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Abstract: By making use of the linearization method, we examine a class of nonterminating 3 F,-series
with five free integer parameters that yields twenty summation formulae. Under the Kummer and
Thomae transformations, six classes of exotic 3 Fp-series are consequently evaluated in closed forms.
There are overall 100 identities recorded in the present paper.

Keywords: hypergeometric series; nonterminating exotic 3F,-series linearization method; Thomae
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1. Introduction and Outline
Denote by N and Z, respectively, the sets of natural numbers and integers with

No = NU {0}. The shifted factorials are given by (x)g = (x), == 1 and
(X =x(x+1)---(x+n-1)

for neN.
(X)n —X(x—l)---(x—n+1)}
We can express them, even when n € Z, as the quotients

I'(x+n)
I'(x)

I'(1+x)

and (x), = Tarx—n)

where the I'-function is defined by the Euler integral

I'(x) :/0 wlem"du for R(x) > 0.

For brevity, their fractional forms are concisely shortened as

|: a/,B/"'/’)/ :| _ (“)ﬂ(ﬁ)fl(()/)n
AB,---,C (A)H(B)n"'(c)n’
AB,--,C T(A)I(B)---T(C)

According to Bailey [1], the generalized hypergeometric series is defined by

ap, ai, -+, dp R (a0)n(a1)n - (ap)n _,
1+PFP[ by, -, by ‘Z} =) (b1 )n - (byp)n z

7

n=0

When z = 1, this series is convergent only if the “parameter excess” (i.e., the difference
between the sum of the denominator parameters and that of the numerator ones) has a
positive real part.
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There exist many strange evaluations of hypergeometric series (cf. [2-8] for example).
Recently, Campbell, D’Aurizio and Sondow [9,10] discovered two mysterious-looking
formulae (see D1 and D12)

33 4In(1+v/2)
3b 3 ‘1 =
1, 3
lir I -3 1 V2 +1n(1+ v2)
55 ‘1 - .
L, 3 4

Campbell and Abrarov [11] found, among the others, the following two further ones (see
F10 and G8)

3F2F, 5, -1 ’1] _ 3m{3v2—log(1+v2)}
, 70 2r'(3)? '

5, 1 3 5¢{3v2 —log(1+ v2)}
B g’l - 8T(3)2 '

These series are said “exotic” because one numerator parameter minus a denominator
parameter results in a negative integer. By examining carefully these seemingly unrelated
series, we find that they are connected, under the Thomae and Kummer transformation
(cf. Bailey [1] §3.2 and Page 98), to the following 3 F,-series

1+a, c, %+e

1
Fla,c,e;b,d) := 5F ) { A:i=5+b+d—a—c—e>0 },

o:=b+d—a—c—e>0

‘ 1

where a,b,¢,d, e € Z satisfying the conditions 2 > 0 and ¢ > 0 so that the both series
involved are nonterminating. When o =b+d —a — c —e > 0, the series is convergent,
because in this case the parameter excess A = o + % > 0 (i.e., the sum of the denominator
parameters minus that of the numerator ones).

Classically, there are three typical summation theorems (for the 3 F,-series) discovered
by Dixon, Watson and Whipple (cf. Bailey [1] §3.1, §3.3 and §3.4). However, neither of them
can evaluate the afore-displayed series in closed form. In particular, the formulae for the
3F,-series presented in this paper are not present in the recent paper by the author [12], and
two useful compendiums: ([13] §8.1.2 and [14] §7.4.4), where numerous closed formulae
are collected for the 3F,(1) series with numerical parameters.

By applying the linearization method (cf. [15-18]), we shall transform, in the next
section, the evaluation of F-series into the (), »-series treated recently by the author [19].
The main results are summarized in the conclusive theorem as well as twenty closed
formulae for the F-series. Finally in Section 3, analytic formulae for six further classes of
exotic 3F,-series will be provided by employing the Thomae and Kummer transformations
(cf. Bailey [1] §3.2 and Page 98) to the F-series.

In order to ensure the accuracy, all the formulae appearing in this paper have been
checked numerically by appropriately devised Mathematica commands.

2. Linearization Procedure for the F-Series

In this section, we shall reduce, by means of the linearization method (cf. [15-18]),
the F-series to specific instances of a known ), , (x,y) function, that has recently been
examined by the author [19].

21.a=0

According to the Chu-Vandermonde convolution identity on binomial coefficients, it
is routine to establish the following lemma.
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Lemma 1 (Linear relation: m € Np).

(A+n)y, = i(B +n) X where Xi = (7:) (A—B)y_k-

k=0

Specifying the above relation to the equality

(1+n), = i(c—l—n)ka(a) where X(a) = (Du—c)a_k

k=0

and then substituting it into the F-series, we have the double series

1+a, c, %+e

Fla,c,e;b,d) =
weebd =2y sl &
a © | c+k, 1+e
=y Dy |2
=0 (Ma n—ol 1 tb 1+4d],

This results in the reduction formula as below.

Proposition 1 (Reduction formula from a > 0 to a = 0).

a [—
Fla,ce;b,d) =Y (— ( )(ZDF(o,chk,e;b,d).

k=0

22.b=d

The F-series can further be reduced to the case b = d.
When b > d, we can specify Lemma 1 to the equality

k

L (c+n)g
> (1 T n)an

(@)

b—d
(%—Fd—i—n)b,d = Z(C—i—n)kYk(b,d) where Yk(b,d) = (b d)( C+d)b d—k-

k=0

Putting this inside the F-series, we have the double series

1 _
> c,5te (c+n)
F(0,c,eb,d) = 2 Tk
3% S4+0b,3+ g: (3+d+n)y_g
:l’ii () i ct+kg+e
= (3 +d)p d ol 340,53 +0

This yields the following reduction formula.

Proposition 2 (Reduction formula from b > d to b = d).

b—d o 5 d
FO.cebd) =Y (b d) () (‘(15 X Dok 70 ¢ 4k esb,b).
1

=\ k +d)p—g

Alternatively, for b < d, we can specify Lemma 1 to the equality

Yi(b,d)

d—b _
(bt mas = (e mdiod) where Dylbd) = (10 ") b= clan

k=0 k
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Substituting this into the F-series, we have the double series

© c,l—l-e -
F(0,c,e;b,d) = 2 Tk Yy (bd)
Z ZiJFbE I;(i+b+n)db
—Z i c+ki+e
+b)d b ol 3+d 3+4d ],

This gives rise to another reduction formula.

Proposition 3 (Reduction formula from b < d to b = d).

d—b 3

d—b\ ()e(3+b—c)apk

F(0,ceb,d) =) ( ‘ > ?Q—i—b) F(0,c+kedd).
k=0 1 d—b

23.c=e

The F-series can further be reduced to the case ¢ = e. For this purpose, we have to
show the following linearization lemma.

Lemma 2 (Linear relation: m € Np).

m LYY
(A+n)m :I;)<B+2n>kzk where Zj = Z(:) = . (A—E1)m.
— i=

Proof. By substitution, it suffices to evaluate the double sum

m k (_1\k—i .

k=0 i=0 !

By exchanging the order of summations, we can reformulate it as
i B—i u k—i B+2n—i

= i(_l)mfiM(A _ %)m (B+2n —i—1>

= m—i
n n ; — By
_ <B +2 >m+1 Z(_l)m—l (m> (1‘:—’_ 2712_)1-

(B2 mi(Ata),
m! (B+2n),, .1

= (A + n)m/

where the last line is justified by finite difference calculus (cf. [20,21]). O

First for ¢ < e, we have from Lemma 2 the equality

( +c+n), c—2<2b+27’l+ >Zk(b,c,e),

k (_ k—l k
where Zi(b,c,e) Z ( ) —b+ %), ..
i=0
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By inserting this into the F-series, we obtain the double series below

[} l — 2b+27l+
¢ 3+e ¢
F(0,c,e;b,b) Z 2 <>Zk(bce)
ol 3+b3+0 nk:O( +c+n)e—
e—¢ _*_Zb © /1+C
:Z(_Dk(lzi)kzk(bfcfe)z 32k ; 5-2k
k=0 (3t C)e—c n=0 +b,252 +p

Writing the inner sum concerning # in terms of the F-series, we immediately establish the
reduction formula as in the following proposition.

Proposition 4 (Reduction formula from ¢ < e to ¢ = e).

e—c ( 1 Zb)

F(0,c,e;b,b) = Z(—l)k Zk(b c,e)F(0,c,cb— %,b - %)
k=0 ( +C)e c
When ¢ > e and e > 0, we infer from Lemma 2 that
(e+n)e—e = 2<2b+2n—|— > Zi(b,c,e),
k (_ 71' k
where w(b,c,e) Z ( ) — b+ 2 2y . (1)

Putting this inside the F-series, we can analogously treat the double series

o[ ¢lie —e (2b+2n+ 1
F(0,c,e;0,b) =) 3 2 5 <2>"Zk(b,c,e)
n=0| 1+b7+b] k=0 (e+m)c—e
e 1 -2 o ey +e
= Z(—l)k( 2 )ka(b,c,e) . 2 .
=0 (€)c—e = | 3= 2 +b,3 2 +b

Instead, for ¢ > e and e < 0, reformulate first the F-series by reindexing

F(0,c,e;b,b) = F(0,14c—e1;1+b—¢,1+b—e¢)

1 _ 1
c,5+e £ ¢, 5+e
2 + Z ; 2
S4+b,3+0 S+b,3+0b
Then according to Lemma 2, we have another equality
c—e
(1+n)ee = Z@ +2b — 2e +2n), Zi(b, c,e),

k=0

where the connection coefficients Z; (b, c, e) coincide with those given by (1). Now, by sub-
stitution, we have another double series

]-'(O,l+c—e,1;1—|—b—e,1—|—b—e)

0 14+c—e, —¢ (3 4 2b—2¢+2
-r Z 2+ 2k 2 (b cye)

=0 4+b—e,4+b — (T4 n)c—e

T o (2e =203 = L 3
=Y (-1 —Z b,c,e

k;:)( ! (c—e)! 3 >n§)[7]2k+b—e,9_2k+b—e Y

Summing up, we have established the reduction formula to the case c = e.
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Proposition 5 (Reduction formula from ¢ > e to ¢ = e).

= —3—2b
e>0: F(0,c,e;b,b) = Z(—l)kwzk(b,c,e)}"(o,e,e;b— %,b— %),
k=0 c—e
[ ¢lie e 2¢e —2b—3
e<0: F(0,cebb) =) 3 2 5 —Q—Z(—l)k(e—'Z)ka(b,c,e)
| 1+b3+b |, o (c—e)t!
1
c,5+e
s 2 FO1L,L1+b—e—514b—e—k).
itbitb], .,

Observe that the parameter excess A > % for the F-series is not diminished hitherto by
the established reduction formulae. Consequently, all the F-series displayed on the right
hand sides of Propositions 4 and 5 have the parameter excess A > l, and can be expressed
as the following bisection series

F(0,¢,c;b,b) = 2(20)211_1“5[1, 2c M

3
= (20+3),, 2 3 +2b
1 1, 2¢c
+2X2F1|:g+2b —1:|,

where b, ¢ € N subject to the condition b > c. Therefore, to evaluate the F-series explicitly,
it suffices to do that for the above bisection series.

2.4. Oy n-Series

In a recent paper [19], the author examined a more general series
Qumn(x,y) :=2F [x, " _f ‘yﬂ where m,n€Z (2)
n+ 2

and proved the following evaluation formula.

Theorem 1 (Chu [19] Theorems 4 and 8: Recurrence formula). For the two natural numbers
m and n satisfying m < n, there holds the following formula

Qo (x,y) = (3)n "in (n - m) ; ()i (M = %)

U= N X— 1) (m— 2% — D)y
; 2x +2i — 2k ,
-1 n—k (1 B
. kgo( ) (k) (2x+2i—1n— k)1 Qoo(x+i—ky)

where the series () is evaluated by
Qoo(x,y) =2k {x' 0 ‘ y2] = cos(2xarcsiny).
2

Hence, the F-series can be evaluated in terms of the ()-series by the theorem below.

Theorem 2 (b > c: b,c € N).

1.. 1.
F(0,¢,c;b,b) = 2 )lclg% Qoey1p41(x,1) + 2 ,lclﬂ Doey1p41(x, V1)

with Qop(x,1) = cos(rtx) and Qgo(x,v/—1) = cosh (2xIn(1 + V2)).
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2.5. Conclusive Theorem and Examples (Class-A)

Based on the preceding reduction formulae, we may evaluate, for any quintuple
integers a,b,c,d,e € Z subjecttoa > 0,c >0andoc=b+d —a—c—e > 0, the F-series
by carrying out the following procedure:

¢ Step-A:Ifa = 0, go directly to Step-B. Otherwise for a > 0, according to Proposition 1,
express F(a,c,e;b,d) in terms of F(0,c,e;b,d), and then go to Step-B.

e Step-B: By means of Propositions 2 and 3, express F (0, ¢, ¢; b, d) in terms of 7 (0, ¢, e; b, b),
and then go to Step-C.

e Step-C: In virtu of Propositions 4 and 5, express F (0, ¢, e; b, b) in terms of F(0,¢c,c; b, b),
and then go to Step-D.

e  Step-D: Finally by applying Theorems 1 and 2, evaluate F(0,c,c; b, b) explicitly in
terms of the ()-series.

Therefore, we have validated the conclusive theorem as below.
Theorem 3 (Conclusion). For any quintuple integers
a,b,c,de € Z subjectto a>0,¢>0 and oc=b+d—a—c—e>0,

the mnonterminating F(a,c,e;b,d) series can always be evaluated by finitely linear sums of
trigonometric function cos(rtx) and hyperbolic function cosh (2xIn(1+ v/2)), where x € Z and
the coefficients are rational numbers.

According to the afore-described procedure, we have written appropriate Mathematica
commands to determine explicitly closed form expressions for F(a,c,e; b, d) series. Twenty
summation formulae are displayed below, where the argument “1” will be suppressed
from the notation of 3F,-series for the sake of brevity. We shall call these series “Class-A”.
Among them, an equivalent form of A5 has been obtained by Campbell and Abrarov ([11]
Equation (18)).

AL R[1 1, 5§ f] = J5leg(1+V2).

A2. 3R[1, 1, L 7 9] =-5{1-+2log(1+v2)}.
A3. 3R[1, 1, L 3 U] =22{1-3V2log(1+Vv2)}.
A4 B[, 1, 3 3, U] =5{2+3V2log(1+Vv2)}.
A5. 3R[1, 1, 3 7 9] =B{2-V2log(1+V2)}.
A6. B[, 1, 3 3, U] =3B{4-3V2l0g(1+Vv2)}.
A7. 3B[1, 1, -1 3 3] =l1-V2log(1+Vv2)}.
A8. B[, 1, L L 7] =3{1-3V2log(1+V2)}.
A9. 3R, 1, -1 7 9] =F{3-4v2log(1+V2)}.
A10. B[, 1, -3 3, 3] =£{3-4V2log(1+Vv2)}.
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A11. B[, 2, L I 2] =3{2+V2log(1+V2)}.
A12. 3R[1, 2, L 3, 7 =3{2—V2log(l+V2)}.
A13. 3B[1, 2, -1 % 9] =2{2-5V2log(1+V2)}.
A14. B[, 2, -3 1 9] :ﬁ{S—i—flog 1+v2)}
A15. 3B[1, 2, =3 3, 9] =2{1+V2log(1+Vv2)}.
A16. 3R[2, 2, L 7 1] :%{6—\[105; 1+v2)}.
A17. 3B[2, 2, -1 3, U] =Z{2-3V2log(1+V2)}.
A18. 3B[2, 2, -1 2, U] =L{2+9V2log(1+Vv2)}.
A19. 3R[2, 2, -3 7, B =118-3y2log(1+V2)}.
A20. 3R[2, 2, —3; U, B =71113-15\2log(1+Vv2)}.

3. The Thomae and Kummer Transformations

In the classical theory of hypergeometric series, the Thomae and Kummer transforma-
tions are fundamental (cf. Bailey [1] §3.2 and Page 98 , where ¢ =b +d —a —c —e):

3F2{a,g,§ 1} :3F2{U,b—u,d—a‘l}r{ o, b d } 3)

c+o,e+0 ac+o,e+o0
a,c,e _ ab—cb—e o, d
31:2{ b,d 1} 31:2{ c+a,b ‘ 1}r{a+a,da} @)

They will be applied to the F-series to evaluete six classes of exotic 3F,-series.

3.1. Class B

Applying the Kummer transformation (4), we can express the following “Class-B”
series in terms of the F-series (Wherec =b+d —a —c —e):

3b 1

l+a, c+i, e+3 _rl b+3,0+3
b+3, d+307 | |b-a+lo+at]

1+a d—c+1, d—e—i—%‘l
d+3, o+a+]

X 35

Then we can derive the following closed formulae for these series (except for divergent
series) from those displayed in “Class A”.

Bl R[L, i, % 3, 3] =2log(1+V2).

B2. sbB[L, i1, T 3 3] =E#{1+2v2log(1+v2)}
B3. h[1, i L 3 3] =3{2-V2log(1+v2)}
B4 sR[1, 3, % 3, 3] =3{2-V2log(1+v2)}
B5. R[L, 3, % 3 3] =5{4-3V2log(1+Vv2)}.
B6. sh[1, 7, 3 3 B] =Z{8-5V2log(1+v2)}.
B7. sbB[2 1, L 4 3] =3{4+3V2log(1+Vv2)}.
BS. b2 3 3 3 3] =3{-2+3V2log(1+Vv2)}.
B9. B[2, 3, L 3 3] =5{2-V2log(1+Vv2)}.
B10. 3R([2, 3 i 5, B] =30{4-3v2log(1+v2)}.
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3.2. Class C

By means of the Kummer transformation (4), we can express the “Class-C” series
below in terms of the F-series (wWhereoc =b+d —a—c —e):

1+a, c+1 e+3 c+ib+3
3h2 3 3‘1 - 5 1
b+35, d+3 ct+a+yz,b—a+s3
1+a, d-—e, d—c+%
X F2 1f.
3 3 5
d+3, c+a+y

Then the closed formulae below for these series ( except for divergent series) follow directly
from those recorded in “Class A”.

Cl. 5R[1, L % 3, 71 =3{2-V2log(1+Vv2)}.
c2. B[ L 3 3, 1] =¥{8-5V2log(1+v2)}.
C3. R[L, 3, % 3, 7] =3v2log(1+V2).

Ca. B[L 3 3 3 I =§&{1+2v2log(1+v2)}.
Cs. sR[1, 3, -1 3, 3] =2{1-V2log(1+V2)}.
ce Bl 3 - 3 I =He+vIlg(+va)).
C7. sR[L, 3, -L 3, 3] =2%{5-2v2log(1+v2)}.
Cc8. R[2 3 3 3 I =3{2+V2log(1+v2)}
Co. b2, 3, % 3 I =8{8+V2log(1+Vv2)}.
C10. 3R[2, 3, ¥ 7, U] =3{2+9v2log(1+v2)}.

3.3. Class D

By virtue of the Thomae transformation (3), we can express the following “Class-D”
series in terms of the F-series (Wherec =b+d —a —c —e):

o, b+1, d+%
a+%a+c+%a+e+§
X3H[m d—a, b—a+%

0+c+£ a+e+%

1 1 3
at+s5, ¢c+y3, e+3
55 2 4 4 ’1]

b+1, d+3

©)

1]_

Then we find the closed formulae below for these series ( except for divergent series) as
consequences of those produced in “Class A”.

DL sB}, § b 1§ =t

D2 sR[L 7 L o2 3] = 8{ﬁ+31§§(1+ﬁ)}'
D3. sR[L 7, 11, 3] :2{\/§+91§§(1+\/§)}‘
D4. 3R[} 1 3 1, %] = 8{2\/§+3;f;g(1+\/§)}'
D5. 3B[}, 5 » L 3] = M'
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. S{ﬁflog(lJrﬁ)}

Dé. B[} § 3z 2 3 g _
D7. R[3 5 %01, % = 8{4\5-1—1(7)7%(14—\@)}'
Ds. sh[} -1 3 1 3 _4@ﬁ4§ww®}
D9. R[3, -1, 31, 3] = 4{5ﬁ74;<:§(1+ﬁ)}‘
D10. 5[5 1, 3% 2 3] = 16{ﬁ_1o7§(1+@}‘

Observing that the parameter excess of the 3F,-series displayed on the right hand side
of (5) equals A = % + a, the equality (5) valid only when a > 0 and ¢ > 0. It remains a
problem to evaluate, for a < 0, the 3F,-series on the left of (5). This can also be resolved by
the linearization method.

According to the Pfaff-Saalschtitz summation theorem (cf. Bailey [1] §2.2), it is not
hard to confirm the linear relation in the following lemma.

Lemma 3 (Linear relation: m € Ny).

m
_ _ ok (m\ (A)m(A—B)g
(A+n)m—]§)<n>k(B+n)m_ka, where X = (—1) (k)(B)m(A)k :
By specializing this to the equality

—a
(I+b+m)—= Y (mp(3+a+n) X,
k=0

o = (T ()

2
and then substituting it into the 3F,-series, we may manipulate the double sum
T4a, 4o 3+ ‘
1+b, 3+d
1 1 3
2 + a, 14 + ¢, 4 +e

1,1+b,3+d

= & (G +atn) .
Z Z Izlz+b+n)fa :

X (a)

n=0 n k=0

— e 1 1 3
:ika(a)zwk 7—kitezte

k=0 (1+b)—a n—0 n! 1—[1+b,%—|—d

Performing the replacement n — n + k, we can express the last sum with respect to 7 as

%_kréli—'_crg"'—e
1—u+h%+d

Li+c+k3+etk
3B 1
L l-atb+ky+d+tk

Therefore, we have established, after some simplifications, the following transformation
formula.
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Theorem 4 (Reduction formula from a < 0 to a = 0).

1 1 3
>+a z+c¢ 3+e
35 2 1 4 ‘1

14+b, 3+d

if al—a+h%+a%+e

B 1L,1—a+b1+b}+d
Atk 3te+k

% 3F 24 4 ‘1
l—a+b+ki+d+k

It should be emphasized that under this transformation, the parameter excess A =
0 =b+d—a— c— eremains invariant for all the 3F,-series. However the 3F,-series on
the right belongs to Class-D and can therefore be evaluated by (5). Ten more formulae are
recorded below.

D11 ;B[-1 1 -1 1, 3] = Lv2Hoelivd)
D12. ;5[-3, 1 % 1, 1] = w_
D13. ;5[-3, L % 1, 3] = w.
D14. ;5[-3, L L 1 3] = %.
D15. ;K[-3, 3 3 1, 3] = W_
D16. 3H[—-3 3 -3 1 3] = w
D17. sK[-3% 3 -3 2, 1] :%
D18. 3H[-3 3 © 2 3] = w
D19. ;5[-3 -3 4L 1 3] = %
D20. 3h[-3 -1 -3 L 4] = %'

Campbell, D’ Aurizio and Sondow [9,10,22] discovered some formulae in Class-D.

e  The formula D1 has been found by them in ([9] Equation (10)), where they also
conjectured D12. For this last evaluation, five different proofs have been provided by
the same authors [10].

* By making use of beta integrals, Campbell recoded in ([22] Theorems 2,3,7 and Exam-
ple 12) four formulae. The first one ([22] Theorem 2) is corrected by D18. The second
one ([22] Theorem 3) is incorrect. The third one ([22] Theorem 7) is simplified by D2.
The fourth one ([22] Example 12) is too complicated to reproduce here.

3.4. Class E

Again in view of the Thomae transformation (3), we can express the “Class-E” series
below in terms of the F-series (wWherec =b+d —a—c—e):

a+3, c+i e+3 c+3b+31d+3

E 1] =
- b+3, d+3 a+304+c+30+e+3
2 2 2 i 3 ©)
1
1+d—a, b—a, c+3
><3F2 3 5‘
oc+c+3, o+et 3

Consequently, the closed formulae below for these series ( except for divergent series) can
be deduced from those exhibited in “Class A”. Among them, E2 simplifies a formula of
Campbell ([22] Example 5).
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El. R[L 3, 1 3, 3] =2v2-2log(1+V2).

B2 sB(L 1L o3 3 = 3{4v2-2leg(1+ VD)
E3. sR[} 1 3 3 3] =##{8V2-10log(1+Vv2)}.
E4. 31-“2[%, %, %; %, %] = 2log(1+V2).

E5. 3R[3, 3 3 3 3] =4{4v2-6log(1+V2)}.
B 3B % b 3 3 = HVZtolgtva)).
E7. R[5 % 0L 3, 3] =v2+log(l+v2).

E8. 31-“2[%, L % % %} = 4{3v2—log(1+v2)}.
B. sR[f, 3 % 3 3] =12{V2-log(1+Vv2)}.
E10. R[5, 1, 3 7, 3] =40{4v2-6log(1+V2)}.

Analogous to the series in Class-D, the parameter excess of the 3F,-series displayed
on the right hand side of (6) equals A = } + a, which converges only when a > 0. We can
also evaluate that 3 F,-series by reducing the case a < 0 toa = 0.

By means of Lemma 3, we have the equality

—a
(% +b+n)_,= Z(n)k(% +a+n)_,_ XK,
k=0

~ (—a) fa—b\(b—a—1
where Xi(a) = <_l> k ik
2/ a
and then insert it in the 3F,-series, we can handle the double sum

T4a, t4+c 2+4e

3h i, g+d’1
_ i %+a,}1+c,%+e iu: <”>k(%+”+”)—g_kx .
=0 3+b3+d | (Gtbtn) g
_Zf<+”>km)§:mn[;—h1+qg+e
=0 (3+b)- Sl | J—atbied |

Making the replacement n — n + k, we can express the last sum as

1—h%+a%+e
l—a+b3+4d

o atetks +e+k’l
A -atbtk3rdtk

After some simplifications, we establish the transformation below.

Theorem 5 (Reduction formula from a < 0 to a = 0).
i“: a,b—a, % +c, % +e
&L i-avb b dvd
§i+c+h4+e+k‘1
l—a+b+k3+d+k

E %4—11, }I+c, Z+e'
3k

1 3
l1ib, 344

Xstl

Under this transformation, the parameter excess A = ¢ = b +d — a — c — e remains
invariant for all the 3F>-series involved. However the 3F,-series on the right belongs to
Class-E and can therefore be evaluated by (6). We record ten more examples.



Axioms 2023, 12,291

13 of 15

E1l. R[-4%, 1 3 1 3] ::91122%%tg@n
E12. ;R[-4%, L 4L % 3] :%%(Hﬁ)
E13. ;h[-1%, 3, 5 1 3] :%%(Hﬁ)_
El4. ;K[-4%, 3, 3 3, 3] :%ﬁw_
E15. 3R[-3 3 L 3 3] :3{2+5¢75112§/<§1+ﬁ)}'
El6. ;K[-1%, 3 L, 3 3] :%ﬁ(uﬁ).
E17. sR[-3, 3, 5 1, 3] :%?%(Hﬂ)'
E18. sR[—3, 3, 3 1 9] :3{62737\2/556132(1+ﬁ)}.
E19. 3h[-3, 5, % 3, 3] :%%(Hﬁ)
E20. 3F2[_%/ 45, _%,. %, %] :3{42+41\1/;1\0/g§(1+ﬁ)}.
3.5. Class F

By invoking the Kummer transformation (4), we can express the “Class-F” series
below in terms of the F-series (wWherec =b+d —a—c —e):

3b 1

ati, c+3%, e—l—i’ T b+1,0+3
b+1, d+7 b—a+3l,0+a+3
l+d—c, 1+d—e a+§’1

(T+€l+%, d—i—%

x 35

Then the closed formulae below for these series ( except for divergent series) can be
established from those shown in “Class A”. Among them, the formula F10 is due to
Campbell and Abrarov ([11] Corollary 5).

2y7{5v2-4log(14+v2) }

Fl. 3h[-3 -} -L 1 3 = =
RosB[-L § b1 §) =)
F3. sh[-3 3 ¥ 1 ] :6ﬁ{ﬁ;;§<1+ﬁ)}'
Fa. sR[-1 3 7,1, 1 :7\/%{4\/15;6(11110)g2(1+\/§)}'
F5. 31-"2[%, —%, —%,‘ 1, %] :zﬁ{d‘\/ﬁr(z}ll)ozg(u\/i)}.
TR
F7. k(s 3, ~Lo1, 7 _3ﬁ{ﬁ1::1£);gz(l+ﬁ)}~
F8. b}, 3, 31, 7] :%.

B e
F10 353, SO P PR :3\/5{3\/5*10g(1+\/§)}.

2r($)?
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3.6. Class G
Finally, by employing the Kummer transformation (4), we can express the “Class-G”
series below in terms of the F-series (whereoc =b+d —a—c—e):
a+i, o+l e+}1’ b+1lo+1
b+1, d+1 b—a+to+a+3
d—c, d-—e, a+ %
% 3F X \ ’ 1
d+ i 0 +a+ 1

3b

Then the closed formulae below for these series ( except for divergent series) can be shown
from those displayed in “Class A”. Among them, the formula G8 is due to Campbell and
Abrarov ([11] Corollary 4), who evaluated also another similar series ([11] Corollary 6).

_ 5y{4v2-3log(1+v2) }

[ay
@
37

|
NI
<
a1
<
H=1U1
~

—_

~
e

[ } 441(3)2 :
G2 SB[~} § ~f 1 ) = VERESls0nD)
G3. 3R}, =31, 3] :\/E{\/Ej;rl(ozg)(zu\/i)}_
G4 sh[3, 1 © L 3] :%1);\6)‘
Gs. sR[L, L L2 8 2\/5{—\/31—“&-(621;5(1—1—\5)}'
G6. 3h[3 1 3 2 3 :5\/5{\/2;(12%”\/5)}‘
o7 Bl I 3 o2 ) = EERes)
Gs. R[3 1 3 1 ZSﬁ{ngr—(lso}z(uﬁ)}
GY. sR[3 i ¥ 2 i Jﬁ{m{éﬁgm@}.
G10. 3R[3, 3 % 3 1 _6\/%{—6\55;;;%(1-}\/5)}.

Concluding Comments

By combining the linearization method with the Kummer and Thomae transforma-
tions, we present 100 explicit formulae for 7 classes of nonterminating 3F,(1)-series. They
may potentially find applications in mathematics and physics as other mathematical formu-
lae. Further explorations are encouraged to enrich this bank database of hypergeometric
series identities.
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