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Abstract: In medical clinical studies, we often encounter paired organs’ unilateral or bilateral data.
For bilateral data, there exists an intraclass correlation between paired organs. Under an intraclass
correlation model, this paper proposes asymptotic statistics for testing the equality of many-to-one
relative risk ratios in combined unilateral and bilateral data. Furthermore, we calculate the explicit
expressions of these statistics. Moreover, these procedures are adequate to solve the hypothesis
problems of unilateral or bilateral data. Through comparison, the simulation results show that the
score test has a robust empirical type-I error rate and sufficient power. We provide a clinical trial of
acute otitis media to illustrate our proposed methods.
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1. Introduction

Binary outcome data are widespread in medical applications. We often encounter
the observation of paired organs (e.g., eyes, ears, and arms) in medical clinical studies.
If only one of the patients’ paired organs is diseased, one organ’s response outcomes
are not cured or cured; we call this unilateral data. Previous researchers have achieved
outstanding achievements on statistical inferences about the unilateral data [1-4]. If both
patients’ paired organs are diseased, the treatment responses of paired organs are none,
one, and both cured; this is called bilateral data. Generally, the paired organs of patients
may be correlated. Unlike the unilateral case, correlation should be considered in bilateral
data to avoid biased results. For such correlated paired data, researchers have proposed
many probabilistic models, including Rosner’s model [5], Dallal’s model [6], and Donner’s
model [7]. Under the above models, various statistical methods have been proposed for
testing the equality of proportions in bilateral data [8-11]. Among these models, Rosner’s
model is the basis and has been widely studied [12-14].

In practice, we usually obtain both data types described above. Due to certain factors,
some patients have only one eye studied, while others provide information on both eyes.
For example, Mandel et al. [15] conducted a double-blind randomized clinical trial to treat
acute otitis media (OME). In this trial, each child suffered either unilateral or bilateral
tympanocentesis and was randomly assigned to receive treatment with Amoxicillin or
Cefaclor. Under the same treatment method, we divided children into three groups by
age. In the Amoxicillin treatment, 97 children of different ages were classified into three
types: less than 2 years old, 2 to 5 years old, and 6 years old or older. After 14 days of
treatment, Table 1 shows that each child underwent no, unilateral or bilateral OME, and
was assigned into three groups according to age: <2, 2-5, and >6 years. Pei et al. [16]
observed that the previous methods of studying unilateral or bilateral data are unsuitable
for their combination. They proposed new asymptotical ways to test the equality of two
proportions under such data. This topic is an emerging problem, and related research
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is less available [17-20]. Therefore, studying unilateral and bilateral data under Rosner’s
model is imperative.

To compare the treatment of Amoxicillin in Table 1, the common measures are risk
difference (RD), relative risk ratio (RR), and odds ratio (OR). The RD is an essential and
straightforward measure that reflects the underlying risk without treatment and the risk
reduction associated with treatment. The relative risk of a treatment is the ratio of risks
between the treatment and control groups. It is generally more meaningful to use relative
effect measures for summarizing the evidence and absolute measures. The odds ratio aims
to look at associations rather than differences. Please note that RR and OR are related; this
paper compares the relative risk ratios under Rosner’s model.

Table 1. OME status of Amoxicillin treatment.

Responses Age Group (Unit: yrs)

<2 2-5 >6
0 2 5 6
1 2 1 0
2 11 3 1
Total 15 9 7
0 2 14 11
1 10 22 7
Total 12 36 18

Note: response 0—no OME, response 1—unilateral OME, and response 2—bilateral OME.

Multiple groups can often occur in many different treatments or over time in medical
trials [21]. It is natural to compare several treatment groups with a control group. Mou and
Li [22] considered a homogeneity test of risk differences on many-to-one bilateral data in a
study. Schaarschmidt et al. [23] studied asymptotic simultaneous confidence intervals (SCIs)
for many-to-one comparisons on binary proportion. Yang et al. [24] proposed asymptotic
SCI construction for many-to-one comparisons of proportion differences adjusting for
multiplicity and correlation. To date, relatively few papers have studied unilateral and
bilateral data. Most research on unilateral or bilateral data mainly focuses on homogeneity
testing for risk differences in stratified data, and on the study of equality of multiple groups
of proportions. When the cure rates are low, and the difference between groups is slight,
using the relative risk ratio to judge is more appropriate. There is insufficient research into
statistical inference on many-to-one procedures of combined unilateral and bilateral data.
Under Rosner’s model, the paper aims to study homogeneity tests of many-to-one relative
risk ratios in unilateral and bilateral data. The hypothesis proposed by Ma et al. [17] is
a particular case of this type. Moreover, the method proposed in this paper can also be
applied to unilateral or bilateral data, and the corresponding test statistics are given. We
arrange the rest of the work as follows. In Section 2, we introduce the data structure and
Rosner’s model, and estimate the unknown parameters by algorithms. Section 3 constructs
the likelihood ratio, score, and Wald-type statistics. In Section 4, through Monte Carlo
simulations, we compare the performance of these test statistics in terms of the empirical
type-I error rates and power. We provide a real example to illustrate our proposed method
in Section 5 and conclude in Section 6.

2. Data Structure and Probability Distribution

In an ophthalmologic study, let m;;(I = 0,1,2) be the number of patients with [
response(s) for bilateral data. For unilateral data, let 1;(I = 0,1) be the number of patients
with [ response in the ith group fori =1,..., g. Table 2 shows the combined unilateral and
bilateral data.
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Table 2. The unilateral and bilateral data in g groups.

Group ()
Response (1) Total
1 2 e g
0 mo1 mo2 ce mog mo+
1 miq mio e mlg mi4
2 moq Moo . ng my
Total My Myp .. Myg M,
0 nop1 no2 N nog no+
1 ni nip . 1’118 ni4
Total Ny nio ... Nyg M,

2
Letmy; = Y. my(i =1,2,...,¢) be the total number of patients with bilateral data in
1=0
8
the ith group, and m;, = Y my; be the total number of patients with exactly /(I = 0,1,2)
i=1
1
response(s). For the unilateral case, n.; = ) ny; is the total number of patients with binary
1=0

8

data in the ith group, and n;, = }_ ny; is the total number of patients with I(I = 0,1)
i=1

response. We have

8 2 g 1
My=)Y my=Y my, My=)Y ny=)y n;.
i=1 1=0 i=1 1=0

For the bilateral data, let Y;; be a random variable representing the number of patients
with [ response in the ith group, which has a trinomial distribution. In addition, py, is
the corresponding probability. Define m; = (mq;, mo;, mp;))T, Y; = (Yo, Y1i, Yai)T, py, =
(Pyy Pyys Pry) T and py,, + py,; + Py, = 1. Then, the probability density of ¥; is

! Mo 1My Mo;
M !1y!1y;! PYo Py Py

fy,(m;) =

fori=1,2,...,g. For the unilateral data, let X;; be a random variable that represents the
number of patients with I response in the ith group and follows a binomial distribution,
and px, be the corresponding probability. We denote n; = (1, ni) T, X; = (Xoi, X15)7,
px; = (Pxy» lei)T and px,, + px,; = 1. Then, the probability density of X; is

Myl ng
A\n;) =
fX, ( 1) 7’101'!”11'! pXinXU

fori=1,2,...,g
Suppose Zi(]%() = 1in bilateral data if the kth (k = 1,2) eye of the jth individual
(2)

ij
the jth patient (j = 1,-- -, n4;) has a response in the ith group, and 0 otherwise for the
unilateral patients. Under Rosner’s model, we propose a probability model of unilateral

and bilateral data as

(j =1,...,my;) is cured in the ith group and 0 otherwise. Define Z:/ = 1 if the eye of

Pr(zfjlk) =1)=Pr(z? =1) =, pr(zY) = 1|zz.(].1(>37k =1) = R, 1)

ij ijk )

where Ris a constant. If R = 1, the two organs of a patient are completely independent.
They are completely dependent when Rrr; = 1.
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From the probabilities of Equation (1), it is easy to derive px,, = 1 — 71, px,;, = 7,
Py, = Rm? —2m;+1, py,, = 2m;(1 — Rm;) and py,, = R® fori =1,2,- -+, g. Since X;
and Y; are independent random variables, the likelihood function is expressed by

oq

g i m.i!
_ _ +1* +i* ne; M1 Moi M1 Mo
L(7t, R) = [ [ fy, (mi) fx, (m:) = q ity ottt P X0 P %Py Py Py

i=1 i=

where 7t = (711, 712, . .., ¢ ). Thus, we have the log-likelihood as

8
I(mR) =} Li(m,R)
i=1
8
= Z [I’HQ,‘ ln(Rrrl-2 — 27 + 1) + my; ln(27ri(1 - RT[I‘)) + my; 11’1(R7'L',‘2) + no; 11’1(1 - 7'Ei)
i=1
+ny;In(7;)] +1nC,
i! i! .
where C = JT¢_, P T T 18 @ constant.
Denote & = (d2,...,0¢) and &; = m;/my, (i = 2,3,...,8). We aim to test whether the
many-to-one relative risk ratios are identical and give the hypotheses as

Hy:6, =03 = ~~:5gé(5 vs. Hj : d; is not all the same.

Let #; and R be the global maximum likelihood estimators (MLEs) of unknown param-
eters 1;(i = 1,2,...,¢) and R, respectively. Global MLEs are the solutions to the equations

dl dl
— =0, — = =1,2,... 2
87‘(_‘1 0, aR O/ 1 14y /g/ ( )
where

ol ny LM 2mgi(Rmt; —1) | myi(2Rm; — 1) | 2my;

om;  mi—1 T R7Tl-2 —2mi+1 (R — 1) m

a _ mpy i Moy Tt my; 7T

oR R Rra? —2m;+1 Rm—1}

i=1

Denote B = (7, ..., g, R) and Bl = (ngt), ., nét), RM®). We simplify the first equation
of (2) as the following 4th-order polynomial equations

artt + b} + o +dm e =0,

where
a = (2my;+n)R?
b = —R(4mg; +5my; + 6my; +3ny;) — R? (2m+i +ny;),
¢ = (4R +2)(mo; + 2my; + ny;) + (7R + 2)mq; + (R + 2)ng;,
d = —2mp; — (3+2R)my; — (6 +2R)my; — ng; — (R + 3)ny;,
e = mq;+2my; + ny;.

The (t + 1)th update of R is obtained by the Newton-Raphson algorithm

RIHD _ R _ 1MW)\ tar(p")
JR? oR '




Axioms 2023, 12, 333 50f 19

where
0%1(B) _mpy i[ mo; 7t N my; e ]
oR? R2 = (RT[iz — 271 + 1)2 (RT[Z' — 1)2 '

Remark 1. In the above algorithm, if nj; = 0(1 =0,1,i =1,...,g), the global MLEs of t; and R
correspond to the results of bilateral data in Ma et al. [14]. If m;; =0(1 =0,1,2,i =1,...,g),itis
easy to obtain the global MLEs 7t; = nq;/ny;(i = 1,...,¢) in unilateral data.

Suppose that 71 = - - - = 7y = 7110 under Hy, the log-likelihood is rewritten by
g
lo(6, m1,R) = lp1 (6, m,R) + Y _ 1i (6, 11, R),
i=2
where
101 = mp1 1n(R7T12 —2m + 1) + mqq 11‘1(27T1(1 — Rﬂl)) + My 11‘1(R7T12)
+191 In(1 — 717) + 111 In(717),
loi = moiIn(Rm26% — 27116 + 1)+my; In(Rmy26%) + my; In(2m16(1 — Ry 6))

+ng; In(1 — 7116) + ny; In(m16).

Let 77, 5 and R be the constrained MLEs of 7, § and R under the null hypothesis

Hp: 6y = -+ - = &;. We calculate the constrained MLEs of 7r and R from
dg oy  dly
o YR Va5 =0 ©)

However, there is no close solution for Equation (3) when ny;, m;; # 0 (see Appendix A.1).
Given initial values 71%0), R and 6(%) = 1, the Fisher scoring algorithm is introduced to
obtain the (f 4 1)th updates of 7r; and R as follows

S(+1) 50 A (50, 7, RO)
AT = 70| + | 250, 70, RO) |, @)
R(+D) R® A (50, ngt),R(f))

where I is a 3 x 3 Fisher information matrix (see Appendix A.1), and

9?1 P! 9%

: A
LW, mY, ROy = - EGomos)  E(GG@)  E(gmar) |-

9?1 9 9?1

E(ors)  E(omam)  E(Grt)

Remark 2. Under Hy : 6; = 6,(i =2,...,8), if nj; = 0, we can obtain the constrained MLEs of
Rosner’s model through Equation (4) in bilateral data. If my; = 0, the constrained MLEs of rt; and

6 are directly given by

3. Asymptotic Methods
This section uses the likelihood ratio, score, and Wald-type test for unilateral and
bilateral data. Especially for bilateral or unilateral data, we provide three tests when n;; = 0

and my; = 0, respectively.
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3.1. Likelihood Ratio Test
The likelihood ratio (LR) test can be given by

Ty =2(I(, ..., g, R) — lo(71,6,R)) = 2(Tp1 + Tro),

where
RAZ — 271 +1 2711 (1 — R7y) RA? 1- M
T = myln({=—32—"" " " VamyIn( =) 4y In (==L ) + 7591 In —
H o <R~§—2ﬁ1+1> u <2ﬁ1(1—Rﬁ1)> 2 <Rﬁ§) o (1— 1>
us!
+npIn(—),
nin (21
3 RA? —27;+1 RA? 27;(1 — R#A;)
T, = moiIn ( =——"——— ) + myIn (=5 ) +my;In ( ————"1
L2 ,:22[ 0i (Rﬁ§52—2ﬁ15+1> 2 <Rﬁ§52> i <2ﬁ15(1—Rﬁ15)>
+n0iln< — 1%)—0—111,111(7?15)].
Under Hp : 6, = - - - = g = 4, the likelihood ratio test is asymptotically distributed as

a chi-square distribution with a ¢ — 2 degree of freedom.

Remark 3. If nj;_, the likelihood ratio test in the bilateral data can be calculated by

8 RA? — 2741 RA? 27;(1 — R7;)
T, = mo; In  =—5-2 L +myIn | =— ) 4+ my;In a 7
g EJ o (Rﬁ%52—2ﬁ1(5+1) # (Rﬁ%éz) Y <2ﬁ15(1 —Rﬁls)”
RA? — 271 +1 271 (1 — R#Ay) RA?
+mopIn (=————— ) 4+ myIn (L) + my In (= ).
o1 <Rﬁ%—2ﬁ1+1) 1 (Zﬁl(l—Rﬁ1)> 2 (Rﬁ%>
If my; = 0, we simplify the likelihood ratio test of the unilateral data as
e o () ()
B S S A ST VA e VA
3.2. Score Test
Please note that Hy : 6 = --- = 6, = J is equivalent to 71, = --- = 7. Denote
= (m,m,... 1), & = (M, 7,... 77", and U = (%,...,%,0,0). The score

statistic is expressed by
-1 T
TSC = UI2 (7-[2/' "lngl 7, R)u |7(:7‘-1-,R:R/

where I is a (g + 1) x (g + 1) Fisher information matrix (see Appendix A.2 for more
information). Let

A B
12:[BT D]’
where
. &l 1, Ph Y a .
A = dlag{E(—an%,...,E(—ané),E(—an%)}dlag(az,...,ag,al),
I, &1, L \\" . T
B = (E<_anzaR)"”’E(_BngaR)’E(anlaR)) = (bayo by by
2
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After calculation, the inverse matrix of I can be obtained by

o [Eln 5l
L(21) I,°(22)
where
L,'(1,1) = A '+A'B(D-B'A"'B)"'BTA7],
I;'(1,2) = —-A'B(D-B"A7'B)"!,
I,'(21) = —(D-B'A7'B)"'BTA},
I;'(22) = (D-BTA7'B)7,

and the inverse matrix of A is given by

-1 . -1 -1
A7 = diag(a, Y ).

Then
u1;1uT = (uz,...,ug,O,O)Igl(uz,...,ug,O,O)T
= (up,...,ug,0)L,; 1 (1,1)(us, ..., ug,0)"
= (u2,...,ug,O)A_l(u2,...,ug,0)T
n (up, ..., ug, O)A’lBBTA’l(uZ,. . .,ug,O)T
D-BTA-1B ’
where
) 1 )T 3 uiz
Uy, ..., Ue,0)A " (Uy, ..., Ue,0 = —+,
(12 15, 0) A . g r
& ub:
(ug,...,ug, 0)A7' B = Y H70
i— i
8 p2
B'A™'B = } L.
~ g,
i=1 "1
The score statistic can be simplified as
8 42 8 ub\2 8 p2\ -1
=Yoo (L) (P-Lg) - ®
i=2 i i=2 " i=1 i

Under H), the score test is asymptotically distributed as a chi-square distribution with
a g — 2 degree of freedom.

Remark 4. For bilateral data, we can obtain the score test through the Equation (5) and nj; = 0.
dlr adlg

Jrr aTg'O)' and Iy = A is a § x g Fisher information matrix,

Suppose that m;; = 0, U = (

where E(— gnlﬁ) = - ni(gll) = a;. The score test in unilateral data can be simplified as

g 42
Tsc =), —-.
= G
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3.3. Wald-Type Test
Letﬁ = (f1,..., g, R) be the global MLEs of B = (714, ..., 7tg, R). The null hypothesis

Hy:6p=---=4; £5is equivalent to CﬁT = 0, where
o1 -1 0 ... 0 O
o 0o 1 -1 0 0
C =
o ... ... 0 1 =10

Then, the Wald-type test statistic can be expressed as
Tw = (BCT)(CB'CT) M (CB") | e s re,

where I3 is the information matrix (see Appendix A.2 for more information), and I ! can
be derived as

C11 €12 e Cig C1(g+1)
€21 €22 e Cog C2(g+1)
-1 _ .
I = : :
Cgl ng v ng Cg(ngl)
Clg+1)1 Cg+1)2 -+ C(g+1)g  C(g+1)(g+1)

Denote a (g —2) x (g —2) matrix F = CI; 'C”, and its element E; = (cis1)(j+1) —
Ci+1)(i+2)) — (C(i42)(j+1) — C(i+2)(j+2))- It is convenient to express elements of the inverse
matrix F~! by a lower triangular matrix H, i.e., F = HH', where H = (hij) and

i1
Fj— Y hihj
— B i
hi
hy; = :
g 2 oN1/2 .
(Fj— ) ki) '" i=]
k=1
0, i<j.

Obviously, F~! = (HHT)™! = HT 'H!, where H™! = (lij) and its elements can be
derived as follows

1 it .
- Y hil, >,
i f=j
Li=4{ 1
iji=9y L P
i J
0, i<j.

g2
Thus, (F~! )ij = kgl Ikilkj- The Wald-type statistic can be written as:

§-28-2
Tw = ((”i+1 — 7i42) (F1)ij(j1 — 7Tj+2)>~ (6)

i

Il
_
~.
Il
_

The Wald-type test is asymptotically distributed as a chi-square distribution with a
g — 2 degree of freedom under H.
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Remark 5. If nj; = 0, the Wald-type statistic can be obtained through Equation (6) in bilateral
data. Suppose that my; = 0, p = (7t1,..., ftg) and Cis a (§ — 2) x g matrix, where

o1 -1 0 ... O
0 0 1 -1 0

0 ... o 01 1],

Let F~! = (CI;*CT) . Obviously, F~' is a symmetric matrix, and its elements can be derived as

j+1 g
Z2aql<>:2ak
1 q= =1+ . PR
(F)ij=—5— i2jij=1...,8-2

Thus, the Wald-type statistic (6) can be obtained.

4. Monte Carlo Simulation Studies

In this section, we compare the performance of the statistics for the homogeneity test of
risk ratios. In addition, we selected two evaluation indexes of type-I error rates (TIEs) and
power. The fitting results of the homogeneity test are calculated when the significance level
« = 0.05. The TIE is the probability of rejecting the null hypothesis when it is true. Each
parameter set is performed 10,000 times based on the null hypothesis. The empirical TIEs
is calculated as the number rejecting the null hypothesis divided by 10,000 at a significance
level « = 0.05. According to Tang et al. [12], a test is liberal if the empirical TIEs is larger
than 0.06, conservative if the empirical TIE rate is less than 0.04, and robust otherwise at
the significance level « = 0.05.

First, we investigate the performance of TIEs under different parameter settings.
Take the sample sizes m e My = Myp = -+ = Myg, N e Ny = Ny = -+ = Nyg.
Let m = n = 30,60,90 for balanced designs and (m,n) = (30,60), (60,30), (90,30) for
unbalanced designs. Take ¢ = 3,4,5, R = 1.1,1.2,1.3, and 7r; = 0.3,0.4,0.5 under the
hypothesis Hy : 0 = 1,1.2. Then, we calculate the empirical TIEs of all proposed test
statistics. For each scenario, 10,000 replicates are randomly generated under the null
hypothesis Hy.

Tables 3-5 show the empirical TIEs based on three statistics under all configurations
for ¢ = 3,4 and 5, respectively. The left side of the table shows the balanced design
results. We provide the unbalanced design results on the right of each table. Let § =1,
Hp: 6, = -+ = 6y is equivalent to 71y = 71 = - - - = 7. This situation can be seen as the
proportional homogeneity test proposed by Ma and Wang [17]. In Table 3, the likelihood
ratio and score tests are robust for the balanced design and small sample size, while the
Wald-type statistic is liberal. The Wald-type test tends to be robust when the sample size
becomes larger. In the unbalanced design, let & = 1, the Wald-type statistic is liberal when
m = 60,n = 30 and m = 30,n = 60. Take § = 1.2, and the Wald-type test performs
better. The result of the Wald-type statistic becomes more robust when the total sample
sizes increase. Table 4 displays that the Wald-type test is more liberal for the unbalanced
design. The likelihood ratio and score tests are more robust than the Wald-type tests for the
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balanced design, especially for a small sample size. In Table 5, the Wald-type test is worse
for small sample sizes in unbalanced scenarios, similar to balanced ones.

In Tables 3-5, the score test Tgc and likelihood ratio test T} are more robust than Wald-
type test Tyy in terms of the TIEs. The Wald-type statistic is liberal in small sample scenarios
and becomes more liberal as the number of groups increases. There is no significant
difference in the performance of the three statistics when the total sample sizes of the
balanced and unbalanced groups are the same. As the values of m or n increase, we can
observe that the Wald-type statistic tends to be robust. The TIEs of all three tests grow
closer if the sample size increases.

Table 3. The empirical TIEs (%) of tests under Hy : §; = 6 (g = 3, & = 0.05).

Balance Unbalance
R m s=1 5§=12 f=1 5§=12
T, Tsc Tw To Tsc Tw T Tsc Tw T Tsc Tw
m=mn = 30 m =30,n =60

1.1 03 547 501 562 565 497 573 558 506 553 559 512 551
04 554 516 585 550 515 6.04 529 496 548 525 490 5.62
05 554 525 6.04 568 5.06 6.42 517 495 552 546 517 5.84
12 03 533 481 555 586 523 6.04 544 502 552 550 497 5.56
04 580 538 6.10 547 502 599 565 538 591 552 511 595
05 586 541 646 575 512 590 585 554 6.26 540 5.01 5.66
1.3 03 528 479 549 544 497 569 537 497 549 536 5.00 559
04 561 520 6.04 578 530 6.4 531 499 565 5.01 4.63 5.32
05 546 501 591 597 541 586 562 526 6.00 570 513 5.82
m=mn =60 m=60,n=230
1.1 03 521 498 530 537 510 543 533 511 541 552 525 5.64
04 529 510 553 511 494 534 525 509 534 481 451 5.14
0.5 523 487 532 528 503 567 531 501 555 522 500 5.52
1.2 03 535 510 543 485 464 515 516 489 536 535 5.02 545
04 539 520 558 567 546 586 498 477 524 545 5.09 5.70
05 520 504 533 585 546 588 510 478 530 527 492 5.38
1.3 03 535 518 553 511 496 520 4.84 4.66 5.05 517 4.81 5.38
04 523 510 548 565 533 588 561 537 583 562 525 596
05 529 508 559 534 498 531 577 532 615 551 522 5.37
m=mn=90 m=90,n =30
1.1 03 537 523 543 513 491 524 516 5.03 524 524 5.08 5.33
04 498 487 509 519 505 534 532 517 546 527 5.03 548
05 475 466 483 511 493 535 540 516 553 534 516 5.59
1.2 03 515 505 520 5.07 493 524 555 534 572 528 5.04 542
04 496 488 504 513 492 523 509 495 522 526 510 541
0.5 533 507 548 535 515 548 525 5.02 550 530 5.08 543
1.3 03 528 515 540 496 489 510 557 539 573 522 497 541
04 509 495 525 530 514 546 521 497 529 539 515 551
05 523 5.03 535 487 461 487 525 496 544 493 462 4.85

The above results are obtained for given multiple parameter values. In practice, there
are more possibilities for parameter values. To further compare these test statistics, we ran-
domly choose 1000 sets of parameters (R, 7y, ..., 7T¢) according to the constrained ranges
of parameters for g = 3,4,5 and m = n = 30,60, 90 under Hy. A total of 10,000 replicates
are randomly generated for each configuration to calculate the type-I error rates. Figure 1
shows the box plots of the empirical TIEs. The results display that the three statistics
become more robust under the same number of groups as the sample size increases. As
the number of groups grows, the Wald-type test becomes more liberal while the likelihood
ratio and score tests become more robust. Overall, the score test is more robust in the sense
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that the TIE of it is close to the significant level & = 0.05 regardless of sample size and the
number of groups.

Next, we compare and summarize the performance of proposed test statistics in terms
of power under different parameter settings. To be specific, we consider the balanced and
unbalanced settings, respectively. In addition, we also take the same parameter (R, 71) as
we do for empirical type-I error rates. Under the hypothesis Hj, the parameter settings
satisfy: 6 = (1,1.3),(1,1.3,1.4),(1,1.3,1,1.4) for g = 3,4, 5. Similarly, we randomly select
10,000 replicates from the alternative hypothesis for each parameter setting and calculate
the empirical power by the number of rejections of the alternative hypothesis divided by
10,000. The simulated results are presented in Tables 6 and 7, respectively. At the same
number of groups, when we fix parameter R, the empirical powers will become larger as
71 increases. However, given a fixed parameter 771, the empirical powers do not change
much as R increases. In Table 7, the powers obtained with sample size of m = 60,n = 30
are greater than that obtained with m = 30,n = 60. The results show that these powers
of the three test statistics are very close under the same parameter settings. The empirical
power will increase with the sample size or the number of groups.

Table 4. The empirical TIEs (%) of tests under Hy : §; = 6 (g = 4, « = 0.05).

Balance Unbalance
R m s=1 5§=12 s=1 =12
T, Tsc Tw To Tsc Tw T Tsc Tw Tp Tsc Tw
m=mn =230 m=30,n =60

1.1 03 510 469 562 530 493 591 475 450 520 493 474 544
04 542 502 610 555 481 6.09 522 488 588 557 510 6.03
05 524 471 577 551 476 6.46 529 477 550 581 543 6.45
1.2 03 525 490 585 538 486 6.04 479 451 534 535 5.09 590
04 564 525 635 550 507 638 566 536 635 550 510 6.17
05 540 497 639 530 474 597 539 507 580 521 5.00 5.82
1.3 03 554 498 6.24 515 466 586 556 522 6.06 523 494 5.82
04 531 490 6.02 546 476 6.42 516 484 576 546 5.03 6.02
05 520 456 619 561 496 642 553 505 619 562 513 6.15
m=n =60 m=60,n=230
1.1 03 5.02 486 523 534 507 562 550 524 579 519 498 5.60
04 519 496 553 480 455 521 496 472 537 570 5.38 6.08
0.5 533 510 575 522 499 568 549 524 580 576 536 6.12
12 03 502 482 529 515 498 552 470 445 501 514 474 559
04 543 525 578 532 506 560 485 456 523 521 475 5.67
05 549 517 6.00 529 501 556 515 490 5.63 556 5.11 6.11
1.3 03 560 544 6.04 514 499 550 540 5.15 5.82 5.08 4.77 5.66
04 527 5.07 572 534 514 578 590 551 6.33 541 497 593
05 570 541 .07 517 475 542 547 523 6.04 492 458 5.28
m=mn=90 m =90,n =30
1.1 03 526 516 557 500 482 511 529 524 558 497 473 5.16
04 524 519 543 527 519 552 512 495 544 536 522 5.61
0.5 509 486 532 500 479 536 521 506 574 548 518 5.83
12 03 484 471 505 550 530 558 514 497 550 535 516 5.80
04 501 483 528 529 517 559 547 541 578 514 480 5.49
05 509 496 543 542 518 565 572 541 6.03 510 479 5.56
1.3 03 507 491 529 498 481 519 511 488 548 5.07 494 541
04 528 510 548 5.09 483 532 528 494 575 547 511 5.77
05 526 494 562 516 483 521 515 483 552 544 527 5.63
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Table 5. The empirical TIEs (%) of tests under Hy : §; = 6 (g = 5, = 0.05).

Balance Unbalance
R m s=1 §=12 s=1 =12
I Tsce Tw T Tse Tw T Tse Tw T Tse Tw
m=mn=230 m=30,n =60

1.1 03 479 428 579 548 482 6.26 507 475 566 500 4.63 5.71
04 588 527 657 537 485 6.44 546 515 597 543 502 6.30
05 575 520 6.77 579 5.00 693 594 560 6.67 567 525 6.51
12 03 527 480 631 535 492 634 512 477 572 535 510 6.09
04 553 484 647 560 508 6.89 529 497 577 561 523 6.50
05 516 479 6.43 558 5.02 6.58 563 523 642 501 455 578
1.3 03 519 468 612 569 517 6.84 557 518 619 479 445 5.62
04 544 491 630 556 489 6.87 539 505 630 544 526 6.41
05 583 532 729 6.01 537 751 551 503 634 565 498 6.64
m=n=60 m=60,n=230
1.1 03 534 492 555 497 473 545 537 493 582 496 470 5.64
04 494 465 521 520 5.00 576 529 492 577 529 491 590
0.5 510 488 559 506 4.68 547 526 499 6.00 566 519 6.39
12 03 542 510 584 566 542 6.07 563 520 6.6 502 478 5.70
04 544 527 576 531 504 583 550 520 6.6 554 528 6.29
05 541 521 593 526 496 594 559 517 645 562 531 641
1.3 03 475 455 514 548 520 593 532 495 573 555 513 6.18
04 517 492 577 530 495 574 540 519 6.01 539 521 6.36
05 523 492 578 522 486 583 541 512 619 549 486 6.11
m=n=90 m=90,n =30
1.1 03 532 519 557 538 520 567 511 492 556 538 515 5.68
04 556 537 585 519 501 554 499 481 537 517 480 5.67
05 5.03 489 531 534 514 563 525 496 565 571 536 6.19
1.2 03 5.05 490 530 540 525 559 535 499 567 531 5.08 5.80
04 518 5.04 558 533 516 574 509 496 544 506 4.84 554
05 504 484 548 503 491 554 492 470 543 520 488 5.78
1.3 03 554 532 593 531 505 558 557 544 6.02 518 5.04 547
04 5.13 5.05 537 513 5.01 560 546 510 5.88 563 519 6.24
05 561 542 589 534 514 553 539 513 590 510 474 557

We further study the power of three statistics changes as the given parameters change.
Under hypothesis Hy, let m = n = 30,60,90, R = 1.1 and m; = 0.3 for g = 3,4,5.
Figure 2 reveals the empirical powers of three tests for given parameters m, n, R, 711, g. The
performances of the three statistics are close in terms of powers. When ¢ is around 1,
the resulting power is around 0.05. This is because the difference between the null and
alternative hypotheses is small. The increasing J leads to a significant power increase. The
powers increase in the same number of groups as the sample size increases. The three
statistics have good power performance when the number of groups increases.

According to the simulation results, the score statistic and LR test have satisfactory
results in the TIEs. However, the score statistics are more robust than the other two for small
sample-size scenarios. The powers of the three tests are very close. Thus, we recommend it
for the homogeneity test about a many-to-one comparison of relative risk ratios.
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Figure 1. Empirical TIEs of tests.

Table 6. The power (%) of the balance group (« = 0.05).

g=3 g=4 g=>5
R 71
T Tsc Tw T Tsc Tw TL Tsc Tw
m=n =230
1.1 03 24.69 2358 25.38 3227 3049 3477 38.50 36.88 40.83
04 3558 34.36 37.37 49.09 4725 51.56 61.18 59.74 63.69
0.5 5254 50.87 54.18 70.79 68.83 7248 82.01 80.89 83.85
1.2 0.3 24.67 2342 25.65 30.68 29.07 33.09 39.09 37.28 41.02
0.4 3483 3357 36.19 48.01 45.69 50.29 58.93 57.28 61.68
0.5 53.67 51.77 54.83 73.66 71.63 74.49 8456 83.45 85.98
1.3 0.3 24.04 2276 25.04 31.16 28.92 33.64 38.20 36.64 40.54
0.4 36.36 34.64 37.46 48.89 46.14 51.21 60.42 58.76 62.73
0.5 58.34 56.17 58.55 82.04 80.02 81.16 91.34 89.92 92.00
m=mn=60
1.1 0.3 4329 4272 43.68 57.73 56.72 59.44 69.79 69.12 70.69
0.4 61.24 60.50 61.99 80.00 79.34 80.94 90.07 89.64 90.58
0.5 80.44 7995 81.11 95.68 95.20 95.81 98.74 98.66 98.80
1.2 0.3 4211 4144 4242 56.85 55.46 58.69 69.26 68.66 70.10
0.4 60.84 5994 61.62 78.96 78.00 79.97 89.65 89.23 90.27
0.5 81.74 81.25 82.29 96.44 96.01 96.43 99.06 99.07 99.19
1.3 03 40.22 39.62 40.97 56.12 5441 57.87 68.19 67.31 69.27
0.4 60.71 60.06 61.32 7956 78.17 80.40 89.99 89.50 90.49
0.5 86.73 86.10 86.88 98.56 98.43 98.46 99.82 99.80 99.86
m=mn=90
1.1 0.3 58.36 58.17 58.78 76.63 7610 77.58 87.52 87.39 87.86
0.4 7833 78.02 78.60 93.11 9280 93.46 98.15 98.11 98.25
0.5 92.63 9246 92.82 99.51 9949 99.54 99.94 99.93 99.94
1.2 0.3 58.30 5772 58.73 7529 7437 76.28 86.30 86.07 86.66
0.4 77.77 77.33 78.05 93.07 92.76 93.40 98.09 98.03 98.18
0.5 9410 93.92 94.35 99.78 99.72 99.78 99.99 99.99 99.98
1.3 0.3 56.79 56.30 57.22 7493 73.76 75.90 86.23 85.95 86.59
0.4 78.18 77.83 78.58 93.63 93.12 93.91 98.26 98.19 98.40
0.5 96.38 96.21 96.37 99.94 9993 99.96 99.99 99.98 99.99
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Figure 2. Empirical powers of tests.

Table 7. The power (%) of the unbalance group (x = 0.05).

§=3 g§g=4 g§=>5
R m
1L Tsc Tw TL Tsc Tw Tp Tsc Tw
m =30,n =60
1.1 0.3 3146 30.69 32.10 4195 40.67 43.82 51.05 50.02 52.98
0.4 46.44 4546 47.72 61.97 60.63 63.58 74.02 7326 75.37
0.5 63.93 6296 65.11 84.09 8291 84.74 9235 91.77 93.15
1.2 0.3 30.19 2944 30.63 40.72 39.38 42.88 51.46 50.38 53.32
0.4 45.60 44.69 46.86 61.81 60.03 63.86 73.84 7284 75.07
0.5 6494 63.80 65.66 85.36 84.33 85.68 93.63 93.06 94.19
1.3 0.3 30.93 29.80 31.66 41.18 3951 43.35 49.65 4851 51.37
0.4 4518 4411 46.03 61.86 59.55 63.70 7391 72.78 7555
0.5 69.06 67.83 69.59 90.51 89.07 90.24 96.76 96.33 96.96
m=60,n =30
1.1 0.3 36.68 35.98 37.38 49.78 4881 51.51 5991 59.06 61.32
0.4 53.14 5227 54.11 7048 6950 71.78 82.65 82.15 83.63
0.5 7234 7146 73.18 90.30 89.64 90.64 96.69 96.48 96.95
1.2 0.3 3580 35.08 36.48 48.73 4715 50.58 59.53 58.51 60.78
0.4 52.05 51.02 52.86 70,66 69.06 7217 82.14 81.38 8297
0.5 74.46 73.68 74.90 92.75 92.02 92.86 9793 97.75 98.26
1.3 0.3 35.53 34.59 36.23 4840 4653 50.54 58.21 57.19 59.80
0.4 53.31 5220 54.16 7210 70.19 73.22 83.74 8297 84.69
0.5 79.58 7843 79.70 96.95 96.51 96.80 99.31 99.23 9941
m=90,n =30
1.1 03 4780 4732 48.51 64.67 63.61 65.79 76.23 75.84 76.92
0.4 6741 66.96 68.16 84.87 84.42 85.73 93.97 93.83 94.28
0.5 8498 84.49 85.52 9763 9737 97.87 99.59 99.57 99.65
1.2 0.3 46.13 45.67 46.70 63.24 6217 64.73 75.06 74.64 7545
0.4 66.10 65.66 66.72 85.19 84.44 8593 93.15 92.89 93.55
0.5 8751 87.03 87.86 98.27 98.07 98.32 99.71 99.69 99.72
1.3 0.3 4594 4535 46.64 62.48 60.96 64.19 73.71 7312 7451
0.4 67.32 66.46 67.79 85.98 84.76 86.33 94.27 94.09 94.62
0.5 9219 91.76 92.14 99.61 99.54 99.59 99.99 9998 99.99
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5. A Real Example

In this section, we review the double-blinded randomized clinical trial of treating acute
otitis media (OME) from Mandel et al. [15] to illustrate the proposed methods. In Table 1,
mgy = 2,my; = 2,mp; = 11,191 = 2 and n1; = 10 in the first group; for the second group,
mpy = 5, mip = 1,71122 = 3,1102 = 14 and nip = 22; mop3 = 6,1’)113 = O,T}’lzg = 1,1’[03 =11
and n13 = 7 in the third group. Under Rosner’s model, an interesting test is whether
there is a significant difference in many-to-one risk ratios. Thus, give the hypotheses as
H0252:§3VSH12527£53.

Let ¢ = 3, then we use the formula in this article to obtain global MLEs and con-
strained MLEs. Global and constrained MLEs are given in Table 8. The results show a
correlation between paired organs. The estimated relative risk ratios under Hy : 6, = J3
is 0.6709, and global relative risk ratios can be calculated as 5y = 0.5926/0.7329 = 0.8086,
53 = 0.3073/0.7329 = 0.4193 in Table 9. The values of T}, Tsc and Ty are 5.3330, 3.8502,
and 7.4055. At significance level @ = 0.05, the values are bigger than the 95 percentile of the
chi-square distribution with one degree of freedom, and p values of statistics are less than
0.05. Therefore, it provides stronger evidence to reject the null hypothesis Hy : 6, = d3 = 4.
It means that there were significant differences in relative risk ratios between groups. We
can find that if &,, &5 is less than 1, then children who were less than two years old had the
highest cure rates in Amoxicillin-treated. Mandel et al. [15] find that children less than
2 years old had more OME. This is consistent with our results.

Table 8. Global MLEs and Constrained MLEs.

Global MLEs Constrained MLEs
MLEs n = =
1 7o A3 R 1 ) R
value 0.7329 0.5926 0.3073 1.2723 0.7248 0.6709 1.2874

Table 9. Statistic values and p-values.

Test Statistics

Value
Tr Tsc Tw
Statistic value 5.3330 3.8502 7.4055
p-value 0.0209 0.0497 0.0065

6. Conclusions

This paper introduces three statistics for testing the homogeneity of many-to-one
relative risk ratios for bilateral and unilateral data under Rosner’s model. Then, we use
a fourth-order polynomial and the Newton—-Raphson algorithm to estimate the global
maximum likelihood estimate. In addition, we obtain constrained MLEs under Hy through
the Fisher scoring method. Three statistics are proposed in bilateral and unilateral data.
Moreover, we also offer global MLEs, constrained MLEs, and three statistics for unilateral
and bilateral data, respectively. The Monte Carlo simulation was carried out with different
parameter settings.

Based on the simulation results, the score test is more robust than the likelihood
ratio and the Wald-type test regarding the TIEs and has sufficient power. The powers
of the proposed three tests grow closer as the sample size becomes more significant. By
comparison, the Wald-type test is better than the score test and the likelihood ratio test in
terms of power. However, the Wald-type test has liberal type-I error rates under a small
sample size. The results of the Wald-type test behave worse, especially when the number
of groups is more extensive and the sample size is small. The score test performs well
regardless of the number of groups and sample size. The score test is recommended for
unilateral and bilateral data for the above reasons.



Axioms 2023, 12, 333 16 of 19

In future work, we will focus on other statistical problems of the many-to-one relative
risk ratios for unilateral and bilateral data, such as confidence intervals.
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Appendix A.2. Information Matrix Ip

Differentiating % and % with respect to 77; and R yield

ol 2myitmy  foi 2mg;(Rm; —1) | my;(2R7; — 1)

o7t; T mi—1 Rn?-2m+1 m(Rm—1)"

L ny ng 2mg;(R?? — 2Rm; — R+ 2) B my;(2R?7? — 2R7m; + 1) | 2my;
om?  wr (m—1)? (Rm? —2m; +1)? m? (R — 1)? n?’
PL o omy 2mm(m—1)

97;0R (Rm; —1)2  (Rm? —2m; + 1)’
8721 o myy i[ mo; T} my; 7t ]
oR? R2 HU(Rnr?—-2m;+1)2  (Rm—1)21

Therefore, we have

9%l; 2m;(2R?>n? — Rm? — 2Rm; + 1) N
E(_ 2) - - 3 L 2 - 7
o7t mj(R?m? — 3Rm? + Rmj+2m; — 1) mi(m — 1)
(- 0°l; ) = - m;(2R7? — 27?)
o7;0R (Rm? —2m; +1)(Rm; — 1)

(_8721) _ _i m (Rt — 27 4+ 1)
oR?"  ZR(Rm;—1)(Rr? —2m; + 1)




Axioms 2023, 12, 333 18 of 19

fori=1,...,8.
Under the null hypothesis Hy : 6 = --- = g, the information matrix I, can be
derived as
[ & L ]
o3 97m0R
1, Pl
L=-E a2 37g0R /
Py 2
o2 0moR
Pl Pl 21 2L
_aﬂzaR aﬂ’gaR aﬂ’laR oR2 | (8+1)><(g+1)
Appendix A.3. Information Matrix I3 and I !
The information matrix I3 can be expressed as
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