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Abstract: We propose the Group Orthogonal Matching Pursuit (GOMP) algorithm to recover group
sparse signals from noisy measurements. Under the group restricted isometry property (GRIP),
we prove the instance optimality of the GOMP algorithm for any decomposable approximation
norm. Meanwhile, we show the robustness of the GOMP under the measurement error. Compared
with the P-norm minimization approach, the GOMP is easier to implement, and the assumption
of γ-decomposability is not required. The simulation results show that the GOMP is very efficient
for group sparse signal recovery and significantly outperforms Basis Pursuit in both scalability and
solution quality.
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1. Introduction

The problem of recovering sparse signals from incomplete measurements has been
studied extensively in the field of compressed sensing. Many important results have been
obtained, see refs. [1–5]. In this article, we consider the problem of recovering group sparse
signals. We first recall some basic notions and results.

Assume that x ∈ Rn is an unknown signal, and the information we gather about
x ∈ Rn can be described by

y = Φx + e, (1)

where Φ ∈ Rm×n is the encoder matrix and y ∈ Rm is the information vector with a noise
level ‖e‖2 ≤ ε. To recover x from y, we use a decoder ∆, which is a mapping from Rm to
Rn, and denote

x∗ := ∆(y) = ∆(Φx + e)

as our approximation of x.
The l1-norm minimization, also known as Basis Pursuit [2], is one of the most popular

decoder maps. It is defined as follows:

∆BP(y) := arg minz∈Rn‖z‖1, s.t. ‖y−Φz‖2 ≤ ε. (2)

Candès and Tao in Ref. [6] introduced the restricted isometry property (RIP) of a
measurement matrix as follows:

A matrix Φ is said to satisfy the RIP of order k if there exists a constant δ ∈ (0, 1) such
that, for all k-sparse signals x,

(1− δ)‖x‖2
2 ≤ ‖Φx‖2 ≤ (1 + δ)‖x‖2

2.
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In particular, the minimum of all δ satisfying the above inequality is defined as the isometry
constant δk.

Based on the RIP of the encoder matrix Φ, it has been shown that the solution to (2)
recovers x exactly provided that x is sufficiently sparse [7]. We denote by Σk the set of all
k-sparse signals, i.e.,

Σk := {z ∈ Rn : |supp(z)| ≤ k},

where supp(z) is the set of i for which zi 6= 0 and |A| is the cardinality of the set A. Let
σk(x, ‖ · ‖1) be the sparsity index of x from Σk, which is defined by

σk(x, ‖ · ‖1) := inf
z∈Σk
‖x− z‖1.

In Ref. [7], the authors obtained the estimation of the residual error

‖∆BP(y)− x‖2 ≤
C0√

k
σk(x, ‖ · ‖1) + C1ε, (3)

where C0, C1 are constants depending only on the encoder matrix Φ but not on x or e. In
many current papers on sparse recovery, the l1-norm objective function in (2) has been
changed to several other norms.

At about the same time, the research community began to propose that the number of
nonzero components of a signal might not be the only reasonable measure of the sparsity
of a signal. Alternate notions under the broad umbrella of “group sparsity” and “group
sparse recovery” began to appear. For more detail, one can see Ref. [8]. It has been shown
that group sparse signals are used widely in EEG [9], wavelet image analysis [10], gene
analysis [11], multi-channel image analysis [12] and other fields.

We next recall a result on the recovering of the group sparse signals from Ref. [13]. In
that paper, Ahsen and Vidyasagar estimated x from y by solving the following optimization
problem:

∆P(y) := arg minz∈Rn‖z‖P, s.t. ‖y−Φz‖2 ≤ ε, (4)

where ‖ · ‖P is the penalty norm. We begin with recalling some definitions from [13]. We
denote the set {1, 2, . . . , n} by the symbol [n]. The group structure G = {G1, G2, . . . , Gg}
is a partition of [n]. Here, we suppose that |Gi| ≤ k for all 1 ≤ i ≤ g. A signal x ∈ Rn is said
to be group k-sparse if its support set supp(x) is contained in a group k-sparse set, which is
defined as follows:

Definition 1. A subset Λ ⊆ [n] is said to be group k-sparse if Λ = GS := ∪i∈SGi for some
S ⊆ {1, 2, . . . , g} and |Λ| ≤ k.

We use GkS to denote the set of all group k-sparse subsets of [n].

Definition 2. We say a norm ‖ · ‖ on Rn is decomposable if x, y ∈ Rn, satisfy supp(x) ⊆
GS, supp(y) ⊆ GT , with S, T being disjoint subsets of {1, 2, . . . , g}, then one has ‖x + y‖ =
‖x‖+ ‖y‖.

It is clear that l1-norm is decomposable. More examples of decomposable norms can
be found in Ref. [13].

In the processing of recovering an unknown signal x ∈ Rn, the approximation norm
on Rn will be denoted by ‖ · ‖A. We assume that the approximation norm is decomposable.

Definition 3. If there exists γ ∈ (0, 1] such that for any x, y ∈ Rn with supp(x) ⊆ GS, supp(y) ⊆
GT , and S, T are disjoint subsets of {1, 2, . . . , g}, it is true that ‖x + y‖ ≥ ‖x‖+ γ‖y‖, we say the
norm ‖ · ‖ is γ-decomposable.

Note that when γ = 1, γ-decomposability coincides with decomposability.
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For any index set A ⊆ [n], let xA denote the part of the signal x consisting of coordi-
nates falling on A. The sparsity index and the optimal decomposition of a signal in Rn are
defined respectively as follows:

Definition 4. The group k-sparse index of a signal x ∈ Rn with respect to the norm ‖ · ‖ and the
group structure G is defined by

σk,G(x, ‖ · ‖) := min
Λ∈GkS

‖x− xΛ‖ = min
Λ∈GkS

‖xΛc‖.

For x ∈ Rn and a norm ‖ · ‖ on Rn, if there exist Λi ∈ GkS for i = 0, 1, 2, . . . , s, such
that

‖xΛc
0
‖ = ‖x− xΛ0‖ = min

Λ∈GkS
‖x− xΛ‖ = σk,G(x)

and

‖xΛc
i
‖ = min

Λ∈GkS
‖x−

i−1

∑
j=0

xΛj − xΛ‖, i = 1, 2, . . . , s,

then we call {xΛ0 , xΛ1 , . . . , xΛs} an optimal group k-sparse decomposition of x.

Definition 5. A matrix Φ ∈ Rm×n is said to satisfy the group restricted isometry property (GRIP)
of order k if there exists a constant δk ∈ (0, 1), such that

1− δk ≤ min
Λ∈GkS

min
supp(z)⊆Λ

‖Φz‖2
2

‖z‖2
2
≤ max

Λ∈GkS
max

supp(z)⊆Λ

‖Φz‖2
2

‖z‖2
2
≤ 1 + δk.

Then, we are ready to state the result of Ahsen and Vidyasagar. We need the following
constants:

a := min
Λ∈GkS

min
xΛ 6=0

‖xΛ‖P
‖xΛ‖A

, b := max
Λ∈GkS

max
xΛ 6=0

‖xΛ‖P
‖xΛ‖A

, f :=
√

k

and

c := min
Λ∈GkS

min
xΛ 6=0

‖xΛ‖A
‖xΛ‖2

, d := max
Λ∈GkS

max
xΛ 6=0

‖xΛ‖A
‖xΛ‖2

. (5)

Theorem 1. Suppose that
1. The norm ‖ · ‖A is decomposable.
2. The norm ‖ · ‖P is γ-decomposable for some γ ∈ (0, 1].
3. The matrix Φ satisfies GRIP of order 2k with constant δ2k.
4. Suppose the “compressibility condition"

δ2k <
f aγ/bd√

2 + f aγ/bd

holds, then
‖∆P(Φx + e)− x‖2 ≤ D1σk,G(x)A + D2ε.

Furthermore,
‖∆P(Φx + e)− x‖A ≤ D3σk,G(x)A + D4ε,

where

D1 =
b(1 + γ)

aγ f
· 1 + (

√
2− 1)δ2k

1− (1 +
√

2bd/aγ f )δ2k
, D2 = 2(1 + bd/aγ f ) ·

√
1 + δ2k

1− (1 +
√

2bd/aγ f )δ2k

and

D3 =
b(1 + γ)

aγ
· 1 + (

√
2d/ f − 1)δ2k

1− (1 +
√

2bd/aγ f )δ2k
, D4 = 2(1 + bd/aγ) ·

√
1 + δ2k

1− (1 +
√

2bd/aγ f )δ2k
.
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Recently, Ranjan and Vidyasagar presented sufficient conditions for (2) to achieve
robust group sparse recovery by establishing a group robust null space property [14]. They
derived the residual error bounds for the lp-norm for p ∈ [1, 2].

In compressed sensing, an alternative decoder for (1) is Orthogonal Matching Pursuit
(OMP), which was originally proposed by J. Tropp in [15]. It is defined as Algorithm 1:

Algorithm 1 Orthogonal Matching Pursuit (OMP)
Input: measurement matrix Φ, measurement vector y.
Initialization: S0 = ∅, x0 = 0.
Iteration: repeat until a stopping criterion is met at n = n :

Sn+1 = Sn ∪ {jn+1}, jn+1 := arg maxj∈[n]{|Φ∗(y−Φxn))j|},

xn+1 = arg minz∈Rn{‖y−Φz‖2, supp(z) ⊆ Sn+1}.

Output: the n-sparse vector x# = xn.

The major advantage of the OMP algorithm is that it is easy to implement, see
Refs. [16–21]. In [22], under the RIP, T. Zhang proved that OMP with k iterations can
exactly recover k-sparse signals and the procedure is also stable in l2 under measurement
noise. Based on this result, Xu showed that the OMP can achieve instance optimality
under the RIP, cf. [23]. In [24], Cohen, Dahmen and DeVore extended T. Zhang’s result to
the general context of k-term approximation from a dictionary in arbitrary Hilbert spaces.
They have shown that OMP generates near-best k-term approximations under a similar
RIP condition.

In this article, we will generalize the OMP to recover the group sparse signals. Assume
that the signal x is group k-sparse with the group structure G, then the number of non-zero
groups of x = (xG1 , xG2 , . . . , xGg) is no more than k. We define

α := max
j∈[g]
|Gj|.

It is obvious that α ≤ k.
The group support set of x with respect to G is defined as follows:

Gsupp(x) := {j ∈ [g] : xGj 6= 0}.

Let |Gsupp(x)| be the number of distinct groups on which x is supported. For any
i ∈ {1, 2, . . . , g}, the subvector (submatrix) xGi (ΦGi ) can also be written as x[i](Φ[i]).

Now we start to propose the Group Orthogonal Matching Pursuit (GOMP) algorithm.
Assume that the group structure G is given a prior. Let Ω be the initial feature set of
the group sparse signal x with the maximum allowed sparsity M. The GOMP is defined
as Algorithm 2:

Algorithm 2 Group Orthogonal Matching Pursuit (GOMPM(y))

Input: encoding matrix Φ, the vector y, group structure {Gi}
g
i=1, a set Ω ⊆ {1, 2, . . . , g},

maximum allowed sparsity M.
Initialization: x0 = arg minx̃:Gsupp(x̃)⊆Ω‖y−Φx̃‖2, r0 = y−Φx0, l = 1, I0 = Ω.

while l ≤ k ≤ M do
Set il = arg maxi‖Φ∗[i]rl−1‖2.
Identity Il = {i1, i2, . . . , il} ∪Ω.
Update xl = arg minx̃:Gsupp(x̃)⊆Il

‖y−Φx̃‖2, rl = y−Φxl , l = l + 1.
end while

Output: x̂GOMP = xk.
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The GOMPM(y) algorithm begins by initializing the residual as r0 = y, and at the
lth (l ≥ 1) iteration, we chose one group index which matched rl−1 best. However, the
algorithm does not obtain a least-square minimization over the group index sets that have
already been selected, but updates the residual and proceeds to the next iteration.

Then, we studied the efficiency of the GOMP. We show the instance optimality and
robustness of the GOMP algorithm under the GRIP of the matrix Φ. We formulate them in
the following theorem.

Theorem 2. Suppose that the norm ‖ · ‖A is decomposable and 0 < δ ≤ 1. If the GRIP condition
δkα + (1 + δ)δβkα ≤ δ holds with β := d16 + 15δe, then for any signal x and any permutation e
with ‖e‖2 ≤ ε, the solution x∗ := GOMP(β−1)k(Φx + e) obeys

‖x∗ − x‖2 ≤ D1σk,G(x)A + D2ε, (6)

where

D1 =
1
c
[(1 + δ)(1 +

√
11 + 20δ) + 1] and D2 =

√
1 + δ(1 +

√
11 + 20δ). (7)

Furthermore,
‖x∗ − x‖A ≤ D3σk,G(x)A + D4ε, (8)

where

D3 =
d
c
√

2βα− 1(1 + δ)(1 +
√

11 + 20δ) + 1 and D4 = d
√
(2βα− 1)(1 + δ)(1 +

√
11 + 20δ). (9)

When e = 0, from inequalities (6) and (8), we have

‖x∗ − x‖2 ≤ D1σk,G(x)A

and

‖x∗ − x‖A ≤ D3σk,G(x)A.

This implies the instance optimality of the GOMP. In other words, from the viewpoint of
the error, the GOMP is almost the best. The robustness of the GOMP means that the signal
can be recovered stably for different dimensions, sparsity levels, numbers of measurements
and noise scenarios (which can be observed from the experiments in Section 3). Compared
with Basis Pursuit (BP), our proposed algorithm performs far better, and runs extremely
faster, especially when it comes large-scale problems.

Based on the observation of Theorems 1 and 2, one can see that the assumption of γ-
decomposability is not required for the GOMP. Instead, we developed some new techniques
to analyze the error performance of the GOMP.

We remark that the results of Theorem 2 are rather general. They cover some important
cases.

Firstly, if n = ∑
g
i=1 di and we take a special partition of [n] as

[n] = [1, . . . , d1︸ ︷︷ ︸
G1

, d1 + 1, . . . , d1 + d2︸ ︷︷ ︸
G2

, . . . , n− dg + 1, . . . , n︸ ︷︷ ︸
Gg

],

then the unknown sparse signals appear in a few blocks, i.e., the signals are block-sparse. It
is obvious that our results include the case of the block-sparse signals. In practice, there
are many forms of block-sparse signal, such as multi-band signal, DNA array, radar pulse
signal and the multi-measurement vector problem and so on, see Refs. [25–32].

Secondly, applying Theorem 2 to the case of conventional sparsity, we obtain the
following new results on the error estimates of the OMP.
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Corollary 1. (Conventional sparsity) Suppose that Φ satisfies the RIP condition δk + (1+ δ)δβk ≤ δ
with β := d16 + 15δe. Then,

‖OMP(β−1)k(Φx + e)− x‖2 ≤ D1σk(x)A + D2ε,

and
‖OMP(β−1)k(Φx + e)− x‖A ≤ D3σk(x)A + D4ε,

where the constants Di are defined in (1.6) and (1.8) for i = 1, 2, 3, 4.

The remaining part of the paper is organized as follows. In Section 2, based on a
corollary of Theorem 3, we prove Theorem 2, while the proof of Theorem 3 will be given in
the Appendix B. In the Appendix A, we establish some preliminary results for the proof.
In Section 3, we compare the Group Orthogonal Matching Pursuit (GOMP) with the Basis
Pursuit (BP) by numerical experiments. In Section 4, we draw the conclusions of our
study. Moreover, we mention some other competitive algorithms which we will study in
the future.

2. Proof of Theorem 2

The proof of Theorem 2 is based on the estimation of the residual error of the GOMP
algorithm. To establish such estimation, we use the restricted gradient optimal constant for
group sparse signals.

Definition 6. Given x ∈ Rn and s > 0, we define the restricted gradient optimal constant εs(x)
as the smallest non-negative value such that

|〈2Φµ, Φx− y〉| ≤ εs(x)‖µ‖2

for all µ ∈ Rn with |Gsupp(µ)| ≤ s.

Some estimates about εs(x) have been given in Ref. [22], such as εs(x) ≤ 2
√

s‖Φ∗(Φx− y)‖∞,
εs(x) ≤ 2‖Φ∗(Φx− y)‖2, and so on.

The following theorem is our result of the residual error of the GOMP algorithm. Its
proof is quite technical and is given in the Appendix B.

Theorem 3. Let x ∈ Rn and F = Gsupp(x). If there exists s, such that

s ≥ |F ∪Ω|+ d4|F \Ω| 1 + δα

1− δsα
ln

20(1 + δ|F\Ω|α)

1− δsα
e, (10)

then when k ≥ d4|F \Ω| 1+δα
1−δsα

ln
20(1+δ|F\Ω|α)

1−δsα
e, we have

‖Φxk − y‖2
2 ≤ ‖Φx− y‖2

2 + 2.5εs(x)2/(1− δsα),

and
‖xk − x‖2 ≤

√
6εs(x)/(1− δsα).

Next, we will use Theorem 3 in the case of Ω being empty to prove the following
corollary, which plays an important role in the proof of Theorem 2.

Corollary 2. Let x ∈ Rn, k = |Gsupp(x)|. Let 0 < δ ≤ 1, β = d16+ 15δe. If the GRIP condition
δkα + (1 + δ)δβkα ≤ δ holds, then for k = (β− 1)k, we have

‖Φxk − y‖2
2 ≤ (11 + 20δ)‖Φx− y‖2

2.
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Proof. If δkα + (1 + δ)δβkα ≤ δ, then

1 ≤ 1 + δα

1− δβkα

≤
1 + δkα

1− δβkα

≤ 1 + δ. (11)

Therefore, we take s = βk in (10). Since 0 < δ ≤ 1, then for k = (β − 1)k, using the
properties of rounding function and logarithm function, we have

k ≥ d4k(1 + δ) ln(20(1 + δ))e

≥ d4k
1 + δα

1− δβkα

ln 20
1 + δkα

1− δβkα

e.

From Theorem 3 and inequality (11), we conclude

‖Φxk − y‖2
2 ≤ ‖Φ(x)− y‖2

2 + 2.5εβk(x)2/(1− δβkα)

≤ ‖Φ(x)− y‖2
2 + 2.5 · 4(1 + δβkα)‖Φx− y‖2

2/(1− δβkα)

= ‖Φ(x)− y‖2
2 + 10

1 + δβkα

1− δβkα

‖Φx− y‖2
2

≤ ‖Φ(x)− y‖2 + 10(1 + 2δ)‖Φx− y‖2
2

= (11 + 20δ)‖Φx− y‖2
2,

where the second inequality holds, since εβk(x) ≤ 2
√

1 + δβkα‖Φx− y‖2.

Now, we prove Theorem 2 with the help of Corollary 2.

Proof of Theorem 2. Let {xΛ0 , xΛ1 , xΛ2 , . . . , xΛs} be an optimal group k-sparse decompo-
sition of x. Taking x = xΛ0 in Corollary 2.1, we obtain that

‖Φx∗ − y‖2 ≤
√

11 + 20δ‖ΦxΛ0 − y‖2

≤
√

11 + 20δ‖ΦxΛ0 −Φx− e‖2

≤
√

11 + 20δ(‖ΦxΛ0 −Φx‖2 + ‖e‖2),

(12)

where x∗ := GOMP(β−1)k(Φx + e). Noting that |Gsupp(x∗ − xΛ0)| ≤ βk and (1 + δ)δβkα ≤
δ− δkα, we have

(1 + δ)(1− δβkα) = 1 + δ− (1 + δ)δβkα

≥ 1 + δ− δ + δkα

≥ 1.

(13)

Combining (12) with (13), we conclude

‖x∗ − xΛ0‖2 ≤
1√

1− δβkα

‖Φx∗ −ΦxΛ0‖2

≤
√

1 + δ(‖Φx∗ − y‖2 + ‖ΦxΛ0 − y‖2)

≤
√

1 + δ(‖Φx∗ − y‖2 + ‖ΦxΛ0 − y‖2)

≤
√

1 + δ(
√

11 + 20δ + 1)‖ΦxΛ0 − y‖2

≤
√

1 + δ(
√

11 + 20δ + 1)(‖ΦxΛ0 −Φx‖2 + ‖e‖2).

(14)
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We now estimate the term ‖ΦxΛ0 −Φx‖2. It is clear that

‖ΦxΛ0 −Φx‖2 = ‖Φ(xΛ0 − x)‖2 = ‖Φ(
s

∑
i=1

xΛi )‖2 = ‖
s

∑
i=1

ΦxΛi‖2 ≤
s

∑
i=1
‖ΦxΛi‖2. (15)

By the GRIP of the matrix Φ, we obtain

‖ΦxΛ0 −Φx‖2 ≤
√

1 + δ
s

∑
i=1
‖xΛi‖2. (16)

Using (5) and the decomposability of ‖ · ‖A, we have

‖x− xΛ0‖2 ≤
s

∑
i=1
‖xΛi‖2 ≤

1
c

s

∑
i=1
‖xΛi‖A

=
1
c
‖

s

∑
i=1

xΛi‖A =
1
c
‖xΛc

0
‖A =

1
c

σk,G(x)A.
(17)

Combining inequalities (14)–(17), we obtain

‖x∗ − xΛ0‖2 ≤ (1 + δ)(1 +
√

11 + 20δ)
σk,G(x)A

c
+
√

1 + δ(1 +
√

11 + 20δ)‖e‖2. (18)

Inequalities (17) and (18) imply that

‖x∗ − x‖2 ≤ ‖x∗ − xΛ0‖2 + ‖xΛ0 − x‖2

≤ 1
c
[(1 + δ)(1 +

√
11 + 20δ) + 1]σk,G(x)A +

√
1 + δ(1 +

√
11 + 20δ)‖e‖2,

which leads to the bound in (6).
To derive inequality (8), we adopt a different strategy. Let h = x∗ − xΛ0 . Without loss

of generality, we assume that Gsupp(x∗ − xΛ0) = {1, 2, . . . , g} and |G1| ≥ |G2| ≥ . . . |Gg|.
We construct a subset S1 of {1, 2, . . . , g} as follows:

Note that |G1| ≤ α ≤ k. We picked 1 as an element of S1; S1 contains 2 if and only if |G1|+
|G2| ≤ k. Inductively suppose we have constructed the set Ωk−1 = S1 ∩ {1, 2, . . . , k− 1},
then k is an element of S1 if and only if

∑
i∈Ωk−1∪{k}

|Gi| ≤ k.

By this method, we can construct a unique subset S1. Then, by using the same method, we
can construct a unique subset:

S2 ⊆ {1, 2, . . . , g} − S1.

Inductively suppose we have constructed subsets S1, . . . , Sk−1, we can form a subset

{1, 2, . . . , g} −
k−1⋃
i=1

Si, then we can construct a unique subset Sk ⊆ {1, 2, . . . , g} −
k−1⋃
i=1

Si. In

this way, we can decompose {1, 2, . . . , g} as follows:

{1, 2, . . . , g} =
l⋃

i=1

Si.

From the construction, we know that when l 6= 1 , for i 6= l,

|GSi | >
k
2

.
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For any 1 ≤ i ≤ l,
|GSi−1 |+ |GSi | > k.

So we have
l

∑
i=1
|GSi | >

k
2

l,

which is to say, βkα > k
2 l, so l < 2βα. When l = 1, we also have l < 2βα.

Using the Cauchy–Schwarz inequality and the decomposability of ‖ · ‖A, we have

‖h‖A =
l
Σ

i=1
‖hGSi

‖A ≤ d
l
Σ

i=1
‖hGSi

‖2 ≤ d
√

l(
l
Σ

i=1
‖hGSi

‖2
2)

1
2 = d

√
l‖h‖2 ≤ d

√
2βα− 1‖h‖2. (19)

Combining (18) with (19), we have

‖x∗ − xΛ0‖A ≤ d
√

2βα− 1‖x∗ − xΛ0‖2

≤ d
c
√

2βα− 1(1 + δ)(1 +
√

11 + 20δ)σk,G(x)A

+ d
√
(2βα− 1)(1 + δ)(1 +

√
11 + 20δ)‖e‖2.

From the above inequality, we conclude

‖x∗ − x‖A ≤ ‖x∗ − xΛ0‖A + ‖xΛ0 − x‖A

= ‖x∗ − xΛ0‖A + σk,G(x)A

≤ [
d
c
√

2βα− 1(1 + δ)(1 +
√

11 + 20δ) + 1]σk,G(x)A

+ d
√
(2βα− 1)(1 + δ)(1 +

√
11 + 20δ)‖e‖2.

This leads to the bound in (8), and hence we complete the proof of Theorem 2.

3. Simulation Results

In this section, we test the performance of the GOMP and present the results of our
experiments. We first describe the details relevant to our experiments in Section 3.1. We
demonstrate the effectiveness of the GOMP in Section 3.2. In Section 3.3, we compare the
GOMP with Basis Pursuit to show the efficiency and scalability of our algorithm.

3.1. Implementation

For all experiments, we considered the following model. Suppose that x ∈ RN is an
unknown N-dimensional signal and we wish to recover it by the given data

y = Φx + e, (20)

where Φ ∈ RM×N is a known measurement matrix with M� N and e is a noise. Further-
more, since M� N, the column vectors of Φ are linearly dependent and the collection of
these columns can be viewed as a redundant dictionary.

For arbitrary x, y ∈ RN , define

〈x, y〉 =
N

∑
j=1

xjyj,

and

‖x‖2 =

(
N

∑
j=1
|xj|2

)1/2

,
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where x = (xj)
N
j=1 and y = (yj)

N
j=1. Obviously, RN is a Hilbert space with the inner

product 〈·, ·〉.
In the experiment, we set the measurement matrix Φ to be a Gaussian matrix where

each entry is selected from the N (0, M−1) distribution and the density function of this
distribution is p(x) := 1√

2πM
e−x2 M/2. We executed the GOMP with the data vector y = Φx.

To demonstrate the performance of signal-recovering algorithms, we use the mean
square error (MSE) to measure the error between the real signal x and its approximant x̂,
which is defined as follows:

MSE =
1
N

N

∑
j=1

(xj − x̂)2.

For the Group Orthogonal Matching Pursuit (GOMP), we let Ω = ∅ ∈ {1, · · · , g}
as the initialization. In the experiments, we constructed input signals randomly by the
following steps:

i. Given a sparse level K;
ii. Produce a group structure {Gi}

g
i=1 randomly, satisfying #Gi ≤ K for each index i;

iii. Randomly select a set S ⊆ {1, · · · , g}, such that #GS := #{∑i∈S Gi} = K;
iv. Let the set GS be the support, and produce a signal by random numbers from normal

distribution N (0, 1).

Some of examples of the randomly constructed group 50-sparse signals in different
dimensions can be found in Figure 1.

We set Basis Pursuit (BP) as the baseline for further comparison with the GOMP to
analyze the latter’s properties. For the implementation of Basis Pursuit, we used the l1
Magic toolbox (Open-sourced code: https://candes.su.domains/software/l1magic/#code,
accessed on 15 February 2023) developed by E. Candès and J. Romberg in [33].
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Figure 1. Examples of group 50-sparse signals in different dimensions: (a) An example of the group
50-sparse signal in dimension N = 128. (b) An example of the group 50-sparse signal in dimension
N = 256. (c) An example of the group 50-sparse signal in dimension N = 512. (d) An example of the
group 50-sparse signal in dimension N = 1024.

3.2. Effectiveness of the GOMP

Figure 2 shows the performance of the GOMP for an input signal in dimension
N = 512 with group sparsity level K = 50 and number of measurements M = 200 under
different noises, where the red line represents the original signal and the black squares
represent the approximation. Figure 3 shows the performance of BP. The poor performance
of BP can be easily observed when the noise occurs.

https://candes.su.domains/software/l1magic/#code
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Figure 2. The recovery of an input signal via GOMP in dimension N = 512 with group sparsity
level K = 50 and number of measurements M = 200 under different noises: (a) The recovery of an
input signal via GOMP under the noise e = 0. (b) The recovery of an input signal via GOMP under a
Gaussian noise e from N (0, 0.12).
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Figure 3. The recovery of an input signal via BP in dimension N = 512 with group sparsity level
K = 50 and number of measurements M = 200 under different noises: (a) The recovery of an input
signal via BP under the noise e = 0. (b) The recovery of an input signal via BP under a Gaussian
noise e from N (0, 0.12).
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In general, the above example shows that the GOMP is very effective for signal recov-
ering, i.e., it can recover the group sparse signal exactly. We will analyze the performance
of the GOMP further in terms of the mean square error by a comparison with BP in the
next subsection.

Figure 4 describes the situation in dimension d = 1024 under noise e = 0. It displays
the relation between the percentage (of 100 input signals) of the support that can be
recovered correctly and the number N of measurements. Furthermore, to some extent, it
shows how many measurements are necessary to recover the support of the input group
K-sparse signal x ∈ Rd with high probability. If the percentage equals 100%, it means that
support of all the 100 input signals can be found, which implies the support of input signal
can be exactly recovered. As expected, Figure 4 shows that when the group sparsity level K
increases, it is necessary to increase the number N of measurements to guarantee signal
recovery. Furthermore, we can find that the GOMP can recover the correct support of the
input signal with high probability.
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Figure 4. The percentage of the support of 100 input signals correctly recovered as a function of
number N of Gaussian measurements for different group sparsity levels K in dimension d = 1024.

3.3. Comparison with Basis Pursuit

In order to demonstrate the efficiency and robustness of the Group Orthogonal Match-
ing Pursuit (GOMP), we implement the Group Orthogonal Matching Pursuit (GOMP) and
the Basis Pursuit (BP) to recover the group sparse signals for comparison.

We implemented the GOMP and BP for recovering the group sparse signals in dimen-
sion N = 1024 with number of measurements M = 500 under different noises to calculate
the average mean square error (MSE) and the average running time by repeating the test
100 times. Figures 5 and 6, respectively, show the MSE and running time of the GOMP,
implying that the error and the running time of the GOMP will constantly increase with
the increased K ∈ {10, 20, · · · , 100}. The figure of the error of the GOMP in terms of MSE
is about 10−31 (noiseless) and 10−7 (Gaussian noise), which means that the GOMP can
effectively recover the group sparse signal. Meanwhile, the computational complexity
of the GOMP is also relatively low according to its running time. Figures 7 and 8 show
that the MSE and the running time of the BP have the same trend as the GOMP: the error
and the running time increase with the increased sparsity level, without changes to other
parameters, while the MSE of BP is higher in figure when compared with the GOMP, which
is around 10−7 (noiseless) and 10−5 (Gaussian noise). In order to facilitate comparison, the
details of the above results in Figures 5–8 also can be found in Tables 1 and 2.
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Figure 5. MSE and running time of the GOMP in dimension N = 1024 with number of measurements
M = 500 under the noise e = 0.
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Figure 6. MSE and running time of the GOMP in dimension N = 1024 with number of measurements
M = 500 under a Gaussian noise e from N (0, 0.12).
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Figure 7. MSE and running time of BP in dimension N = 1024 with number of measurements
M = 500 under the noise e = 0.
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Figure 8. MSE and running time of BP in dimension N = 1024 with number of measurements
M = 500 under a Gaussian noise e from N (0, 0.12).

Table 1. The average MSE and running time (repeating 100 times) of the GOMP and BP in 1024 di-
mension with number of measurements M = 500 under the noise e = 0.

Group Sparsity Level
GOMP BP

MSE Running Time MSE Running Time

K = 10 1.6350× 10−32 0.0045s 8.1887 × 10−08 0.3724 s
K = 20 6.3295× 10−32 0.0042 s 8.7195× 10−8 0.5158 s
K = 30 9.0108× 10−32 0.0047 s 9.3230× 10−8 0.5358 s
K = 40 1.5460× 10−31 0.0056 s 1.0408× 10−7 0.5544 s
K = 50 2.3565× 10−31 0.0056 s 1.1414× 10−7 0.4513 s
K = 60 2.7140× 10−31 0.0054 s 1.2543× 10−7 0.5099 s
K = 70 3.5189× 10−31 0.0063 s 1.4186× 10−7 0.5634 s
K = 80 4.6822× 10−31 0.0067 s 1.6007× 10−7 0.5831 s
K = 90 5.5434× 10−31 0.0077 s 1.8272× 10−7 0.5946 s
K = 100 6.7451× 10−31 0.0078 s 2.0194× 10−7 0.6087 s

Table 2. The average MSE and running time (repeating 100 times) of the GOMP and BP in 1024 di-
mension with number of measurements M = 500 under a Gaussian noise e from N (0, 0.12).

Group Sparsity Level
GOMP BP

MSE Running Time MSE Running Time

K = 10 2.1440× 10−7 0.0043 s 1.4580 × 10−5 0.4691 s
K = 20 4.1167× 10−7 0.0043 s 1.5919× 10−5 0.5102 s
K = 30 6.1894× 10−7 0.0050 s 1.6566× 10−5 0.5228 s
K = 40 8.6262× 10−7 0.0058 s 1.7790× 10−5 0.5547 s
K = 50 1.1870× 10−6 0.0058 s 1.9266× 10−5 0.5996 s
K = 60 1.3162× 10−6 0.0057 s 2.0652× 10−5 0.6134 s
K = 70 1.6356× 10−6 0.0067 s 2.2859× 10−5 0.6279 s
K = 80 1.9119× 10−6 0.0069 s 2.5038× 10−5 0.6283 s
K = 90 2.1399× 10−6 0.0076 s 2.8718× 10−5 0.6265 s
K = 100 2.5990× 10−6 0.0081 s 3.1227× 10−5 0.6317 s

According to the mean square error, obviously our algorithm outperforms the BP
by a lot on both noiseless and noisy data. This trend is expected because the solution of
the GOMP is updated by solving least squares problems. What is more, the BP normally
cannot exactly recover the real signal since the produced solution may not be 0 on the
indices which are not in the support, according to the observation during the experiments
(can also be found in Figure 3b. For the GOMP, the solution’s support has been restricted
in the group sparse set based on the selected indices of the group structure {G}g

i=1 at
each iteration. That also leads to the better performance of the GOMP compared with BP.
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Although the performance of the GOMP can be affected by the group sparsity level and
noise, our method still has pretty low mean square errors and performs better than BP,
showing the robustness and effectiveness of our proposed algorithm. We can also observe
that the GOMP runs much quicker than the BP, demonstrating the scalability and efficiency
of our algorithm.

Further more, when it comes to large-scale group sparse signal recovery, the execution
of BP occupies more memory and takes far more time to obtain the solution compared
with our method (details can be found in Tables 3 and 4 for different noise scenarios). This
is because the scale of least square problems that the GOMP needs to solve to obtain the
solution are bounded by the sparsity level K, as seen in the GOMP defined in Section 1. At
the same time, the GOMP still outperforms BP a lot in terms of MSE. In addition, we can
also find that the running speed of BP will be slightly slower when the noise occurs, while
for the GOMP it will not be affected.

Table 3. The average MSE and running time (repeating 100 times) of the GOMP and BP with number
of measurements M = 500 and group sparsity level K = 50 under the noise e = 0.

Dimension
GOMP BP

MSE Running Time MSE Running Time

N = 1024 2.3846× 10−31 0.0057 s 1.1414× 10−7 0.4513 s
N = 2048 1.1178× 10−31 0.0114 s 4.4095× 10−8 1.6611 s
N = 3072 8.5425× 10−32 0.0195 s 2.7722× 10−8 5.8170 s
N = 4096 5.9586× 10−32 0.0413 s 1.9752× 10−8 11.3636 s

Table 4. The average MSE and running time (repeating 100 times) of the GOMP and BP with number
of measurements M = 500 and group sparsity level K = 50 under a Gaussian noise e fromN (0, 0.12).

Dimension
GOMP BP

MSE Running Time MSE Running Time

N = 1024 1.1143× 10−6 0.0066 s 1.9539× 10−5 0.4521 s
N = 2048 5.7826× 10−7 0.0115 s 7.8597× 10−6 2.6113 s
N = 3072 3.9382× 10−7 0.0200 s 5.3449× 10−6 6.3476 s
N = 4096 3.0434× 10−7 0.0406 s 4.4554× 10−6 12.1959 s

4. Conclusions

We propose the Group Orthogonal Matching Pursuit (GOMP) to recover group sparse
signals. We analyze the error of the GOMP algorithm in the process of recovering group
sparse signals from noisy measurements. We show the instance optimality and robustness
of the GOMP under the group restricted isometry property (GRIP) of the decoder matrix.
Compared with the P-norm minimization approach, the GOMP has two advantages. One is
its easier implementation, that is, it runs quickly and has lower computational complexity.
The other is that we do not need the concept of γ-decomposability. Furthermore, our
simulation results show that the GOMP is very efficient for group sparse signal recovery
and significantly outperforms Basis Pursuit in both scalability and solution quality.

On the other hand, there are several algorithms that we will study in the future, such
as Sparsity Adaptive Matching Pursuit (SAMP) [34], Constrained Backtracking Matching
Pursuit (CBMP) [35] and Group-based Sparse Representation-Joint Regularization (GSR-
JR) [36], which could be potentially competitive with the GOMP.
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Appendix A

In this appendix, we establish three lemmas which will be used in the proof of
Theorem 3. The first one is concerned with the reduction of the residuals for the GOMP
algorithm.

Lemma A1. Let (rk)k≥0 be the residual error sequences generated by the GOMP applied to y,
F ⊆ {1, 2, . . . , g}, and let x = arg minz:Gsupp(z)⊆F‖y−Φz‖2. If F is not contained in Ik, then
we have

‖rk+1‖2
2 ≤ ‖rk‖2

2 −
1− δ|F∪Ik |α

(1 + δα)|F \ Ik|
max{0, ‖rk‖2

2 − ‖y−Φx‖2
2}. (A1)

Proof. The proof of Lemma A1 is based on the ideas of Cohen, Dahmen and DeVore [24].
We may assume that ‖rk‖2 ≥ ‖y−Φx‖2. Otherwise, inequality (A1) is trivially satisfied.

Denote

Hk+1 = span{ϕi : i ∈ GIk+1} and Fk+1 = span{ϕj : j ∈ Gik+1
}.

It is clear that Fk+1 ⊆ Hk+1. Note that

rk+1 = y−Φxk+1 = y−Φxk + Φxk −Φxk+1

= rk + Φxk − PHk+1(y)

= rk + Φxk − PHk+1(r
k + Φxk)

= rk − PHk+1(r
k),

which implies

‖rk+1‖2
2 = ‖rk − PHk+1(r

k)‖2
2

≤ ‖rk − PFk+1(r
k)‖2

2

= ‖rk‖2
2 − ‖PFk+1(r

k)‖2
2.

(A2)

Now, we estimate ‖PFk+1(r
k)‖2. Since Φ satisfies the GRIP of order α with the isometry

constant δα, we have
‖ ∑

j∈Gik+1

aj ϕj‖2
2 ≤ (1 + δα) ∑

j∈Gik+1

|aj|2, (A3)
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which results in the following lower estimate

‖PFk+1(r
k)‖2 = sup

ψ∈Fk+1, ‖ψ‖≤1
|
〈

PFk+1(r
k), ψ

〉
|

= sup
{cj}j∈Gik+1

, ‖∑j∈Gik+1
cj ϕj‖≤1

|
〈

PFk+1(r
k), ∑

j∈Gik+1

cj ϕj

〉
|

= sup
{cj}j∈Gik+1

, ‖∑j∈Gik+1
cj ϕj‖≤1

| ∑
j∈Gik+1

cj

〈
rk, ϕj

〉
|

≥ sup
{cj}j∈Gik+1

, ∑j∈Gik+1
|cj |2≤(1+δα)−1

| ∑
j∈Gik+1

cj

〈
rk, ϕj

〉
|

= (1 + δα)
− 1

2 ( ∑
j∈Gik+1

|
〈

rk, ϕj

〉
|2)

1
2 ,

(A4)

where the first inequality is obtained by (A3) and the Cauchy–Schwarz inequality. Using
inequality (A4), we can continue to estimate (A2) and conclude

‖rk+1‖2
2 ≤ ‖rk‖2

2 − (1 + δα)
−1( ∑

j∈Gik+1

|
〈

rk, ϕj

〉
|2). (A5)

Therefore, in view of inequalities (A5) and (A1), it remains to prove that

(1 + δα)
−1‖Φ∗[ik+1]rk‖2

2 ≥
1− δ|F∪Ik |α

(1 + δα)|F \ Ik|
(‖rk‖2

2 − ‖y−Φx‖2
2),

which is equivalent to

‖rk‖2
2 − ‖y−Φx‖2

2 ≤
|F \ Ik| · ‖Φ∗[ik+1]rk‖2

2
1− δ|F∪Ik |α

. (A6)

We note that

2
√
‖rk‖2

2 − ‖y−Φx‖2
2 ‖Φx−Φxk‖2 ≤ ‖rk‖2

2 − ‖y−Φx‖2
2 + ‖Φx−Φxk‖2

2

= ‖rk‖2
2 − ‖rk + Φxk −Φx‖2

2 + ‖Φx−Φxk‖2
2

≤ 2|
〈

rk, Φxk −Φx
〉
|

= 2|
〈

rk, Φx
〉
|.

This is the same as

‖rk‖2
2 − ‖y−Φx‖2

2 ≤
|
〈

rk, Φx
〉
|2

‖Φx−Φxk‖2
2

. (A7)

On the one hand, by the GRIP of Φ, we have

‖Φx−Φxk‖2
2 = ‖∑

i∈F

Φ[i]x[i]− ∑
i∈Ik

Φ[i]xk[i]‖2
2

= ‖ ∑
i∈F\Ik

Φ[i]x[i] + ∑
i∈F∩Ik

Φ[i](x[i]− xk[i])− ∑
i∈Ik\F

Φ[i]xk[i]‖2
2

≥ (1− δ|F∪Ik |α)( ∑
i∈F\Ik

‖x[i]‖2
2 + ∑

i∈F∩Ik

‖x[i]− xk[i]‖2
2 + ∑

i∈Ik\F
‖xk[i]‖2

2)

≥ (1− δ|F∪Ik |α) ∑
i∈F\Ik

‖x[i]‖2
2.

(A8)
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On the other hand, we have

|
〈

rk, Φx
〉
|2 = |

〈
rk, ∑

i∈F

Φ[i]x[i]

〉
|2 = |

〈
rk, ∑

i∈F\Ik

Φ[i]x[i]

〉
|2

= | ∑
i∈F\Ik

〈
rk, Φ[i]x[i]

〉
|2 = | ∑

i∈F\Ik

〈
Φ∗[i]rk, x[i]

〉
|2.

According to the greedy step of the GOMP, we further derive

|
〈

rk, Φx
〉
|2 = | ∑

i∈F\Ik

〈
Φ∗[i]rk, x[i]

〉
|2

≤ ( ∑
i∈F\Ik

‖Φ∗[i]rk‖2 · ‖x[i]‖2)
2

≤ ‖Φ∗[ik+1]rk‖2
2 · ( ∑

i∈F\Ik

‖x[i]‖2)
2

≤ ‖Φ∗[ik+1]rk‖2
2 · |F \ Ik| · ∑

i∈F\Ik

‖x[i]‖2
2,

(A9)

where we have used the Cauchy–Schwarz inequality.
Combining inequalities (A7)–(A9), we obtain

‖rk‖2
2 − ‖y−Φx‖2

2 ≤
|
〈

rk, Φx
〉
|2

‖Φx−Φxk‖2
2

≤
|F \ Ik| · ‖Φ∗[ik+1]rk‖2

2 ·∑i∈F\Ik
‖x[i]‖2

2

(1− δ|F∪Ik |α)∑F\Ik
‖x[i]‖2

2

=
|F \ Ik| · ‖Φ∗[ik+1]rk‖2

2
(1− δ|F∪Ik |α)

,

and hence inequality (A6) holds. We complete the proof of Lemma A1.

Corollary A1. Assume that minz:Gsupp(z)⊆Fj
‖Φz− y‖2

2 ≤ ‖Φx− y‖2
2 + qj (j = 0, 1, 2, . . . , L)

for q0 ≥ q1 ≥ . . . ≥ qL ≥ 0 and subsets F ∩Ω = F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ FL ⊆ F. If

k =
L

∑
j=1
d|Fj \Ω| 1 + δα

1− δsα
ln(2µ)e with µ ≥ sup

j=1, 2, ..., L−1

qj−1

qj

and
s ≥ |F ∪ Ik|,

then
‖rk‖2

2 ≤ ‖Φx− y‖2
2 + qL + µ−1qL−1. (A10)

Proof. By Lemma A1, for l = 0, 1, 2, . . . , L, we have either |Fl \ Ik| = 0 or inequality (A1)
holds. Inequality (A1), along with ‖rk+1‖2

2 ≤ ‖rk‖2
2, imply that either |Fl \ Ik| = 0 or

max{0, ‖rk+1‖2
2 − ‖Φx− y‖2

2 − ql}

≤ [1− 1− δsα

(1 + δα)|Fl \ Ik|
]max{0, ‖rk‖2

2 − ‖Φx− y‖2
2 − ql}

≤ exp[− 1− δsα

(1 + δα)|Fl \ Ik|
]max{0, ‖rk‖2 − ‖Φx− y‖2

2 − ql},

where we use the inequality exp(−x) > 1− x for x > 0.
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Therefore, for any k
′ ≤ k and l = 0, 1, 2, . . . , L, we have either |Fl \ Ik′ | = 0 or

‖rk‖2
2 − ‖Φx− y‖2

2 − ql ≤ exp[− (1− δsα)(k− k
′
)

(1 + δα)|Fl \ Ik′ |
]max{0, ‖rk

′
‖2

2 − ‖Φx− y‖2
2 − ql}. (A11)

We now prove this corollary by induction on L. If L = 1, then we can set k
′
= 0 and consider

µ > 0. When

k = d|F1 \Ω| 1 + δα

1− δsα
ln(2µ)e,

we have by inequality (A11)

‖rk‖2
2 − ‖Φx− y‖2

2 − q1 ≤ exp[− (1− δsα)k
(1 + δα)|F1 \Ω|

]max{0, ‖r0‖2 − ‖Φx− y‖2
2 − q1}

≤ exp[− (1− δsα)k
(1 + δα)|F1 \Ω|

]q0

≤ (2µ)−1q0,

and hence
‖rk‖2

2 ≤ ‖Φx− y‖2
2 + q1 + (2µ)−1q0.

Note that this inequality also holds when |F1 \ Ik| = 0, since

‖rk‖2
2 ≤ min

z:Gsupp(z)⊆F1

‖Φz− y‖2
2 ≤ ‖Φx− y‖2

2 + q1.

Therefore, inequality (A10) always holds when L = 1.
Assume that the corollary holds at L− 1 for some L > 1. This is, with

k
′
=

L−1

∑
j=1
d|Fj \Ω| 1 + δα

1− δsα
ln(2µ)e,

we have
‖rk

′
‖2

2 ≤ ‖Φx− y‖2
2 + qL−1 + µ−1qL−2.

Note that for µ = supj=1, 2, ..., L−1
qj−1

qj
, we have

‖rk
′
‖2

2 − ‖Φx− y‖2
2 − qL ≤ qL−1 + µ−1qL−2 − qL ≤ 2qL−1. (A12)

Inequality (A11) implies that for |FL \ Ik′ | 6= 0,

‖rk‖2
2 − ‖Φx− y‖2

2 − qL ≤ exp[− (1− δsα)(k− k
′
)

(1 + δα)|FL \ Ik′ |
]max{0, ‖rk

′
‖2

2 − ‖Φx− y‖2
2 − qL}. (A13)

Combining (A12) with (A13), we conclude that

‖rk‖2
2 − ‖Φx− y‖2

2 − qL ≤ exp[− (1− δsα)(k− k
′
)

(1 + δα)|FL \ Ik′ |
]2qL−1

≤ exp[− (1− δsα)(k− k
′
)

(1 + δα)|FL \Ω|
]2qL−1

≤ µ−1qL−1.

Again, this inequality also holds when |FL \ Ik| = 0, since

‖rk‖2
2 ≤ min

Gsupp(z)⊆FL

‖Φz− y‖2
2 ≤ ‖Φx− y‖2

2 + qL.
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We complete the proof of this corollary.

The second and third ones are technical lemmas. For F ⊆ {1, · · · , g}, set

x = arg minz:Gsupp(z)⊆F‖Φz− y‖2
2.

Lemma A2. For all s ≥ |F \ F|, we have

‖Φx− y‖2
2 − ‖Φx− y‖2

2 ≤ 1.5(1 + δsα)‖xF\F‖
2
2 + 0.5εs(x)2/(1 + δsα).

Proof. Let x
′
= xF∩F. Then ‖Φx− y‖2

2 ≤ ‖Φx
′ − y‖2

2. Therefore,

‖Φx− y‖2
2 − ‖Φx− y‖2

2

≤ ‖Φx
′ − y‖2

2 − ‖Φx− y‖2
2

= ‖Φx
′ −Φx + Φx− y‖2

2 − ‖Φx− y‖2
2

≤ ‖Φ(x
′ − x)‖2

2 + |2
〈

Φ(x
′ − x), Φx− y

〉
|.

(A14)

We continue to estimate (A14). Note that |Gsupp(x
′ − x)| ≤ s. By the definition of

εs(x) and the GRIP of Φ, we have

‖Φx− y‖2
2 − ‖Φx− y‖2

2

≤ (1 + δsα)‖xF\F‖
2
2 + εs(x)‖xF\F‖2

≤ (1 + δsα)‖xF\F‖
2
2 + 0.5εs(x)2/(1 + δsα) + 0.5(1 + δsα)‖xF\F‖

2
2

= 1.5(1 + δsα)‖xF\F‖
2
2 + 0.5εs(x)2/(1 + δsα),

where we have used the mean value inequality in the second inequality.

Lemma A3. For all s ≥ |F ∪ F|, we have

(1− δsα)‖x− x‖2
2 ≤ 2(‖Φx− y‖2

2 − ‖Φx− y‖2
2) + εs(x)2/(1− δsα).

Proof. Notice that

‖Φx− y‖2
2 − ‖Φx− y‖2

2

=‖Φx−Φx + Φx− y‖2
2 − ‖Φx− y‖2

2

=‖Φx−Φx‖2
2 + ‖Φx− y‖2

2 + 2〈Φ(x− x), Φx− y〉 − ‖Φx− y‖2
2

≥‖Φ(x− x)‖2
2 − |2〈Φ(x− x), Φx− y〉|.

(A15)

By the definition of εs(x) and the GRIP of Φ, we derive

‖Φx− y‖2
2 − ‖Φx− y‖2

2

≥ (1− δsα)‖x− x‖2
2 − εs(x)‖x− x‖2

≥ (1− δsα)‖x− x‖2
2 − 0.5εs(x)2/(1− δsα)− 0.5(1− δsα)‖x− x‖2

2

= 0.5(1− δsα)‖x− x‖2
2 − 0.5εs(x)2/(1− δsα),

where we have used again the mean value inequality in the second inequality.

Appendix B

Proof of Theorem 3. We prove this theorem by induction on |F \Ω|. If |F \Ω| = 0, then

‖r0‖2
2 = minx̃:Gsupp(x̃)⊆Ω‖y−Φx̃‖2

2 ≤ ‖Φx− y‖2
2.
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Assume that the inequality holds with |F \Ω| ≤ p− 1 for some integer p > 0. Then
we consider the case of |F \Ω| = p. Without loss of generality, we assume for notational
convenience that F \Ω = {1, 2, . . . , p} and ‖xGj‖2 for j ∈ F \Ω is arranged in descending
order so that ‖xG1‖2 ≥ ‖xG2‖2 ≥ . . . ≥ ‖xGp‖2. Let L be the smallest positive integer, such
that for all 1 ≤ l < L, we have

p

∑
i=2l−1

‖xGi‖
2
2 < µ

p

∑
i=2l

‖xGi‖
2
2, (A16)

but
p

∑
i=2L−1

‖xGi‖
2
2 ≥ µ

p

∑
i=2L

‖xGi‖
2
2, (A17)

where µ = 10(1 + δpα)/(1− δsα). Note that 2L ≤ p, so L ≤ dlog2 pe+ 1. Moreover, if the
second inequality is always satisfied for all L ≥ 1, then we can simply take L = 1.

We define

Fl = {i : 1 ≤ i ≤ 2l − 1} ∪ (F ∩Ω), for l = 0, 1, 2, . . . , L.

Then F∩Ω = F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ FL ⊆ F. Lemma 3.2 implies that for l = 0, 1, . . . , L− 1,

min
x:Gsupp(x)⊆Fl

‖Φx− y‖2
2 ≤ ‖Φx− y‖2

2 + ql ,

where

ql−1 = 1.5(1 + δpα)‖xF\Fl−1
‖2

2 + 0.5εp(x)2/(1 + δpα)

= 1.5(1 + δpα)
p

∑
i=2l−1

‖xGi‖
2
2 + 0.5εp(x)2/(1 + δpα).

By (A16), we have

ql−1 < 1.5(1 + δpα)µ
p

∑
i=2l

‖xGi‖
2
2 + 0.5µεp(x)2/(1 + δpα)

= µql

(A18)

for p ≥ |F \ Fl |. Thus µ ≥ supj=1, 2, ..., L−1
qj−1

qj
and q0 ≥ q1 ≥ q2 ≥ . . . ≥ qL ≥ 0. It follows

from Corollary A1 that for

k =
L

∑
j=1
d|Fj \Ω| 1 + δα

1− δsα
ln(2µ)e

≤
L

∑
j=1

(2j − 1)
1 + δα

1− δsα
ln(2µ) + L

≤ 2L+1 1 + δα

1− δsα
ln(2µ)− (2 + L)

1 + δα

1− δsα
ln(2µ) + L

≤ 2L+1 1 + δα

1− δsα
ln(2µ)− 1,

and
s ≥ |F ∪ Ik|,

we have
‖rk‖2

2 ≤ ‖Φx− y‖2
2 + qL + µ−1qL−1. (A19)
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Combining (A17) with (A18), we obtain

‖rk‖2
2 ≤ ‖Φx− y‖2

2 + 1.5(1 + δpα)
p

∑
i=2L

‖xGi‖
2
2 + 0.5εp(x)2/(1 + δpα)+

1.5µ−1(1 + δpα)
p

∑
i=2L−1

‖xGi‖
2
2 + 0.5µ−1εp(x)2/(1 + δpα)

≤ ‖Φx− y‖2
2 + 1.5(1 + δpα)µ

−1
p

∑
i=2L−1

‖xGi‖
2
2 + 0.5εp(x)2/(1 + δpα)+

1.5µ−1(1 + δpα)
p

∑
i=2L−1

‖xGi‖
2
2 + 0.5µ−1εp(x)2/(1 + δpα)

= ‖Φx− y‖2
2 + 3µ−1(1 + δpα)

p

∑
i=2L−1

‖xGi‖
2
2 + 0.5(1 + µ−1)εp(x)2/(1 + δpα).

(A20)

If 2µ−1(1 + δpα)∑
p
i=2L−1 ‖xGi‖

2
2 ≤ (1 + µ−1)εs(x)2/(1− δsα), then

‖rk‖2
2 − ‖Φx− y‖2

2 ≤ 1.5(1 + µ−1)εs(x)2/(1− δsα) + 0.5(1 + µ−1)εp(x)2/(1 + δpα)

≤ 2(1 + µ−1)εs(x)2/(1− δsα)

≤ 2.5εs(x)2/(1− δsα),

where we have used µ ≥ 10 in the last inequality.
If 2µ−1(1 + δpα)∑

p
i=2L−1 ‖xGi‖

2
2 > (1 + µ−1)εs(x)2/(1− δsα), then combining inequal-

ity (A20) with Lemma A3, we have

(1− δsα)‖xk − x‖2
2 ≤ 2(‖rk‖2

2 − ‖Φx− y‖2
2) + εs(x)/(1− δsα)

≤ 6µ−1(1 + δpα)
p

∑
i=2L−1

‖xGi‖
2
2 + (2 + µ−1)εs(x)2/(1− δsα)

< 10µ−1(1 + δpα)
p

∑
i=2L−1

‖xGi‖
2
2

= (1− δsα)
p

∑
i=2L−1

‖xGi‖
2
2,

which implies that

p

∑
i=p−|F\Ik |+1

‖xGi‖
2
2 ≤ ∑

i∈F\Ik

‖xGi‖
2
2 ≤ ‖xk − x‖2

2 <
p

∑
i=2L−1

‖xGi‖
2
2.

Therefore, p− |F \ Ik|+ 1 > 2L−1, that is, |F \ Ik| ≤ p− 2L−1. Then we can take Ik for Ω
and run the GOMP algorithm again. By induction, after another

k1 = d4(p− 2L−1)
1 + δα

1− δsα
ln

20(1 + δ|F\Ik |α)

1− δsα
e

GOMP iterations, we have

‖rk+k1‖2
2 ≤ ‖Φx− y‖2

2 + 2.5εs(x)2/(1− δsα),
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while s ≥ |F ∪ Ik|+ d4|F \ Ik| 1+δα
1−δsα

ln
20(1+δ|F\Ik |α

)

1−δsα
e. Since

|F ∪ Ik|+ d4|F \ Ik|
1 + δα

1− δsα
ln

20(1 + δ|F\Ik |α)

1− δsα
e

≤|F ∪Ω|+ k + d4(p− 2L−1)
1 + δα

1− δsα
ln

20(1 + δ|F\Ω|α)

1− δsα
e

≤|F ∪Ω|+ 2L+1 1 + δα

1− δsα
ln 2µ− 1 + 4(p− 2L−1)

1 + δα

1− δsα
ln 2µ + 1

≤|F ∪Ω|+ 4p
1 + δα

1− δsα
ln 2µ

=|F ∪Ω|+ d4|F \Ω| 1 + δα

1− δsα
ln

20(1 + δ|F\Ω|α)

1− δsα
e,

so for

k0 ≥ d4p
1 + δα

1− δsα
ln

20(1 + δpα)

1− δsα
e

≥ 2L+1 1 + δα

1− δsα
ln(2µ)− 1 + d4(p− 2L−1)

1 + δα

1− δsα
ln

20(1 + δ|F\Ik |α)

1− δsα
e

≥ k + k1

and

s ≥ |F ∪Ω|+ 4|F \Ω| 1 + δα

1− δsα
ln

20(1 + δ|F\Ω|α)

1− δsα
,

we have
‖rk0‖2 ≤ ‖Φx− y‖2 + 2.5εs(x)2/(1− δsα).

This finishes the induction step for the case |F \Ω| = p.
For the second inequality, combining the first inequality with Lemma A3, we have

(1− δsα)‖xk − x‖2
2 ≤ 2(‖Φxk − y‖2

2 − ‖Φx− y‖2
2) + εs(x)2/(1− δsα)

≤ 6εs(x)2/(1− δsα).

Thus we complete the proof of this theorem.

When Ω is the empty set, we have the following corollary of Theorem 3.

Corollary A2. If the GRIP condition 2δ31|F|α + δ|F|α ≤ 1 holds, then we have for k = 30|F|,

‖rk‖2
2 ≤ ‖Φ(x)− y‖2

2 + 2.5εs(x)2/(1− δsα)

and
‖xk − x‖2 ≤ 2

√
6
√

1 + δsα‖Φx− y‖2/(1− δsα),

where s = 31|F|.

Proof. If 2δ31|F|α + δ|F|α ≤ 1, then we have

1 + δα

1− δ31|F|α
≤

1 + δ|F|α
1− δ31|F|α

≤ 2.
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Therefore

s = 31|F| = |F|+ 30|F| ≥ |F|+ 4|F| · 2 ln(20 · 2)

≥ |F|+ 4|F| 1 + δα

1− δsα
ln 20

1 + δ|F|α
1− δsα

.
(A21)

Combining (A21) with Theorem 3, we obtain the first inequality of Corollary A2 and

‖xk − x‖2 ≤
√

6εs(x)/(1− δsα). (A22)

Notice that for any µ ∈ Rn with |Gsupp(µ)| ≤ s, we have

|〈2Φµ, Φx− y〉| ≤ 2‖Φµ‖2 · ‖Φx− y‖2 ≤ 2
√

1 + δsα‖µ‖2 · ‖Φx− y‖2,

and hence
εs(x) ≤ 2

√
1 + δsα‖Φx− y‖2. (A23)

Substituting (A23) into (A22), we obtain the second inequality of Corollary A2. The proof
of Corollary A2 is completed.
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