Remark 4. Let {ly}y∈N be a sequence in Ω. If the sequence {ly}y∈N is convergent to l in (Ω, ρq),
then it is convergent to l in (Ω, ρ), and the converse is not always true.

Theorem 3. Let Ω be a complete partial MS. Suppose that Υ : Ω −→ Ω is a mapping such that

ψ(ρ(Υl, Υl) + ρ(Υl, Υm) + ϕ(Υl) + ϕ(Υm)) ≤ ψ(Cq(l, m, ϕ))− φ(L(l, m, ϕ)), (28)

for all l, m ∈ Ω, where ψ ∈ Ψ , ϕ, φ ∈ Φ, Cq = max
{

ρ(l, m), ρ(m, Υm), ρ(m,Υl)
2

}
and

L = max{ρ(l, Υm), ρ(m, Υl)}.

Then, there exists a unique u ∈ Ω such that u = Υu and ρ(u, u) = 0.

Proof. From (27), we have

ρ(l, m) =
ρq(l, l) + ρq(l, m) + 2ρ(l, l)− ρ(m, m)

2
,

for all l, m ∈ Ω. Let σ(l, l) =
ρq(l,l)

2 , σ(l, m) =
ρq(l,m)−ρ(m,m)

2 and ϕ(l) = ρ(l, l) for all
l, m ∈ Ω. Then Ω is a σ-complete MlS with metric σ, and ϕ : X −→ R+ is a lower semi-
continuous function. By these transformations, (28) reduces to (7). By Theorem 2, there
exists a unique u ∈ Ω such that u = Υu and ρ(u, u) = 0.

In line with the method of deducing Theorem 3, we can also obtain the following
results which are improvements of some ideas in [9,13].

Corollary 6. Let Ω be a σ-complete with partial metric ρ. Suppose that Υ : Ω −→ Ω is a mapping
such that

ψ(ρ(Υl, Υl) + ρ(Υl, Υm)) ≤ ψ

(
max

{
ρ(l, m), ρ(l, Υl), ρ(m, Υm),

1
2
[ρ(l, Υm) + ρ(m, Υl)]

})
−φ

(
max

{
ρ(l, m), ρ(l, Υl), ρ(m, Υm),

1
2
[ρ(l, Υm) + ρ(m, Υl)]

})
,

for all l, m ∈ Ω, where ψ ∈ Ψ and φ ∈ Φ.

Then, there exists a unique u ∈ Ω such that u = Υu and ρ(u, u) = 0.

Remark 5. If φ is continuous in Corollary 6, then we obtain Theorem 2.5 of [11].

Corollary 7. Let Ω be a complete partial MS. Suppose that Υ : Ω −→ Ω is a mapping such that

ψ(ρ(Υl, Υl) + ρ(Υl, Υm)) ≤ ψ(ρ(l, m))− φ(ρ(l, m))

for all l, m ∈ Ω, where ψ ∈ Ψ and φ ∈ Φ.

Then, there exists a unique u ∈ Ω such that u = Υu and ρ(u, u) = 0.
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5. Applications to Boundary Value Problem

In recent years, there has been a growing interest in studying integral equations to
prove the existence and uniqueness of a fixed point. Mohammed et al. [14] in 2021, investi-
gated sufficient criteria for the existence and uniqueness of solutions to nonlinear Fredholm
integral equations of the second kind on time scales. Specifically, they proposed a new
Lipschitz condition on the kernel that guarantees the existence and uniqueness of solutions.
This result is important because it provides a new tool for solving nonlinear integral equa-
tions on time scales. In later development, Jiddah et al. [15] and Jiddah et al. [16] in 2022
obtained unprecedented existence conditions for the solution of a family of integral equa-
tions. They used a fixed point theorem in generalized metric space to prove the existence
of solutions of the examined equation.

In this section, Corollary 3 is applied to examine existence criteria for a solution to a
boundary value problem. To this effect, consider the following boundary value problem of
a second order differential equation{

−d2l
dt2 = τ(t, l(t)) t ∈ [0, 1], x ∈ R+

l(0) = l(1) = 0,
(29)

where τ : [0, 1]×R+ −→ R+ is a continuous function. This problem is equivalent to the
integral equation:

l(t) =
∫ 1

0
ξ(t, s)τ(s, l(s))ds , t ∈ [0, 1] (30)

where ξ(t, s) is called the Green function, defined by

ξ(t, s) =

{
t(1− s), if 0 ≤ s < t ≤ 1
s(1− t), if 0 ≤ t < s ≤ 1.

Let Ω = C([0, 1],R) be the set of all continuous real-valued functions defined on [0, 1].
We equip Ω with the mapping

σ(l, m) = sup
t∈[0,1]

(|l(t) + |y(t)|) (31)

Then (Ω, σ) is a complete MlS. Consider the self-mapping Υ : Ω −→ Ω defined by

Υl(t) =
∫ 1

0
ξ(t, s)τ(s, l(s))ds , t ∈ [0, 1] (32)

Then, obviously l is a fixed point of Υ if and only if l is a solution to (29) We now study
existence conditions of the boundary value problem (29) under the following hypotheses.

Theorem 4. Let ϕ ∈ Φ and Υ : Ω −→ Ω be a self-mapping on Ω. Assume further that the
following conditions are satisfied:

(1) |τ(s, a)|+ |τ(s, b)| ≤ |a|+ |b| for all a, b ∈ Ω;
(2) |τ(s, a)| ≤ |a|, for all a ∈ Ω.

Then, the boundary value problem (29) has a solution in Ω.

Proof. Taking (31) and (32) into account, let l, m ∈ Ω. Then,
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|Υl(t)|+ |Υy(t)| =
∣∣∣∣∫ 1

0
ξ(t, s)τ(s, l(s)) ds +

∫ 1

0
ξ(t, s)τ(s, y(s)) ds

∣∣∣∣
≤
∫ 1

0
ξ(t, s)ds|τ(s, l(s))| +

∫ 1

0
ξ(t, s)ds|τ(s, y(s))|

≤
∫ 1

0
ξ(t, s) ds (|τ(s, l(s)) + τ(s, y(s))|)

≤
∫ 1

0
ξ(t, s) ds (|l(s) + |y(s)|).

Therefore,

σ(Υl, Υm) = sup
t∈[0,1]

(|Υl(t)|+ |Υy(t)|) ≤
∫ 1

0
ξ(t, s)ds sup

t∈[0,1]
(|l(t)|+ |y(t)|)

≤
∫ 1

0
ξ(t, s)ds σ(l, m).

Notice that,

ϕ(Υl) ≤ sup
t∈[0,1]

(ϕ(Υl(t))) = ϕ( sup
t∈[0,1]

Υl(t))

≤ ϕ

(
sup

t∈[0,1]

∫ 1

0
ξ(t, s)τ(s, l(s))ds

)

≤ ϕ

(
sup

t∈[0,1]

∫ 1

0
ξ(t, s)l(s)ds

)
≤ ϕ(l).

Hence,

σ(Υl, Υl) + σ(Υl, Υm) + ϕ(Υl) + ϕ(Υm)

≤
∫ 1

0
ξ(t, s)ds σ(l, l) +

∫ 1

0
ξ(t, s)ds σ(l, m) + ϕ(Υl) + ϕ(Υm)

≤
∫ 1

0
ξ(t, s)ds(σ(l, l) + σ(l, m))

+ ϕ

(∫ 1

0
ξ(t, s)τ(s, l(s))ds

)
+ ϕ

(∫ 1

0
ξ(t, s)τ(s, y(s))ds

)
≤
∫ 1

0
ξ(t, s)ds σ(l, l) +

∫ 1

0
ξ(t, s)ds σ(l, m)

+ ϕ

(∫ 1

0
ξ(t, s)l(s)ds

)
+ ϕ

(∫ 1

0
y(s)ds

)
≤ σ(l, l) + σ(l, m) + ϕ(l) + ϕ(m)

≤ C(l, m, ϕ).

This corresponds to the inequality (26) of Corollary 3. It follows that there is a fixed
point of Υ, l in Ω which is equivalent to a solution of (29).

Conversely, if l is a solution of (29), then l is also a solution of (32), so that Υl = l, that
is, l is a fixed point of Υ.

6. Conclusions

As a generalization of Banach’s fixed point theorem, Amini-Harandi introduced
the concept of MlS and derived some related fixed-point results in such space. In this
manuscript, the notion of generalized quasi-weakly contractive operators in MlS is intro-
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duced and conditions for the existence of fixed points for such mappings are investigated.
Non-trivial comparative examples have been presented to illustrate the proposed ideas
and to show that they are indeed generalizations of a few concepts in the literature. As an
application, one of our results is utilized to examine novel criteria for the existence of
solutions to a class of boundary value problems. The concepts examined in this work
improve some known corresponding results in metric and dislocated metric spaces. While
the presented ideas are theoretical, we hope that they will encourage further research in
the proposed directions and also find applications in the areas where non-zero self distance
is needed.
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