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Abstract: In medical clinical studies, we often encounter paired organs’ unilateral or bilateral data.
For bilateral data, there exists an intraclass correlation between paired organs. Under an intraclass
correlation model, this paper proposes asymptotic statistics for testing the equality of many-to-one
relative risk ratios in combined unilateral and bilateral data. Furthermore, we calculate the explicit
expressions of these statistics. Moreover, these procedures are adequate to solve the hypothesis
problems of unilateral or bilateral data. Through comparison, the simulation results show that the
score test has a robust empirical type-I error rate and sufficient power. We provide a clinical trial of
acute otitis media to illustrate our proposed methods.
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1. Introduction

Binary outcome data are widespread in medical applications. We often encounter
the observation of paired organs (e.g., eyes, ears, and arms) in medical clinical studies.
If only one of the patients’ paired organs is diseased, one organ’s response outcomes
are not cured or cured; we call this unilateral data. Previous researchers have achieved
outstanding achievements on statistical inferences about the unilateral data [1–4]. If both
patients’ paired organs are diseased, the treatment responses of paired organs are none,
one, and both cured; this is called bilateral data. Generally, the paired organs of patients
may be correlated. Unlike the unilateral case, correlation should be considered in bilateral
data to avoid biased results. For such correlated paired data, researchers have proposed
many probabilistic models, including Rosner’s model [5], Dallal’s model [6], and Donner’s
model [7]. Under the above models, various statistical methods have been proposed for
testing the equality of proportions in bilateral data [8–11]. Among these models, Rosner’s
model is the basis and has been widely studied [12–14].

In practice, we usually obtain both data types described above. Due to certain factors,
some patients have only one eye studied, while others provide information on both eyes.
For example, Mandel et al. [15] conducted a double-blind randomized clinical trial to treat
acute otitis media (OME). In this trial, each child suffered either unilateral or bilateral
tympanocentesis and was randomly assigned to receive treatment with Amoxicillin or
Cefaclor. Under the same treatment method, we divided children into three groups by
age. In the Amoxicillin treatment, 97 children of different ages were classified into three
types: less than 2 years old, 2 to 5 years old, and 6 years old or older. After 14 days of
treatment, Table 1 shows that each child underwent no, unilateral or bilateral OME, and
was assigned into three groups according to age: <2, 2–5, and ≥6 years. Pei et al. [16]
observed that the previous methods of studying unilateral or bilateral data are unsuitable
for their combination. They proposed new asymptotical ways to test the equality of two
proportions under such data. This topic is an emerging problem, and related research
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is less available [17–20]. Therefore, studying unilateral and bilateral data under Rosner’s
model is imperative.

To compare the treatment of Amoxicillin in Table 1, the common measures are risk
difference (RD), relative risk ratio (RR), and odds ratio (OR). The RD is an essential and
straightforward measure that reflects the underlying risk without treatment and the risk
reduction associated with treatment. The relative risk of a treatment is the ratio of risks
between the treatment and control groups. It is generally more meaningful to use relative
effect measures for summarizing the evidence and absolute measures. The odds ratio aims
to look at associations rather than differences. Please note that RR and OR are related; this
paper compares the relative risk ratios under Rosner’s model.

Table 1. OME status of Amoxicillin treatment.

Responses Age Group (Unit: yrs)
<2 2–5 ≥6

0 2 5 6
1 2 1 0
2 11 3 1

Total 15 9 7

0 2 14 11
1 10 22 7

Total 12 36 18
Note: response 0—no OME, response 1—unilateral OME, and response 2—bilateral OME.

Multiple groups can often occur in many different treatments or over time in medical
trials [21]. It is natural to compare several treatment groups with a control group. Mou and
Li [22] considered a homogeneity test of risk differences on many-to-one bilateral data in a
study. Schaarschmidt et al. [23] studied asymptotic simultaneous confidence intervals (SCIs)
for many-to-one comparisons on binary proportion. Yang et al. [24] proposed asymptotic
SCI construction for many-to-one comparisons of proportion differences adjusting for
multiplicity and correlation. To date, relatively few papers have studied unilateral and
bilateral data. Most research on unilateral or bilateral data mainly focuses on homogeneity
testing for risk differences in stratified data, and on the study of equality of multiple groups
of proportions. When the cure rates are low, and the difference between groups is slight,
using the relative risk ratio to judge is more appropriate. There is insufficient research into
statistical inference on many-to-one procedures of combined unilateral and bilateral data.
Under Rosner’s model, the paper aims to study homogeneity tests of many-to-one relative
risk ratios in unilateral and bilateral data. The hypothesis proposed by Ma et al. [17] is
a particular case of this type. Moreover, the method proposed in this paper can also be
applied to unilateral or bilateral data, and the corresponding test statistics are given. We
arrange the rest of the work as follows. In Section 2, we introduce the data structure and
Rosner’s model, and estimate the unknown parameters by algorithms. Section 3 constructs
the likelihood ratio, score, and Wald-type statistics. In Section 4, through Monte Carlo
simulations, we compare the performance of these test statistics in terms of the empirical
type-I error rates and power. We provide a real example to illustrate our proposed method
in Section 5 and conclude in Section 6.

2. Data Structure and Probability Distribution

In an ophthalmologic study, let mli(l = 0, 1, 2) be the number of patients with l
response(s) for bilateral data. For unilateral data, let nli(l = 0, 1) be the number of patients
with l response in the ith group for i = 1, . . . , g. Table 2 shows the combined unilateral and
bilateral data.
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Table 2. The unilateral and bilateral data in g groups.

Response (l)
Group (i)

Total
1 2 . . . g

0 m01 m02 . . . m0g m0+
1 m11 m12 . . . m1g m1+
2 m21 m22 . . . m2g m2+

Total m+1 m+2 . . . m+g M1

0 n01 n02 . . . n0g n0+
1 n11 n12 . . . n1g n1+

Total n+1 n+2 . . . n+g M2

Let m+i =
2
∑

l=0
mli(i = 1, 2, . . . , g) be the total number of patients with bilateral data in

the ith group, and ml+ =
g
∑

i=1
mli be the total number of patients with exactly l(l = 0, 1, 2)

response(s). For the unilateral case, n+i =
1
∑

l=0
nli is the total number of patients with binary

data in the ith group, and nl+ =
g
∑

i=1
nli is the total number of patients with l(l = 0, 1)

response. We have

M1 =
g

∑
i=1

m+i =
2

∑
l=0

ml+, M2 =
g

∑
i=1

n+i =
1

∑
l=0

nl+.

For the bilateral data, let Yli be a random variable representing the number of patients
with l response in the ith group, which has a trinomial distribution. In addition, pYli is
the corresponding probability. Define mi = (m0i, m0i, m2i)

T , Yi = (Y0i, Y1i, Y2i)
T , pYi =

(pY0i , pY1i , pY2i )
T and pY0i + pY1i + pY2i = 1. Then, the probability density of Yi is

fYi (mi) =
m+i!

m0i!m1i!m2i!
pm0i

Y0i
pm1i

Y1i
pm2i

Y2i

for i = 1, 2, . . . , g. For the unilateral data, let Xli be a random variable that represents the
number of patients with l response in the ith group and follows a binomial distribution,
and pXli be the corresponding probability. We denote ni = (n0i, n1i)

T , Xi = (X0i, X1i)
T ,

pXi = (pX0i , pX1i )
T and pX0i + pX1i = 1. Then, the probability density of Xi is

fXi (ni) =
n+i!

n0i!n1i!
pn0i

X0i
pn1i

X1i

for i = 1, 2, . . . , g.
Suppose Z(1)

ijk = 1 in bilateral data if the kth (k = 1, 2) eye of the jth individual

(j = 1, . . . , m+i) is cured in the ith group and 0 otherwise. Define Z(2)
ij = 1 if the eye of

the jth patient (j = 1, · · · , n+i) has a response in the ith group, and 0 otherwise for the
unilateral patients. Under Rosner’s model, we propose a probability model of unilateral
and bilateral data as

Pr(Z(1)
ijk = 1) = Pr(Z(2)

ij = 1) = πi, Pr(Z(1)
ijk = 1|Z(1)

ij(3−k) = 1) = Rπi, (1)

where R is a constant. If R = 1, the two organs of a patient are completely independent.
They are completely dependent when Rπi = 1.
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From the probabilities of Equation (1), it is easy to derive pX0i = 1− πi, pX1i = πi,
pY0i = Rπi

2 − 2πi + 1, pY1i = 2πi(1− Rπi) and pY2i = Rπi
2 for i = 1, 2, · · · , g. Since Xi

and Yi are independent random variables, the likelihood function is expressed by

L(π, R) =
g

∏
i=1

fYi (mi) fXi (ni) =
g

∏
i=1

n+i!
n0i!n1i!

m+i!
m0i!m1i!m2i!

pn0i
X0i

pn1i
X1i

pm0i
Y0i

pm1i
Y1i

pm2i
Y2i

,

where π = (π1, π2, . . . , πg). Thus, we have the log-likelihood as

l(π, R) =
g

∑
i=1

li(πi, R)

=
g

∑
i=1

[
m0i ln(Rπi

2 − 2πi + 1) + m1i ln(2πi(1− Rπi)) + m2i ln(Rπi
2) + n0i ln(1− πi)

+n1i ln(πi)
]
+ ln C,

where C = ∏
g
i=1

n+i !
n0i !n1i !

m+i !
m0i !m1i !m2i !

is a constant.
Denote δ = (δ2, . . . , δg) and δi = πi/π1, (i = 2, 3, . . . , g). We aim to test whether the

many-to-one relative risk ratios are identical and give the hypotheses as

H0 : δ2 = δ3 = · · · = δg , δ vs. H1 : δi is not all the same.

Let π̂i and R̂ be the global maximum likelihood estimators (MLEs) of unknown param-
eters πi(i = 1, 2, . . . , g) and R, respectively. Global MLEs are the solutions to the equations

∂l
∂πi

= 0,
∂l
∂R

= 0, i = 1, 2, . . . , g, (2)

where

∂l
∂πi

=
n0i

πi − 1
+

n1i
πi

+
2m0i(Rπi − 1)
Rπ2

i − 2πi + 1
+

m1i(2Rπi − 1)
πi(Rπi − 1)

+
2m2i

πi
,

∂l
∂R

=
m2+

R
+

g

∑
i=1

[
m0iπ

2
i

Rπ2
i − 2πi + 1

+
m1iπi

Rπi − 1

]
.

Denote β = (π1, . . . , πg, R) and β(t) = (π
(t)
1 , . . . , π

(t)
g , R(t)). We simplify the first equation

of (2) as the following 4th-order polynomial equations

aπ4
i + bπ3

i + cπ2
i + dπi + e = 0,

where

a = (2m+i + n+i)R2,

b = −R(4m0i + 5m1i + 6m2i + 3n+i)− R2(2m+i + n1i),

c = (4R + 2)(m0i + 2m2i + n1i) + (7R + 2)m1i + (R + 2)n0i,

d = −2m0i − (3 + 2R)m1i − (6 + 2R)m2i − n0i − (R + 3)n1i,

e = m1i + 2m2i + n1i.

The (t + 1)th update of R is obtained by the Newton–Raphson algorithm

R(t+1) = R(t) −
(

∂2l(β(t))

∂R2

)−1
∂l(β(t))

∂R
,
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where

∂2l(β)

∂R2 = −m2+

R2 −
g

∑
i=1

[ m0iπ
4
i

(Rπ2
i − 2πi + 1)2

+
m1iπ

2
i

(Rπi − 1)2

]
.

Remark 1. In the above algorithm, if nli = 0(l = 0, 1, i = 1, . . . , g), the global MLEs of πi and R
correspond to the results of bilateral data in Ma et al. [14]. If mli = 0(l = 0, 1, 2, i = 1, . . . , g), it is
easy to obtain the global MLEs π̂i = n1i/n+i(i = 1, . . . , g) in unilateral data.

Suppose that π2 = · · · = πg = π1δ under H0, the log-likelihood is rewritten by

l0(δ, π1, R) = l01(δ, π1, R) +
g

∑
i=2

l0i(δ, π1, R),

where

l01 = m01 ln(Rπ1
2 − 2π1 + 1) + m11 ln(2π1(1− Rπ1)) + m21 ln(Rπ1

2)

+n01 ln(1− π1) + n11 ln(π1),

l0i = m0i ln(Rπ1
2δ2 − 2π1δ + 1)+m2i ln(Rπ1

2δ2) + m1i ln(2π1δ(1− Rπ1δ))

+n0i ln(1− π1δ) + n1i ln(π1δ).

Let π̃, δ̃ and R̃ be the constrained MLEs of π, δ and R under the null hypothesis
H0 : δ2 = · · · = δg. We calculate the constrained MLEs of π and R from

∂l0
∂π1

= 0,
∂l0
∂R

= 0,
∂l0
∂δ

= 0. (3)

However, there is no close solution for Equation (3) when nli, mli 6= 0 (see Appendix A.1).
Given initial values π

(0)
1 , R(0) and δ(0) = 1, the Fisher scoring algorithm is introduced to

obtain the (t + 1)th updates of π1 and R as follows δ(t+1)

π
(t+1)
1

R(t+1)

 =

 δ(t)

π
(t)
1

R(t)

+ I−1
1


∂l0
∂δ (δ

(t), π
(t)
1 , R(t))

∂l0
∂π1

(δ(t), π
(t)
1 , R(t))

∂l0
∂R (δ

(t), π
(t)
1 , R(t))

, (4)

where I1 is a 3× 3 Fisher information matrix (see Appendix A.1), and

I1(δ
(t), π

(t)
1 , R(t)) = −


E( ∂2 l0

∂δ2 ) E( ∂2 l0
∂δ∂π1

) E( ∂2 l0
∂δ∂R )

E( ∂2 l0
∂π1∂δ ) E( ∂2 l0

∂π2
1
) E( ∂2 l0

∂π1∂R )

E( ∂2 l0
∂R∂δ ) E( ∂2 l0

∂R∂π1
) E( ∂2 l0

∂R2 )

.

Remark 2. Under H0 : δi = δ, (i = 2, . . . , g), if nli = 0, we can obtain the constrained MLEs of
Rosner’s model through Equation (4) in bilateral data. If mli = 0, the constrained MLEs of πi and
δ are directly given by

π̂1 =
n11

n+1
, δ̂ =

g

∑
i=2

n1in+1

n+in11
.

3. Asymptotic Methods

This section uses the likelihood ratio, score, and Wald-type test for unilateral and
bilateral data. Especially for bilateral or unilateral data, we provide three tests when nli = 0
and mli = 0, respectively.
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3.1. Likelihood Ratio Test

The likelihood ratio (LR) test can be given by

TL = 2(l(π̂1, . . . , π̂g, R̂)− l0(π̃1, δ̃, R̃)) = 2(TL1 + TL2),

where

TL1 = m01 ln
( R̂π̂2

1 − 2π̂1 + 1
R̃π̃2

1 − 2π̃1 + 1

)
+ m11 ln

(2π̂1(1− R̂π̂1)

2π̃1(1− R̃π̃1)

)
+ m21 ln

( R̂π̂2
1

R̃π̃2
1

)
+ n01 ln

(1− π̂1
1− π̃1

)
+n11 ln

( π̂1
π̃1

)
,

TL2 =
g

∑
i=2

[
m0i ln

( R̂π̂2
i − 2π̂i + 1

R̃π̃2
1 δ̃2 − 2π̃1δ̃ + 1

)
+ m2i ln

( R̂π̂2
i

R̃π̃2
1 δ̃2

)
+ m1i ln

( 2π̂i(1− R̂π̂i)

2π̃1δ̃(1− R̃π̃1δ̃)

)
+n0i ln

( 1− π̂i

1− π̃1δ̃

)
+ n1i ln

( π̂i

π̃1δ̃

)]
.

Under H0 : δ2 = · · · = δg = δ, the likelihood ratio test is asymptotically distributed as
a chi-square distribution with a g− 2 degree of freedom.

Remark 3. If nli=0, the likelihood ratio test in the bilateral data can be calculated by

TL =
g

∑
i=2

[
m0i ln

( R̂π̂2
i − 2π̂i + 1

R̃π̃2
1 δ̃2 − 2π̃1δ̃ + 1

)
+ m2i ln

( R̂π̂2
i

R̃π̃2
1 δ̃2

)
+ m1i ln

( 2π̂i(1− R̂π̂i)

2π̃1δ̃(1− R̃π̃1δ̃)

)]
+m01 ln

( R̂π̂2
1 − 2π̂1 + 1

R̃π̃2
1 − 2π̃1 + 1

)
+ m11 ln

(2π̂1(1− R̂π̂1)

2π̃1(1− R̃π̃1)

)
+ m21 ln

( R̂π̂2
1

R̃π̃2
1

)
.

If mli = 0, we simplify the likelihood ratio test of the unilateral data as

TL =
g

∑
i=2

[
n0i ln

( 1− π̂i

1− π̃1δ̃

)
+ n1i ln

( π̂i

π̃1δ̃

)]
.

3.2. Score Test

Please note that H0 : δ2 = · · · = δg = δ is equivalent to π2 = · · · = πg. Denote

π = (π1, π2, . . . , πg)T , π̃ = (π̃1, π̃2, . . . , π̃g)T , and U = ( ∂l2
∂π2

, . . . , ∂lg
∂πg

, 0, 0). The score
statistic is expressed by

TSC = U I2
−1(π2, . . . , πg, π1, R)UT |π=π̃,R=R̃,

where I2 is a (g + 1) × (g + 1) Fisher information matrix (see Appendix A.2 for more
information). Let

I2 =

[
A B

BT D

]
,

where

A = diag
{

E(−∂2l2
∂π2

2
), . . . , E(−

∂2lg

∂π2
g
), E(−∂2l1

∂π2
1
)
}
, diag(a2, . . . , ag, a1),

B =

(
E
(
− ∂2l2

∂π2∂R

)
, . . . , E

(
−

∂2lg

∂πg∂R

)
, E
( ∂2l1

∂π1∂R

))T

, (b2, . . . , bg, b1)
T ,

D = E(− ∂2l
∂R2 ).
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After calculation, the inverse matrix of I2 can be obtained by

I−1
2 =

[
I−1
2 (1, 1) I−1

2 (1, 2)
I−1
2 (2, 1) I−1

2 (2, 2)

]
,

where

I−1
2 (1, 1) = A−1 + A−1B(D− BT A−1B)−1BT A−1,

I−1
2 (1, 2) = −A−1B(D− BT A−1B)−1,

I−1
2 (2, 1) = −(D− BT A−1B)−1BT A−1,

I−1
2 (2, 2) = (D− BT A−1B)−1,

and the inverse matrix of A is given by

A−1 = diag(a−1
2 , . . . , a−1

g , a−1
1 ).

Then

U I−1
2 UT = (u2, . . . , ug, 0, 0)I−1

2 (u2, . . . , ug, 0, 0)T

= (u2, . . . , ug, 0)I−1
2 (1, 1)(u2, . . . , ug, 0)T

= (u2, . . . , ug, 0)A−1(u2, . . . , ug, 0)T

+
(u2, . . . , ug, 0)A−1BBT A−1(u2, . . . , ug, 0)T

D− BT A−1B
,

where

(u2, . . . , ug, 0)A−1(u2, . . . , ug, 0)T =
g

∑
i=2

u2
i

ai
,

(u2, . . . , ug, 0)A−1B =
g

∑
i=2

uibi
ai

,

BT A−1B =
g

∑
i=1

b2
i

ai
.

The score statistic can be simplified as

TSC =
g

∑
i=2

u2
i

ai
+
( g

∑
i=2

uibi
ai

)2(
D−

g

∑
i=1

b2
i

ai

)−1
. (5)

Under H0, the score test is asymptotically distributed as a chi-square distribution with
a g− 2 degree of freedom.

Remark 4. For bilateral data, we can obtain the score test through the Equation (5) and nli = 0.
Suppose that mli = 0, U = ( ∂l2

∂π2
, . . . , ∂lg

∂πg
, 0), and I2 = A is a g× g Fisher information matrix,

where E(− ∂2li
∂π2

i
) = − n+i

πi(π1−1) = ai. The score test in unilateral data can be simplified as

TSC =
g

∑
i=2

u2
i

ai
.
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3.3. Wald-Type Test

Let β̂ = (π̂1, . . . , π̂g, R̂) be the global MLEs of β = (π1, . . . , πg, R). The null hypothesis
H0 : δ2 = · · · = δg , δ is equivalent to CβT = 0, where

C =



0 1 −1 0 . . . 0 0
0 0 1 −1 0 0
...

. . . . . .
...

...
...

. . . . . .
...

...
0 . . . . . . 0 1 −1 0


(g−2)×(g+1)

.

Then, the Wald-type test statistic can be expressed as

TW = (βCT)(CI3
−1CT)−1(CβT)|π=π̂,R=R̂,

where I3 is the information matrix (see Appendix A.2 for more information), and I−1
3 can

be derived as

I−1
3 =


c11 c12 . . . c1g c1(g+1)
c21 c22 . . . c2g c2(g+1)
...

...
. . .

...
...

cg1 cg2 . . . cgg cg(g+1)
c(g+1)1 c(g+1)2 . . . c(g+1)g c(g+1)(g+1)

.

Denote a (g− 2)× (g− 2) matrix F = CI−1
3 CT , and its element Fi,j = (c(i+1)(j+1) −

c(i+1)(j+2))− (c(i+2)(j+1) − c(i+2)(j+2)). It is convenient to express elements of the inverse
matrix F−1 by a lower triangular matrix H, i.e., F = HHT , where H = (hij) and

hij =



Fi,j −
j−1
∑

k=1
hikhjk

hjj
, i > j,

(
Fi,j −

j−1

∑
k=1

h2
jk
)1/2, i = j,

0, i < j.

Obviously, F−1 = (HHT)−1 = HT−1H−1, where H−1 = (lij) and its elements can be
derived as follows

lij =


− 1

hii

i−1

∑
k=j

hiklkj, i > j,

1
hij

, i = j,

0, i < j.

Thus, (F−1)i,j =
g−2
∑

k=1
lkilkj. The Wald-type statistic can be written as:

TW =
g−2

∑
i=1

g−2

∑
j=1

(
(πi+1 − πi+2)(F−1)i,j(πj+1 − πj+2)

)
. (6)

The Wald-type test is asymptotically distributed as a chi-square distribution with a
g− 2 degree of freedom under H0.
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Remark 5. If nli = 0, the Wald-type statistic can be obtained through Equation (6) in bilateral
data. Suppose that mli = 0, β̂ = (π̂1, . . . , π̂g) and C is a (g− 2)× g matrix, where

C =



0 1 −1 0 . . . 0
0 0 1 −1 0
...

. . . . . .
...

...
. . . . . .

...
0 . . . . . . 0 1 −1


(g−2)×g

.

Let F−1 = (CI−1
3 CT)−1. Obviously, F−1 is a symmetric matrix, and its elements can be derived as

(F−1)i,j =

j+1
∑

q=2
aq

g
∑

k=i+2
ak

g
∑

k=2
ak

, i ≥ j, i, j = 1, . . . , g− 2,

(F−1)i,j =

i+1
∑

q=2
aq

g
∑

k=j+2
ak

g
∑

k=2
ak

, i < j, i, j = 1, . . . , g− 2.

Thus, the Wald-type statistic (6) can be obtained.

4. Monte Carlo Simulation Studies

In this section, we compare the performance of the statistics for the homogeneity test of
risk ratios. In addition, we selected two evaluation indexes of type-I error rates (TIEs) and
power. The fitting results of the homogeneity test are calculated when the significance level
α = 0.05. The TIE is the probability of rejecting the null hypothesis when it is true. Each
parameter set is performed 10,000 times based on the null hypothesis. The empirical TIEs
is calculated as the number rejecting the null hypothesis divided by 10,000 at a significance
level α = 0.05. According to Tang et al. [12], a test is liberal if the empirical TIEs is larger
than 0.06, conservative if the empirical TIE rate is less than 0.04, and robust otherwise at
the significance level α = 0.05.

First, we investigate the performance of TIEs under different parameter settings.
Take the sample sizes m , m+1 = m+2 = · · · = m+g, n , n+1 = n+2 = · · · = n+g.
Let m = n = 30, 60, 90 for balanced designs and (m, n) = (30, 60), (60, 30), (90, 30) for
unbalanced designs. Take g = 3, 4, 5, R = 1.1, 1.2, 1.3, and π1 = 0.3, 0.4, 0.5 under the
hypothesis H0 : δ = 1, 1.2. Then, we calculate the empirical TIEs of all proposed test
statistics. For each scenario, 10,000 replicates are randomly generated under the null
hypothesis H0.

Tables 3–5 show the empirical TIEs based on three statistics under all configurations
for g = 3, 4 and 5, respectively. The left side of the table shows the balanced design
results. We provide the unbalanced design results on the right of each table. Let δ = 1,
H0 : δ2 = · · · = δg is equivalent to π1 = π2 = · · · = πg. This situation can be seen as the
proportional homogeneity test proposed by Ma and Wang [17]. In Table 3, the likelihood
ratio and score tests are robust for the balanced design and small sample size, while the
Wald-type statistic is liberal. The Wald-type test tends to be robust when the sample size
becomes larger. In the unbalanced design, let δ = 1, the Wald-type statistic is liberal when
m = 60, n = 30 and m = 30, n = 60. Take δ = 1.2, and the Wald-type test performs
better. The result of the Wald-type statistic becomes more robust when the total sample
sizes increase. Table 4 displays that the Wald-type test is more liberal for the unbalanced
design. The likelihood ratio and score tests are more robust than the Wald-type tests for the
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balanced design, especially for a small sample size. In Table 5, the Wald-type test is worse
for small sample sizes in unbalanced scenarios, similar to balanced ones.

In Tables 3–5, the score test TSC and likelihood ratio test TL are more robust than Wald-
type test TW in terms of the TIEs. The Wald-type statistic is liberal in small sample scenarios
and becomes more liberal as the number of groups increases. There is no significant
difference in the performance of the three statistics when the total sample sizes of the
balanced and unbalanced groups are the same. As the values of m or n increase, we can
observe that the Wald-type statistic tends to be robust. The TIEs of all three tests grow
closer if the sample size increases.

Table 3. The empirical TIEs (%) of tests under H0 : δi = δ (g = 3, α = 0.05).

R π1

Balance Unbalance

δ = 1 δ = 1.2 δ = 1 δ = 1.2

TL TSC TW TL TSC TW TL TSC TW TL TSC TW

m = n = 30 m = 30, n = 60
1.1 0.3 5.47 5.01 5.62 5.65 4.97 5.73 5.58 5.06 5.53 5.59 5.12 5.51

0.4 5.54 5.16 5.85 5.50 5.15 6.04 5.29 4.96 5.48 5.25 4.90 5.62
0.5 5.54 5.25 6.04 5.68 5.06 6.42 5.17 4.95 5.52 5.46 5.17 5.84

1.2 0.3 5.33 4.81 5.55 5.86 5.23 6.04 5.44 5.02 5.52 5.50 4.97 5.56
0.4 5.80 5.38 6.10 5.47 5.02 5.99 5.65 5.38 5.91 5.52 5.11 5.95
0.5 5.86 5.41 6.46 5.75 5.12 5.90 5.85 5.54 6.26 5.40 5.01 5.66

1.3 0.3 5.28 4.79 5.49 5.44 4.97 5.69 5.37 4.97 5.49 5.36 5.00 5.59
0.4 5.61 5.20 6.04 5.78 5.30 6.14 5.31 4.99 5.65 5.01 4.63 5.32
0.5 5.46 5.01 5.91 5.97 5.41 5.86 5.62 5.26 6.00 5.70 5.13 5.82

m = n = 60 m = 60, n = 30
1.1 0.3 5.21 4.98 5.30 5.37 5.10 5.43 5.33 5.11 5.41 5.52 5.25 5.64

0.4 5.29 5.10 5.53 5.11 4.94 5.34 5.25 5.09 5.34 4.81 4.51 5.14
0.5 5.23 4.87 5.32 5.28 5.03 5.67 5.31 5.01 5.55 5.22 5.00 5.52

1.2 0.3 5.35 5.10 5.43 4.85 4.64 5.15 5.16 4.89 5.36 5.35 5.02 5.45
0.4 5.39 5.20 5.58 5.67 5.46 5.86 4.98 4.77 5.24 5.45 5.09 5.70
0.5 5.20 5.04 5.33 5.85 5.46 5.88 5.10 4.78 5.30 5.27 4.92 5.38

1.3 0.3 5.35 5.18 5.53 5.11 4.96 5.20 4.84 4.66 5.05 5.17 4.81 5.38
0.4 5.23 5.10 5.48 5.65 5.33 5.88 5.61 5.37 5.83 5.62 5.25 5.96
0.5 5.29 5.08 5.59 5.34 4.98 5.31 5.77 5.32 6.15 5.51 5.22 5.37

m = n = 90 m = 90, n = 30
1.1 0.3 5.37 5.23 5.43 5.13 4.91 5.24 5.16 5.03 5.24 5.24 5.08 5.33

0.4 4.98 4.87 5.09 5.19 5.05 5.34 5.32 5.17 5.46 5.27 5.03 5.48
0.5 4.75 4.66 4.83 5.11 4.93 5.35 5.40 5.16 5.53 5.34 5.16 5.59

1.2 0.3 5.15 5.05 5.20 5.07 4.93 5.24 5.55 5.34 5.72 5.28 5.04 5.42
0.4 4.96 4.88 5.04 5.13 4.92 5.23 5.09 4.95 5.22 5.26 5.10 5.41
0.5 5.33 5.07 5.48 5.35 5.15 5.48 5.25 5.02 5.50 5.30 5.08 5.43

1.3 0.3 5.28 5.15 5.40 4.96 4.89 5.10 5.57 5.39 5.73 5.22 4.97 5.41
0.4 5.09 4.95 5.25 5.30 5.14 5.46 5.21 4.97 5.29 5.39 5.15 5.51
0.5 5.23 5.03 5.35 4.87 4.61 4.87 5.25 4.96 5.44 4.93 4.62 4.85

The above results are obtained for given multiple parameter values. In practice, there
are more possibilities for parameter values. To further compare these test statistics, we ran-
domly choose 1000 sets of parameters (R, π1, . . . , πg) according to the constrained ranges
of parameters for g = 3, 4, 5 and m = n = 30, 60, 90 under H0. A total of 10,000 replicates
are randomly generated for each configuration to calculate the type-I error rates. Figure 1
shows the box plots of the empirical TIEs. The results display that the three statistics
become more robust under the same number of groups as the sample size increases. As
the number of groups grows, the Wald-type test becomes more liberal while the likelihood
ratio and score tests become more robust. Overall, the score test is more robust in the sense
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that the TIE of it is close to the significant level α = 0.05 regardless of sample size and the
number of groups.

Next, we compare and summarize the performance of proposed test statistics in terms
of power under different parameter settings. To be specific, we consider the balanced and
unbalanced settings, respectively. In addition, we also take the same parameter (R, π1) as
we do for empirical type-I error rates. Under the hypothesis H1, the parameter settings
satisfy: δ = (1, 1.3), (1, 1.3, 1.4), (1, 1.3, 1, 1.4) for g = 3, 4, 5. Similarly, we randomly select
10,000 replicates from the alternative hypothesis for each parameter setting and calculate
the empirical power by the number of rejections of the alternative hypothesis divided by
10,000. The simulated results are presented in Tables 6 and 7, respectively. At the same
number of groups, when we fix parameter R, the empirical powers will become larger as
π1 increases. However, given a fixed parameter π1, the empirical powers do not change
much as R increases. In Table 7, the powers obtained with sample size of m = 60, n = 30
are greater than that obtained with m = 30, n = 60. The results show that these powers
of the three test statistics are very close under the same parameter settings. The empirical
power will increase with the sample size or the number of groups.

Table 4. The empirical TIEs (%) of tests under H0 : δi = δ (g = 4, α = 0.05).

R π1

Balance Unbalance

δ = 1 δ = 1.2 δ = 1 δ = 1.2

TL TSC TW TL TSC TW TL TSC TW TL TSC TW

m = n = 30 m = 30, n = 60
1.1 0.3 5.10 4.69 5.62 5.30 4.93 5.91 4.75 4.50 5.20 4.93 4.74 5.44

0.4 5.42 5.02 6.10 5.55 4.81 6.09 5.22 4.88 5.88 5.57 5.10 6.03
0.5 5.24 4.71 5.77 5.51 4.76 6.46 5.29 4.77 5.50 5.81 5.43 6.45

1.2 0.3 5.25 4.90 5.85 5.38 4.86 6.04 4.79 4.51 5.34 5.35 5.09 5.90
0.4 5.64 5.25 6.35 5.50 5.07 6.38 5.66 5.36 6.35 5.50 5.10 6.17
0.5 5.40 4.97 6.39 5.30 4.74 5.97 5.39 5.07 5.80 5.21 5.00 5.82

1.3 0.3 5.54 4.98 6.24 5.15 4.66 5.86 5.56 5.22 6.06 5.23 4.94 5.82
0.4 5.31 4.90 6.02 5.46 4.76 6.42 5.16 4.84 5.76 5.46 5.03 6.02
0.5 5.20 4.56 6.19 5.61 4.96 6.42 5.53 5.05 6.19 5.62 5.13 6.15

m = n = 60 m = 60, n = 30
1.1 0.3 5.02 4.86 5.23 5.34 5.07 5.62 5.50 5.24 5.79 5.19 4.98 5.60

0.4 5.19 4.96 5.53 4.80 4.55 5.21 4.96 4.72 5.37 5.70 5.38 6.08
0.5 5.33 5.10 5.75 5.22 4.99 5.68 5.49 5.24 5.80 5.76 5.36 6.12

1.2 0.3 5.02 4.82 5.29 5.15 4.98 5.52 4.70 4.45 5.01 5.14 4.74 5.59
0.4 5.43 5.25 5.78 5.32 5.06 5.60 4.85 4.56 5.23 5.21 4.75 5.67
0.5 5.49 5.17 6.00 5.29 5.01 5.56 5.15 4.90 5.63 5.56 5.11 6.11

1.3 0.3 5.60 5.44 6.04 5.14 4.99 5.50 5.40 5.15 5.82 5.08 4.77 5.66
0.4 5.27 5.07 5.72 5.34 5.14 5.78 5.90 5.51 6.33 5.41 4.97 5.93
0.5 5.70 5.41 6.07 5.17 4.75 5.42 5.47 5.23 6.04 4.92 4.58 5.28

m = n = 90 m = 90, n = 30
1.1 0.3 5.26 5.16 5.57 5.00 4.82 5.11 5.29 5.24 5.58 4.97 4.73 5.16

0.4 5.24 5.19 5.43 5.27 5.19 5.52 5.12 4.95 5.44 5.36 5.22 5.61
0.5 5.09 4.86 5.32 5.00 4.79 5.36 5.21 5.06 5.74 5.48 5.18 5.83

1.2 0.3 4.84 4.71 5.05 5.50 5.30 5.58 5.14 4.97 5.50 5.35 5.16 5.80
0.4 5.01 4.83 5.28 5.29 5.17 5.59 5.47 5.41 5.78 5.14 4.80 5.49
0.5 5.09 4.96 5.43 5.42 5.18 5.65 5.72 5.41 6.03 5.10 4.79 5.56

1.3 0.3 5.07 4.91 5.29 4.98 4.81 5.19 5.11 4.88 5.48 5.07 4.94 5.41
0.4 5.28 5.10 5.48 5.09 4.83 5.32 5.28 4.94 5.75 5.47 5.11 5.77
0.5 5.26 4.94 5.62 5.16 4.83 5.21 5.15 4.83 5.52 5.44 5.27 5.63
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Table 5. The empirical TIEs (%) of tests under H0 : δi = δ (g = 5, α = 0.05).

R π1

Balance Unbalance

δ = 1 δ = 1.2 δ = 1 δ = 1.2

TL TSC TW TL TSC TW TL TSC TW TL TSC TW

m = n = 30 m = 30, n = 60
1.1 0.3 4.79 4.28 5.79 5.48 4.82 6.26 5.07 4.75 5.66 5.00 4.63 5.71

0.4 5.88 5.27 6.57 5.37 4.85 6.44 5.46 5.15 5.97 5.43 5.02 6.30
0.5 5.75 5.20 6.77 5.79 5.00 6.93 5.94 5.60 6.67 5.67 5.25 6.51

1.2 0.3 5.27 4.80 6.31 5.35 4.92 6.34 5.12 4.77 5.72 5.35 5.10 6.09
0.4 5.53 4.84 6.47 5.60 5.08 6.89 5.29 4.97 5.77 5.61 5.23 6.50
0.5 5.16 4.79 6.43 5.58 5.02 6.58 5.63 5.23 6.42 5.01 4.55 5.78

1.3 0.3 5.19 4.68 6.12 5.69 5.17 6.84 5.57 5.18 6.19 4.79 4.45 5.62
0.4 5.44 4.91 6.30 5.56 4.89 6.87 5.39 5.05 6.30 5.44 5.26 6.41
0.5 5.83 5.32 7.29 6.01 5.37 7.51 5.51 5.03 6.34 5.65 4.98 6.64

m = n = 60 m = 60, n = 30
1.1 0.3 5.34 4.92 5.55 4.97 4.73 5.45 5.37 4.93 5.82 4.96 4.70 5.64

0.4 4.94 4.65 5.21 5.20 5.00 5.76 5.29 4.92 5.77 5.29 4.91 5.90
0.5 5.10 4.88 5.59 5.06 4.68 5.47 5.26 4.99 6.00 5.66 5.19 6.39

1.2 0.3 5.42 5.10 5.84 5.66 5.42 6.07 5.63 5.20 6.16 5.02 4.78 5.70
0.4 5.44 5.27 5.76 5.31 5.04 5.83 5.50 5.20 6.16 5.54 5.28 6.29
0.5 5.41 5.21 5.93 5.26 4.96 5.94 5.59 5.17 6.45 5.62 5.31 6.41

1.3 0.3 4.75 4.55 5.14 5.48 5.20 5.93 5.32 4.95 5.73 5.55 5.13 6.18
0.4 5.17 4.92 5.77 5.30 4.95 5.74 5.40 5.19 6.01 5.39 5.21 6.36
0.5 5.23 4.92 5.78 5.22 4.86 5.83 5.41 5.12 6.19 5.49 4.86 6.11

m = n = 90 m = 90, n = 30
1.1 0.3 5.32 5.19 5.57 5.38 5.20 5.67 5.11 4.92 5.56 5.38 5.15 5.68

0.4 5.56 5.37 5.85 5.19 5.01 5.54 4.99 4.81 5.37 5.17 4.80 5.67
0.5 5.03 4.89 5.31 5.34 5.14 5.63 5.25 4.96 5.65 5.71 5.36 6.19

1.2 0.3 5.05 4.90 5.30 5.40 5.25 5.59 5.35 4.99 5.67 5.31 5.08 5.80
0.4 5.18 5.04 5.58 5.33 5.16 5.74 5.09 4.96 5.44 5.06 4.84 5.54
0.5 5.04 4.84 5.48 5.03 4.91 5.54 4.92 4.70 5.43 5.20 4.88 5.78

1.3 0.3 5.54 5.32 5.93 5.31 5.05 5.58 5.57 5.44 6.02 5.18 5.04 5.47
0.4 5.13 5.05 5.37 5.13 5.01 5.60 5.46 5.10 5.88 5.63 5.19 6.24
0.5 5.61 5.42 5.89 5.34 5.14 5.53 5.39 5.13 5.90 5.10 4.74 5.57

We further study the power of three statistics changes as the given parameters change.
Under hypothesis H1, let m = n = 30, 60, 90, R = 1.1 and π1 = 0.3 for g = 3, 4, 5.
Figure 2 reveals the empirical powers of three tests for given parameters m, n, R, π1, g. The
performances of the three statistics are close in terms of powers. When δ is around 1,
the resulting power is around 0.05. This is because the difference between the null and
alternative hypotheses is small. The increasing δ leads to a significant power increase. The
powers increase in the same number of groups as the sample size increases. The three
statistics have good power performance when the number of groups increases.

According to the simulation results, the score statistic and LR test have satisfactory
results in the TIEs. However, the score statistics are more robust than the other two for small
sample-size scenarios. The powers of the three tests are very close. Thus, we recommend it
for the homogeneity test about a many-to-one comparison of relative risk ratios.
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Figure 1. Empirical TIEs of tests.

Table 6. The power (%) of the balance group (α = 0.05).

R π1
g = 3 g = 4 g = 5

TL TSC TW TL TSC TW TL TSC TW

m = n = 30
1.1 0.3 24.69 23.58 25.38 32.27 30.49 34.77 38.50 36.88 40.83

0.4 35.58 34.36 37.37 49.09 47.25 51.56 61.18 59.74 63.69
0.5 52.54 50.87 54.18 70.79 68.83 72.48 82.01 80.89 83.85

1.2 0.3 24.67 23.42 25.65 30.68 29.07 33.09 39.09 37.28 41.02
0.4 34.83 33.57 36.19 48.01 45.69 50.29 58.93 57.28 61.68
0.5 53.67 51.77 54.83 73.66 71.63 74.49 84.56 83.45 85.98

1.3 0.3 24.04 22.76 25.04 31.16 28.92 33.64 38.20 36.64 40.54
0.4 36.36 34.64 37.46 48.89 46.14 51.21 60.42 58.76 62.73
0.5 58.34 56.17 58.55 82.04 80.02 81.16 91.34 89.92 92.00

m = n = 60
1.1 0.3 43.29 42.72 43.68 57.73 56.72 59.44 69.79 69.12 70.69

0.4 61.24 60.50 61.99 80.00 79.34 80.94 90.07 89.64 90.58
0.5 80.44 79.95 81.11 95.68 95.20 95.81 98.74 98.66 98.80

1.2 0.3 42.11 41.44 42.42 56.85 55.46 58.69 69.26 68.66 70.10
0.4 60.84 59.94 61.62 78.96 78.00 79.97 89.65 89.23 90.27
0.5 81.74 81.25 82.29 96.44 96.01 96.43 99.06 99.07 99.19

1.3 0.3 40.22 39.62 40.97 56.12 54.41 57.87 68.19 67.31 69.27
0.4 60.71 60.06 61.32 79.56 78.17 80.40 89.99 89.50 90.49
0.5 86.73 86.10 86.88 98.56 98.43 98.46 99.82 99.80 99.86

m = n = 90
1.1 0.3 58.36 58.17 58.78 76.63 76.10 77.58 87.52 87.39 87.86

0.4 78.33 78.02 78.60 93.11 92.80 93.46 98.15 98.11 98.25
0.5 92.63 92.46 92.82 99.51 99.49 99.54 99.94 99.93 99.94

1.2 0.3 58.30 57.72 58.73 75.29 74.37 76.28 86.30 86.07 86.66
0.4 77.77 77.33 78.05 93.07 92.76 93.40 98.09 98.03 98.18
0.5 94.10 93.92 94.35 99.78 99.72 99.78 99.99 99.99 99.98

1.3 0.3 56.79 56.30 57.22 74.93 73.76 75.90 86.23 85.95 86.59
0.4 78.18 77.83 78.58 93.63 93.12 93.91 98.26 98.19 98.40
0.5 96.38 96.21 96.37 99.94 99.93 99.96 99.99 99.98 99.99
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Figure 2. Empirical powers of tests.

Table 7. The power (%) of the unbalance group (α = 0.05).

R π1
g = 3 g = 4 g = 5

TL TSC TW TL TSC TW TL TSC TW

m = 30, n = 60
1.1 0.3 31.46 30.69 32.10 41.95 40.67 43.82 51.05 50.02 52.98

0.4 46.44 45.46 47.72 61.97 60.63 63.58 74.02 73.26 75.37
0.5 63.93 62.96 65.11 84.09 82.91 84.74 92.35 91.77 93.15

1.2 0.3 30.19 29.44 30.63 40.72 39.38 42.88 51.46 50.38 53.32
0.4 45.60 44.69 46.86 61.81 60.03 63.86 73.84 72.84 75.07
0.5 64.94 63.80 65.66 85.36 84.33 85.68 93.63 93.06 94.19

1.3 0.3 30.93 29.80 31.66 41.18 39.51 43.35 49.65 48.51 51.37
0.4 45.18 44.11 46.03 61.86 59.55 63.70 73.91 72.78 75.55
0.5 69.06 67.83 69.59 90.51 89.07 90.24 96.76 96.33 96.96

m = 60, n = 30
1.1 0.3 36.68 35.98 37.38 49.78 48.81 51.51 59.91 59.06 61.32

0.4 53.14 52.27 54.11 70.48 69.50 71.78 82.65 82.15 83.63
0.5 72.34 71.46 73.18 90.30 89.64 90.64 96.69 96.48 96.95

1.2 0.3 35.80 35.08 36.48 48.73 47.15 50.58 59.53 58.51 60.78
0.4 52.05 51.02 52.86 70.66 69.06 72.17 82.14 81.38 82.97
0.5 74.46 73.68 74.90 92.75 92.02 92.86 97.93 97.75 98.26

1.3 0.3 35.53 34.59 36.23 48.40 46.53 50.54 58.21 57.19 59.80
0.4 53.31 52.20 54.16 72.10 70.19 73.22 83.74 82.97 84.69
0.5 79.58 78.43 79.70 96.95 96.51 96.80 99.31 99.23 99.41

m = 90, n = 30
1.1 0.3 47.80 47.32 48.51 64.67 63.61 65.79 76.23 75.84 76.92

0.4 67.41 66.96 68.16 84.87 84.42 85.73 93.97 93.83 94.28
0.5 84.98 84.49 85.52 97.63 97.37 97.87 99.59 99.57 99.65

1.2 0.3 46.13 45.67 46.70 63.24 62.17 64.73 75.06 74.64 75.45
0.4 66.10 65.66 66.72 85.19 84.44 85.93 93.15 92.89 93.55
0.5 87.51 87.03 87.86 98.27 98.07 98.32 99.71 99.69 99.72

1.3 0.3 45.94 45.35 46.64 62.48 60.96 64.19 73.71 73.12 74.51
0.4 67.32 66.46 67.79 85.98 84.76 86.33 94.27 94.09 94.62
0.5 92.19 91.76 92.14 99.61 99.54 99.59 99.99 99.98 99.99
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5. A Real Example

In this section, we review the double-blinded randomized clinical trial of treating acute
otitis media (OME) from Mandel et al. [15] to illustrate the proposed methods. In Table 1,
m01 = 2, m11 = 2, m21 = 11, n01 = 2 and n11 = 10 in the first group; for the second group,
m02 = 5, m12 = 1, m22 = 3, n02 = 14 and n12 = 22; m03 = 6, m13 = 0, m23 = 1, n03 = 11
and n13 = 7 in the third group. Under Rosner’s model, an interesting test is whether
there is a significant difference in many-to-one risk ratios. Thus, give the hypotheses as
H0 : δ2 = δ3 vs H1 : δ2 6= δ3.

Let g = 3, then we use the formula in this article to obtain global MLEs and con-
strained MLEs. Global and constrained MLEs are given in Table 8. The results show a
correlation between paired organs. The estimated relative risk ratios under H0 : δ2 = δ3
is 0.6709, and global relative risk ratios can be calculated as δ̂2 = 0.5926/0.7329 = 0.8086,
δ̂3 = 0.3073/0.7329 = 0.4193 in Table 9. The values of TL, TSC and TW are 5.3330, 3.8502,
and 7.4055. At significance level α = 0.05, the values are bigger than the 95 percentile of the
chi-square distribution with one degree of freedom, and p values of statistics are less than
0.05. Therefore, it provides stronger evidence to reject the null hypothesis H0 : δ2 = δ3 = δ.
It means that there were significant differences in relative risk ratios between groups. We
can find that if δ̂2, δ̂3 is less than 1, then children who were less than two years old had the
highest cure rates in Amoxicillin-treated. Mandel et al. [15] find that children less than
2 years old had more OME. This is consistent with our results.

Table 8. Global MLEs and Constrained MLEs.

MLEs
Global MLEs Constrained MLEs

π̂1 π̂2 π̂3 R̂ π̃1 δ̃ R̃

value 0.7329 0.5926 0.3073 1.2723 0.7248 0.6709 1.2874

Table 9. Statistic values and p-values.

Value
Test Statistics

TL TSC TW

Statistic value 5.3330 3.8502 7.4055
p-value 0.0209 0.0497 0.0065

6. Conclusions

This paper introduces three statistics for testing the homogeneity of many-to-one
relative risk ratios for bilateral and unilateral data under Rosner’s model. Then, we use
a fourth-order polynomial and the Newton–Raphson algorithm to estimate the global
maximum likelihood estimate. In addition, we obtain constrained MLEs under H0 through
the Fisher scoring method. Three statistics are proposed in bilateral and unilateral data.
Moreover, we also offer global MLEs, constrained MLEs, and three statistics for unilateral
and bilateral data, respectively. The Monte Carlo simulation was carried out with different
parameter settings.

Based on the simulation results, the score test is more robust than the likelihood
ratio and the Wald-type test regarding the TIEs and has sufficient power. The powers
of the proposed three tests grow closer as the sample size becomes more significant. By
comparison, the Wald-type test is better than the score test and the likelihood ratio test in
terms of power. However, the Wald-type test has liberal type-I error rates under a small
sample size. The results of the Wald-type test behave worse, especially when the number
of groups is more extensive and the sample size is small. The score test performs well
regardless of the number of groups and sample size. The score test is recommended for
unilateral and bilateral data for the above reasons.
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In future work, we will focus on other statistical problems of the many-to-one relative
risk ratios for unilateral and bilateral data, such as confidence intervals.
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Appendix A.1. Information Matrix I1

The first-order differential equations of δ, π1, R under null hypothesis are

∂l0
∂δ

=
g

∑
i=2

[ 2m2i + n1i

δ
+

n0iπ1

δπ1 − 1
+

m1i(2Rδπ1 − 1)
δ(Rδπ1 − 1)

+
2m0iπ1(Rδπ1 − 1)
Rδ2π2

1 − 2δπ1 + 1

]
,

∂l0
∂π1

=
g

∑
i=2

[ δn0i

δπ1 − 1
+

m1i(2Rδπ1 − 1)
π1(Rδπ1 − 1)

+
2δm0i(Rδπ1 − 1)
Rδ2π2

1 − 2δπ1 + 1

]
+

2m2+ + n1+

π1
+

n01

π1 − 1

+
m11(2Rπ1 − 1)
π1(Rπ1 − 1)

+
2m01(Rπ1 − 1)
Rπ2

1 − 2π1 + 1
,

∂l0
∂R

=
m2+

R
+

m11π1

Rπ1 − 1
+

m01π2
1

Rπ2
1 − 2π1 + 1

+
g

∑
i=2

[ m1iδπ1

Rδπ1 − 1
+

m0iδ
2π2

1
Rδ2π2

1 − 2δπ1 + 1

]
.

The second-order differential equations of δ, π1, R under null hypothesis are

∂2l0
∂δ2 =

g

∑
i=2

[2m0iπ
2
1(−R2δ2π2

1 + 2Rδπ1 + R− 2)
(Rδ2π2

1 − 2δπ1 + 1)2
−

m1i(2R2δ2π2
1 − 2Rδπ1 + 1)

δ2(Rδπ1 − 1)2 − 2m2i + n1i
δ2

−
n0iπ

2
1

(δπ1 − 1)2

]
,

∂2l0
∂π2

1
=

g

∑
i=2

[2m0i(R2δ2π2
1 − 2Rδπ1 − R + 2)

(Rδ2π2
1 − 2δπ1 + 1)2

− n0iδ
2

(δπ1 − 1)2 −
m1i(2R2δ2π2

1 − 2Rδπ1 + 1)
π2

1(Rδπ1 − 1)2
− 2m2i + n1i

π2
1

]
−

2m01(−R2π2
1 + 2Rπ1 + R− 2)

(Rπ2
1 − 2π2

1 + 1)2
− n01

(π1 − 1)2 −
m11(2R2π2

1 − 2Rπ1 + 1)
π2

1(π1R− 1)2
− 2m21 + n11

π2
1

,

∂2l0
∂R2 =

g

∑
i=2

[
− m2i

R2 −
m0iδ

4π4
1

(Rδ2π2
1 − 2δπ1 + 1)2

−
m1iδ

2π2
1

Rδπ1 − 1)2

]
− m21

R2 −
m01π4

1
(Rπ2

1 − 2π1 + 1)2
−

m11π2
1

Rπ1 − 1)2 ,

∂2l0
∂δ∂π1

=
g

∑
i=2

[
−

m0i(Rδ2π2
1 − 2Rδπ1 + 1)

(Rδ2π2
1 − 2δπ1 + 1)2

− m1iR
(Rδπ1 − 1)2 −

n02

(δπ1 − 1)2

]
,

∂2l0
∂δ∂R

=
g

∑
i=2

[
− m1iπ1

(Rδπ1 − 1)2 −
2m0iδπ2

1(δπ1 − 1)
(Rδ2π2

1 − 2δπ1 + 1)2

]
,
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∂2l0
∂π1∂R

=
g

∑
i=2

[
− m1iδ

(Rδπ1 − 1)2 −
2m0iδπ1(δπ1 − 1)

(Rδ2π2
1 − 2δπ1 + 1)2

]
− m11

(Rπ1 − 1)2 −
2m01π1(π1 − 1)
(Rπ1 − 2π1 + 1)2 .

Thus, we have

I1(δ
(t), π

(t)
1 , R(t)) = −


E( ∂2l0

∂δ2 ) E( ∂2l0
∂δ∂π1

) E( ∂2l0
∂δ∂R )

E( ∂2l0
∂π1∂δ ) E( ∂2l0

∂π2
1
) E( ∂2l0

∂π1∂R )

E( ∂2l0
∂R∂δ ) E( ∂2l0

∂R∂π1
) E( ∂2l0

∂R2 )

 = −

I11 I12 I13
I12 I22 I23
I13 I23 I33

,

where

I11 =
g

∑
i=2

[2m+iπ1(2R2δ2π2
1 − Rδ2π2

1 − 2Rδπ1 + 1)
δ(Rδπ1 − 1)(Rδ2π2

1 − 2δπ1 + 1)
+

n+iπ1

δ(δπ1 − 1)

]
,

I12 =
g

∑
i=2

[ n+i
δπ1 − 1

+
m+i(2Rδπ1(2Rδπ1 − δπ1 − 2) + 2)
(Rδπ1 − 1)(Rδ2π2

1 − 2δπ1 + 1)

]
,

I13 =
g

∑
i=2

[ 2m+iδπ2
1

Rδπ1 − 1
−

2m+iδπ2
1(δπ1 − 1)

Rδ2π2
1 − 2δπ1 + 1

]
,

I22 =
g

∑
i=2

[ 2m+iδ(2R2δ2π2
1 − Rδ2π2

1 − 2Rδπ1 + 1)
π1(R2δ3π3

1 − 3Rδ2π2
1 + Rδπ1 + 2δπ1 − 1)

+
n+iδ

π1(π1δ− 1)

] n+1

π1(π1 − 1)

+
2m+1(2R2π2

1 − Rπ2
1 − 2Rπ1 + 1)

π1(R2π3
1 − 3Rπ2

1 + Rπ1 + 2π1 − 1)
,

I23 =
m+1(2Rπ2

1 − 2π2
1)

(Rπ2
1 − 2π1 + 1)(Rπ1 − 1)

+
g

∑
i=2

m+i(2Rδ3π2
1 − 2δ3π2

1)

(Rδ2π2
1 − 2δπ1 + 1)(Rδπ1 − 1)

,

I33 =
m+1π2

1(Rπ1 − 2π1 + 1)
R(Rπ1 − 1)(Rπ2

1 − 2π1 + 1)
+

g

∑
i=2

m+iπ
2
1δ2(Rδπ1 − 2δπ1 + 1)

R(Rδπ1 − 1)(Rδ2π2
1 − 2δπ1 + 1)

.

Appendix A.2. Information Matrix I2

Differentiating ∂li
∂πi

and ∂li
∂R with respect to πi and R yield

∂li
∂πi

=
2m2i + n1i

πi
+

n0i
πi − 1

+
2m0i(Rπi − 1)
Rπ2

i − 2πi + 1
+

m1i(2Rπi − 1)
πi(Rπ1 − 1)

,
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∂π2

i
= −n1i

π2
i
− n0i

(πi − 1)2 −
2m0i(R2π2
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(Rπ2

i − 2πi + 1)2
−

m1i(2R2π2
i − 2Rπi + 1)

π2
i (Rπi − 1)2

− 2m2i

π2
i

,

∂2li
∂πi∂R

= − m1i
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(Rπ2

i − 2πi + 1)2
,
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∑
i=1
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4
i

(Rπ2
i − 2πi + 1)2

+
m1iπ

2
i

(Rπi − 1)2

]
.

Therefore, we have

E(− ∂2li
∂π2

i
) = −

2m+i(2R2π2
i − Rπ2

i − 2Rπi + 1)
πi(R2π3

i − 3Rπ2
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,
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g
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2
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i − 2πi + 1)

,



Axioms 2023, 12, 333 18 of 19

for i = 1, . . . , g.
Under the null hypothesis H0 : δ2 = · · · = δg, the information matrix I2 can be

derived as

I2 = −E



∂2l2
∂π2

2

∂2l2
∂π2∂R

. . .
...

∂2lg

∂π2
g

∂2lg
∂πg∂R

∂2l1
∂π2

1

∂2l1
∂π1∂R

∂2l2
∂π2∂R . . . ∂2lg

∂πg∂R
∂2l1

∂π1∂R
∂2l
∂R2


(g+1)×(g+1)

,

Appendix A.3. Information Matrix I3 and I−1
3

The information matrix I3 can be expressed as

I3 = −E



∂2l
∂π2

1

∂2l
∂π1∂R

. . .
...

∂2lg

∂π2
g

∂2lg
∂πg∂R

∂2l
∂π1∂R . . . ∂2lg

∂πg∂R
∂2l
∂R2


(g+1)×(g+1)

,

and the elements of I−1
3 can be derived as follows

c(g+1)(g+1) =
(

D−
g

∑
i=1

b2
i

ai

)−1
,

cii = ai
−1 +

b2
i c(g+1)(g+1)

a2
i

, i = 1, . . . , g,

cij =
bibjc(g+1)(g+1)

aiaj
, i 6= j,

c(g+1)i = ci(g+1) = −
bic(g+1)(g+1)

ai
.
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