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Abstract: The Shanker distribution, a one-parameter lifetime distribution with an increasing hazard
rate function, is recommended by Shanker for modelling lifespan data. In this study, we examine
the theoretical and practical implications of 2-component mixture of Shanker model (2-CMSM).
A significant feature of proposed model’s hazard rate function is that it has rising, decreasing,
and upside-down bathtub forms. We investigate the statistical characteristics of a mixed model,
such as the probability-generating function, the factorial-moment-generating function, cumulants,
the characteristic function, the Mills ratio, the mean residual life, and the mean time to failure.
There is a graphic representation of density, mean, hazard rate functions, coefficient of variation,
skewness, and kurtosis. Our final approach is to estimate the parameters of the mixture model using
appropriate approaches such as maximum likelihood, least squares, and weighted least squares.
Using a simulation analysis, we examined how the estimates behaved graphically. The simulation
results demonstrated that, in the majority of cases, the maximum likelihood estimates have the
smallest mean square errors among all other estimates. Finally, we observed that when the sample
size rises, the precision measures decrease for all of the estimation techniques, indicating that all of
the estimation approaches are consistent. Through two real data analyses, the suggested model’s
validity and adaptability are contrasted with those of other models, including the mixture of the
exponential distributions and the Lindley distributions .

Keywords: least square estimation (LSE); mixture distributions; Mills ratio; weighted least square estimation

MSC: 60E05; 62E15; 62E05; 62F10

1. Introduction

Mixture models, more specifically finite-mixture models, have been used more fre-
quently over time to simulate a wider range of events than they were in the early days of
statistics. Available data can often be thought of as a mixture of two or more models. Utilizing
this concept, we can combine statistical distributions to produce a novel one. The fields of
biology, genetics, engineering, medicine, marketing, business, real-world applications, and
social sciences are just a few that can benefit from the use of finite-mixture distributions. In
mixture distributions, two or more distributions are combined by adjusting the proportions
to form a novel model. Therefore, it is essential to look into the statistical characteristics
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of the suggested mixture distribution and apply the right techniques to estimate its un-
known parameters. Several authors have examined mixing distributions, including [1–5].
Muhammad and Muhammad [6] examined the traditional features of mixture of the Burr
XII and Weibull distribution. A two-component mixture of inverse Weibull distribution (2-
CMIWD) was proposed by Sultan et al. [7], and some of its characteristics were investigated
by utilizing density and hazard function graphs. Jiang et al. [8] focused on the graphical
approaches as well as the PDF and hrfs formats to analyze the hybrid of two inverse Weibull
distributions. Several authors who address mixture modelling in various real-world issues
include those listed below: Mohamed et al. [9], Mohammadi et al. [10], Ateya [11], and
Sindhu et al. [12] are a few examples. The generalized method of moments and ML were
employed by Al-Moisheer et al. [13] to assess the mixture model’s unknown parameters.
Some other relevant studies are [14–20].

Shanker [21] proposed the Shanker distribution as a lifetime distribution and estimated
its parameter by employing maximum likelihood estimation and moments methodology,
as well as by employing those models on how we can model lifetime data from the field
of medical science and engineering. The discrete Poisson-Shanker model was developed
by Shanker [22], who also studied its mathematical and statistical properties as well as
potential uses for count data from many fields of study. In [23], the authors conducted a
comparison analysis on modelling lifespan data utilizing one parameter Akash, exponential,
and Lindley models, finding that the Akash model of Shanker has flexibility over both
exponential and Lindley models. Shanker et al. [24] conducted a thorough comparison of
exponential and Lindley models for modelling diverse real-life data sets and discovered
that in certain cases, Lindley is superior to exponential, while in others, exponential is
superior to Lindley.

The maximal likelihood estimation (MLE) is a well-known estimation approach. De-
spite the fact that MLE is efficient and has good theoretical features, there is evidence
that it does not perform effectively, particularly with small samples. As a result, different
estimation approaches have been offered in the literature as alternatives to the conventional
method. The weighted least-squares estimation (WLSE), least squares estimator (LSE),
L-moments estimator (LME), and percentile estimator (PCE) are among the most frequently
recommended. These approaches, in general, do not have good theoretical properties, but
they can offer better estimates of unknown parameters in specific instances compared to
the MLE. The literature has investigated a variety of estimating techniques for different
distributions, such as [25–30]. The aim of the current study is to provide professional statis-
ticians with a framework for choosing the best estimation methodology for 2-component
Mixtures of Shanker Models (2-CMSM). This study uses weighted least square estimation
(WLSE), least square estimation (LSE) in addition to MLE for estimating the 2-component
mixture of the Shanker model (2-CMSM).

Our goal in this study is to develop a distribution for modelling real lifespan data sets
from various disciplines of knowledge that are better fitting than both exponential and
Lindley distributions. The mixture of the Shanker distribution has one advantage over the
one-component Shanker and the exponential distribution: that the Shanker distribution has
an increasing, while exponential distribution has constant, hazard rate, whereas the mixture
of the Shanker model has decreasing, increasing, rising-decreasing, constant, unimodal,
and “upside-down” bathtub curve failure rates .

The 2-CMSM is being developed for analyzing complex data arising from reliability
research, survival analysis, statistical mechanics, quality control, economics, biological inves-
tigations, and other fields. Our aim is to develop this distribution because of the different
shapes of hazard function, including the increasing, decreasing, unimodal, and upside-down
bathtub curve, as well as various close-form features of 2-CMSM with simple physical
explanations. The originality of this study stems from a comprehensive explanation of mathe-
matical and statistical features of this model, which will hopefully attract more applications in
lifespan analysis. Additionally, to our knowledge, no attempt has been made to compare any
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of these estimating approaches to estimate parameters of 2-CMSM. For a set of parametric
values and sample sizes, we illustrate the efficiency of these estimation techniques.

The rest of article is formatted as displayed. We present 2-CMSM in Section 2. In
Section 3, we endeavor to derive the 2-CMSM model’s key mathematical and statistical
characteristics. In Section 4, we extract some of its general reliability characteristics, such as
the cumulative-hazard-rate function, the Mills ratio, the mean time to failure, and the mean
residual life. In Section 5, the model pertinent parameters are estimated with LSE, MLE,
and WLSE and present simulation outcomes to assess the performance of these estimators
in section 6. In Section 7, we show an application to demonstrate the mixing model’s
applicability. The conclusion can be found in Section 8.

2. 2-Component Mixture of Shanker Model (2-CMSM)

A r.v. T is considered to have a finite mixture of 2-component Shanker model (2-
CMSM) as its CDF and PDF can be written as:

f ( t| ∆̆) = π f1( t| ϑ1) + π̆ f2( t| ϑ2), π̆ = 1− π (1)

f ( t| ∆̆) = π
ϑ2

1
ϑ2

1 + 1
(ϑ1 + t) exp(−ϑ1t) + π̆

ϑ2
2

ϑ2
2 + 1

(ϑ2 + t) exp(−ϑ2t), (2)

and

F( t| ∆̆) = πF1( t| ϑ1) + π̆F2( t| ϑ2), (3)

F( t| ∆̆) = π

{
1−

ϑ2
1 + 1 + ϑ1t

ϑ2
1 + 1

exp(−ϑ1t)

}
+ π̆

{
1−

ϑ2
2 + 1 + ϑ2t

ϑ2
2 + 1

exp(−ϑ2t)

}
, (4)

where ∆̆ = (ϑ1, ϑ2, π). (ϑ1, ϑ2) are the scale, whereas π is the mixing parameter.
Figure 1a–h displays a number of graphs of f ( t| ∆̆) and both component densities for

different parameter values. The PDF mentioned above shows how the parametric vector
∆̆ affects the density of 2-CMSM(∆̆). The PDF curves of 2-CMSM(∆̆) shows that it takes
several shapes, such as monotonically decreasing, positively skewed, and inverted U with
platykurtic, mesokurtic, and leptokurtic curves. This indicates that it can be used to model
data of diverse types.

Identifiability

Identifiability is a condition that a statistical model must satisfy for precise inference
to be possible. A model is considered identifiable if the true values of its underlying
parameters can be learned after an infinite number of observations. It can be seen math-
ematically as an assertion that different values of the parameters will generate different
probabilities of observable variables. Models are usually only identifiable under certain
technical conditions, referred to as identification conditions.

Definition 1. Let f =
{

fϑi : ϑ1, ϑ2 ∈ ϑi
}

be a statistical Shanker model with parameter space ϑi.
We state that f is said to be identifiable if the mapping ϑi → fϑi is one-to-one:

fϑ1 = fϑ1 ⇒ ϑ1 = ϑ2, ∀ ϑ1, ϑ2 ∈ ϑi. (5)

This means that distinct values of ϑi should correspond to distinct probability models: if
ϑ1 6= ϑ2, then also fϑ1 6= fϑ1 .

By using this approach, we prove the following proposition.
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Fig. 1. Variations of �rst and second component of density (f1(t); f2(t)) respectively, and density

of 2-CMSM fm(t).

Median

6

Figure 1. Variations of first and second component of density ( f1(t), f2(t)), respectively, and density
of 2-CMSM fm(t).
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Proposition 1. The class of all finite mixing models relative to Shanker distribution is identifiable.
Let f be the pdf of statistical Shanker model:

f =

{
fϑi =

ϑ2
i

ϑ2
i + 1

(ϑi + t) exp(−ϑit) : ϑi, i = 1, 2, t > 0

}
. (6)

fϑ1 = fϑ2 ,

⇔
ϑ2

1
ϑ2

1 + 1
(ϑ1 + t) exp(−ϑ1t) =

ϑ2
2

ϑ2
2 + 1

(ϑ2 + t) exp(−ϑ2t), (7)

Taking log on both sides

⇔ log

[
ϑ2

1
ϑ2

1 + 1

]
+ log(ϑ1 + t)− ϑ1t = log

[
ϑ2

2
ϑ2

2 + 1

]
+ log(ϑ2 + t)− ϑ2t,

⇔ 2 log ϑ1 − log
(

ϑ2
1 + 1

)
+ log(ϑ1 + t)− ϑ1t = 2 log ϑ2 − log

(
ϑ2

2 + 1
)
+ log(ϑ2 + t)− ϑ2t,

⇔ 2(log ϑ1 − log ϑ2)−
[
log
(

ϑ2
1 + 1

)
− log

(
ϑ2

2 + 1
)]

+ log(ϑ1 + t)− log(ϑ2 + t)− (ϑ1 − ϑ2)t = 0,

⇔ ϑ1 = ϑ2

This expression is equal to zero for almost all t only when all its coefficients are equal to zero.

fϑ1 = fϑ2 ⇔ ϑ1 = ϑ2, (8)

hence the identifiability is proved.

3. Statistical and Mathematical Characteristics
3.1. Mode

The nonlinear equation w.r.t. t is solved to provide the mode of the 2-CMSM
(
∆̆
)
:

π
ϑ2

1
ϑ2

1 + 1
{exp(−ϑ1t)− (ϑ1 + t)ϑ1 exp(−ϑ1t)}+ π̆

ϑ2
2

ϑ2
2 + 1

{exp(−ϑ2t)− (ϑ2 + t)ϑ2 exp(−ϑ2t)} = 0.

3.2. Median

Here, we study about median of 2-CMSM
(
∆̆
)
. Assume that F( t| ∆̆) is the CDF of 2-

CMSM
(
∆̆
)

model at 0.5th quantiles Q0.5. The median (t∗) can then be obtained by resolving
the following non-linear equation for t.

π

{
1−

ϑ2
1 + ϑ1t + 1

ϑ2
1 + 1

exp(−ϑ1t)

}
+ π̆

{
1−

ϑ2
2 + ϑ2t + 1

ϑ2
2 + 1

exp(−ϑ2t)

}
= 0.5,

π

{
ϑ2

1 + ϑ1t + 1
ϑ2

1 + 1
exp(−ϑ1t)

}
+ π̆

{
ϑ2

2 + ϑ2t + 1
ϑ2

2 + 1
exp(−ϑ2t)

}
= 0.5. (9)

Computing techniques such as the Newton-Raphson methods can be used to obtain
the median, t∗, from Equation (9).

Figure 2a–h shows various graphs of hrf of one and 2-CMSM h( t|∆̆) for various
parameter values. It should be observed that the parameter values were chosen at random
until different shapes could be obtained. An increasing trend can be seen in the hrf of each
component distribution, while the hrf of 2-CMSM(∆̆) shows a monotonically increasing,
decreasing, upside-down bathtub, increasing decreasing-constant (IDC) behavior as shown
in the figure . The hazard rate function of the 2-CMSM(∆̆) highlights its versatility over one
component distribution of Shanker, exponential, and Lindley, and two components of the
mixture of exponential and Lindley distributions. These Figures indicate the flexibility of
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the 2-CMSM(∆̆) distribution to model right skewed data as well as the data with decreasing
and upside-down bathtub shapes.

Here, we study about median of 2-CMSM
�
��
�
. Assume that F (tj ��) be CDF of 2-CMSM

�
��
�

model at 0.5th quantiles Q0:5. The median (t�) can then be obtained by resolving the following

non-linear equation for t.

�

�
1� #21 + #1t+ 1

#21 + 1
exp (�#1t)

�
+ ��

�
1� #22 + #2t+ 1

#22 + 1
exp (�#2t)

�
= 0:5;

�

�
#21 + #1t+ 1

#21 + 1
exp (�#1t)

�
+ ��

�
#22 + #2t+ 1

#22 + 1
exp (�#2t)

�
= 0:5: (9)

Computing techniques like Newton-Raphson methods can be used to get the median, t�, from Eq.

(9).

7

Fig. 2. In�uences of �rst and second components hrf (h1(t); h2(t)) and hrf of 2-CMSM (hm(tj)).

Figure 2 (a-h) shows various graphs of hrf of one and 2-CMSM h(tj ��) for various parameter
values. It should be observed that parameter values were chosen at random until di¤erent shapes

could be obtained. An increasing trend can be seen in the hrf of each component distribution,

while the hrf of 2-CMSM( ��) shows monotonically increasing, decreasing, upside down bathtub,

increasing decreasing-constant (IDC), behavior as shown in the �gure. The hazard rate function

the 2-CMSM( ��) highlights its versatility over one component distribution of Shanker, exponential

and Lindley, and two component of mixture of exponential and Lindley distributions. These

Figures indicate the �exibility of the 2-CMSM( ��) distribution to model right skewed data as well

as the data with decreasing and upside- down bathtub shapes.

Fig. 3. Variations of Mean of 2-CMSM
�
��
�
.

Figure 3 (a-c) shows curves of the mean of 2-CMSM ( ��) for di¤erent parametric values. The

mean of 2-CMSM ( ��), shows a monotonically increasing and decreasing-constant (DC) pattern.

For the �xed value of #2 and varying values of � and #1, mean decreases (see Figs. a and c),

whereas for the �xed value of #1 mean is increasing function of � and #2 (see Fig. b).

mth Moments about Origin

The mth moments about the origin of a 2-CMSM
�
��
�
for the random variable T are as follows:

��m = E(Tm) =

1Z
0

tmf(tj ��)dt =
1Z
0

tm
�
�

#21
#21 + 1

(#1 + t) exp (�#1t) + ��
#22

#22 + 1
(#2 + t) exp (�#2t)

�
dt;

8

Figure 2. Influences of first and second components hrf (h1(t), h2(t)) and hrf of 2-CMSM (hm( t|)).
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Figure 3a–c shows the curves of the mean of 2-CMSM (∆̆) for different parametric
values. The mean of 2-CMSM (∆̆) shows a monotonically increasing and decreasing-
constant (DC) pattern. For the fixed value of ϑ2 and varying values of π and ϑ1, the mean
decreases (see Figure 3a,c), whereas for the fixed value of ϑ1, the mean is the increasing
function of π and ϑ2 (see Figure 3b).

Fig. 2. In�uences of �rst and second components hrf (h1(t); h2(t)) and hrf of 2-CMSM (hm(tj)).

Figure 2 (a-h) shows various graphs of hrf of one and 2-CMSM h(tj ��) for various parameter
values. It should be observed that parameter values were chosen at random until di¤erent shapes

could be obtained. An increasing trend can be seen in the hrf of each component distribution,

while the hrf of 2-CMSM( ��) shows monotonically increasing, decreasing, upside down bathtub,

increasing decreasing-constant (IDC), behavior as shown in the �gure. The hazard rate function

the 2-CMSM( ��) highlights its versatility over one component distribution of Shanker, exponential

and Lindley, and two component of mixture of exponential and Lindley distributions. These

Figures indicate the �exibility of the 2-CMSM( ��) distribution to model right skewed data as well

as the data with decreasing and upside- down bathtub shapes.

Fig. 3. Variations of Mean of 2-CMSM
�
��
�
.

Figure 3 (a-c) shows curves of the mean of 2-CMSM ( ��) for di¤erent parametric values. The

mean of 2-CMSM ( ��), shows a monotonically increasing and decreasing-constant (DC) pattern.

For the �xed value of #2 and varying values of � and #1, mean decreases (see Figs. a and c),

whereas for the �xed value of #1 mean is increasing function of � and #2 (see Fig. b).

mth Moments about Origin

The mth moments about the origin of a 2-CMSM
�
��
�
for the random variable T are as follows:

��m = E(Tm) =

1Z
0

tmf(tj ��)dt =
1Z
0

tm
�
�

#21
#21 + 1

(#1 + t) exp (�#1t) + ��
#22

#22 + 1
(#2 + t) exp (�#2t)

�
dt;

8

Figure 3. Variations of Mean of 2-CMSM
(
∆̆
)
.

3.3. mth Moments about Origin

The mth moments about the origin of a 2-CMSM
(
∆̆
)

for the random variable T are
as follows:

µ̆m = E(Tm) =

∞∫
0

tm f ( t| ∆̆)dt =
∞∫

0

tm

{
π

ϑ2
1

ϑ2
1 + 1

(ϑ1 + t) exp(−ϑ1t) + π̆
ϑ2

2
ϑ2

2 + 1
(ϑ2 + t) exp(−ϑ2t)

}
dt,

E(Tm) = π
m!
(
ϑ2

1 + m + 1
)

ϑm
1
(
ϑ2

1 + 1
) + π̆

m!
(
ϑ2

2 + m + 1
)

ϑm
2
(
ϑ2

2 + 1
) , m = 1, 2 . . . . (10)

The mean of the PDF of the 2-CMSM
(
∆̆
)

is:

µ̆1 = π

(
ϑ2

1 + 2
)

ϑ1
(
ϑ2

1 + 1
) + π̆

(
ϑ2

2 + 2
)

ϑ2
(
ϑ2

2 + 1
) = µ, (11)

while the variance is given by

σ̆ = π

(
ϑ4

1 + 4ϑ2
1 + 2

)
ϑ2

1
(
ϑ2

1 + 1
)2 + π̆

(
ϑ4

2 + 4ϑ2
2 + 2

)
ϑ2

2
(
ϑ2

2 + 1
)2 . (12)

Particularly, in the first four moments of origin

µ̆1 = π

(
ϑ2

1 + 2
)

ϑ1
(
ϑ2

1 + 1
) + π̆

(
ϑ2

2 + 2
)

ϑ2
(
ϑ2

2 + 1
) , (13)

µ̆2 = π
2
(
ϑ2

1 + 3
)

ϑ2
1
(
ϑ2

1 + 1
) + π̆

2
(
ϑ2

2 + 3
)

ϑ2
2
(
ϑ2

2 + 1
) , (14)

µ̆3 = π
6
(
ϑ2

1 + 4
)

ϑ3
1
(
ϑ2

1 + 1
) + π̆

6
(
ϑ2

2 + 4
)

ϑ3
2
(
ϑ2

2 + 1
) , (15)

µ̆4 = π
24
(
ϑ2

1 + 5
)

ϑ4
1
(
ϑ2

1 + 1
) + π̆

24
(
ϑ2

2 + 5
)

ϑ4
2
(
ϑ2

2 + 1
) , (16)
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and the moments about mean of the 2-CMSM
(
∆̆
)

are:

µ2 = π

(
ϑ4

1 + 4ϑ2
1 + 2

)
ϑ2

1
(
ϑ2

1 + 1
)2 + π̆

(
ϑ4

2 + 4ϑ2
2 + 2

)
ϑ2

2
(
ϑ2

2 + 1
)2 , (17)

µ3 = π
2
(
ϑ6

1 + 6ϑ4
1 + 6ϑ2

1 + 2
)

ϑ3
1
(
ϑ2

1 + 1
)3 + π̆

2
(
ϑ6

2 + 6ϑ2
2 + 6ϑ2 + 2

)
ϑ3

2(ϑ2 + 1)3 , (18)

µ4 = π
3
(
3ϑ8

1 + 24ϑ6
1 + 44ϑ4

1 + 32ϑ2
1 + 8

)
ϑ4

1
(
ϑ2

1 + 1
)4 + π̆

3
(
3ϑ8

2 + 24ϑ6
2 + 44ϑ4

2 + 32ϑ2
2 + 8

)
ϑ4

2
(
ϑ2

2 + 1
)4 . (19)

The coefficient of variation (ϕ̆CV), the skewness
(
Ψ̆Sk

)
, and the Kurtosis

(
ψ̆K
)

of the
2-CMSM

(
∆̆
)

are:

ϕ̆CV =

√
π
(ϑ4

1+4ϑ2
1+2)

ϑ2
1(ϑ2

1+1)
2 + π̆

(ϑ4
2+4ϑ2

2+2)
ϑ2

2(ϑ2
2+1)

2

π
(ϑ2

1+2)
ϑ1(ϑ2

1+1)
+ π̆

(ϑ2
2+2)

ϑ2(ϑ2
2+1)

, ψ̆K =

(
π

3(3ϑ8
1+24ϑ6

1+44ϑ4
1+32ϑ2

1+8)
ϑ4

1(ϑ2
1+1)

4 + π̆
3(3ϑ8

2+24ϑ6
2+44ϑ4

2+32ϑ2
2+8)

ϑ4
2(ϑ2

2+1)
4

)
(

π
(ϑ4

1+4ϑ2
1+2)

ϑ2
1(ϑ2

1+1)
2 + π̆

(ϑ4
2+4ϑ2

2+2)
ϑ2

2(ϑ2
2+1)

2

)2 , (20)

and the index of dispersion (ι̃) is

ι̃ =

π
(ϑ4

1+4ϑ2
1+2)

ϑ2
1(ϑ2

1+1)
2 + π̆

(ϑ4
2+4ϑ2

2+2)
ϑ2

2(ϑ2
2+1)

2

π
(ϑ2

1+2)
ϑ1(ϑ2

1+1)
+ π̆

(ϑ2
2+2)

ϑ2(ϑ2
2+1)

. (21)

The 2-CMSM
(
∆̆
)

distribution is simply demonstrated to be over-dispersed when
µ2 > µ, equi-dispersed µ2 = µ, as well as under-dispersed µ2 < µ.

Figure 4 displays the coefficient of variation of 2-CMSM(∆̆) graphs for different para-
metric values. Every component distribution’s coefficient of variation rises and is constant
as the coefficient of variation of 2-CMSM(∆̆) shows monotonically decreasing and increas-
ing behavior. For the fixed value of ϑ2 and the varying values of π and ϑ1, the mean
increases (see Figure 4b,d), whereas for the fixed value of ϑ1, the mean is the decreasing
function of π and ϑ2 (see Figure 4f).

Figure 5 depicts the graphs of the skewness of one component distribution and the
2-CMSM(∆̆) for various parametric values. As noted in Figure 5, the skewness of each
component model grows, decreases, and is constant, whereas the skewness for 2-CMSM(∆̆)
increases the function under different scenarios. The behavior of Kurtosis under different
scenarios is observed in Figure 6, which shows, for the fixed value of ϑ2 and the varying
values of π and ϑ1, that Kurtosis increases (see Figure 6a,b), whereas for the fixed value of
ϑ1, Kurtosis is a decreasing function of π and ϑ2 (see Figure 6c).
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and Index of dispersion (~�) is

~� =

�
(#41+4#21+2)
#21(#21+1)

2 + ��
(#42+4#22+2)
#22(#22+1)

2

�
(#21+2)
#1(#21+1)

+ ��
(#22+2)
#2(#22+1)

: (21)

The 2-CMSM
�
��
�
distribution is simply demonstrated to be over-dispersed when �2 > �, equi-

dispersed �2 = �; as well as under-dispersed �2 < �:

Fig. 4. Variations of Coe¢ cient of Variation, for �rst component (CV1), for second component

(CV2) and for 2-CMSM (CVm).

Figure 4 displays the Coe¢ cient of Variation of 2-CMSM( ��) graphs for di¤erent parametric

values. Every component distribution�s Coe¢ cient of Variation rises and is constant as the Coef-

�cient of Variation of 2-CMSM( ��) shows monotonically decreasing and increasing behavior. For

10

Figure 4. Variations of coefficient of variation, for first component (CV1), for second component
(CV2), and for 2-CMSM (CVm).
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for the �xed value of #1 mean is decreasing function of � and #2 (see Figure f).

Fig. 5. Variations of Coe¢ cient of Skewness, for �rst component (S1), for second component (S2)

and for 2-CMSM (Sm).

11

Figure 5. Variations of coefficient of skewness, for first component (S1), for second component (S2),
and for 2-CMSM (Sm).

Fig. 6. Variations of Coe¢ cient of Kurtosis
�
� K

�
, for 2-CMSM.

Figure 5 depict the graphs of the Skewness of one component distribution and 2-CMSM( ��) for

various parametric values. As noted in Figure 5, the Skewness of each component model grows,

decreasing and constant whereas Skewness for 2-CMSM( ��) increasing function under di¤erent

scenarios . The behavior of Kurtosis under di¤erent scenarios is observed in Figure 6, shows,

For the �xed value of #2and varying values of � and #1, Kurtosis increases (see Figure a and b),

whereas for the �xed value of #1 Kurtosis is decreasing function of � and #2 (see Figure c).

Moment Generating Function

The 2-CMSM
�
��
�
�s MGF is speci�ed as:

~Mt (�) = E
�
et�
�
=

1Z
0

et�
�
�

#21
#21 + 1

(#1 + t) exp (�#1t) + ��
#22

#22 + 1
(#2 + t) exp (�#2t)

�
dt; (22)

~Mt (�) = �
#21
�
#21 � �#1 + 1

��
#21 + 1

�
(#1 � �)2

+ ��
#22
�
#22 � �#2 + 1

��
#22 + 1

�
(#2 � �)2

: (23)

Cumulants

The Characteristic function (CF), �� (�) = E
�
e(i�t)

�
of 2-CMSM

�
��
�
is obtained by putting �

with �i��in Eq. (22), CF is obtained as

�� (�) = �
#21
�
#21 � i�#1 + 1

��
#21 + 1

�
(#1 � i�)2

+ ��
#22
�
#22 � i�#2 + 1

��
#22 + 1

�
(#2 � i�)2

; (24)

where i =
p
�1 is the complex unit.

Cumulant Generating Function

The CGF is

�K (�) = �

�
log

�
1� i�#1

#21 + 1

�
� 2 log

�
1� i�#1

#1

��
+��

�
log

�
1� i�#2

#22 + 1

�
� 2 log

�
1� i�#2

#2

��
:

(25)

Probability Generating Function

In Eq. (22), we may obtain the PGF by substituting � with �ln(!)�as shown below:

12

Figure 6. Variations of coefficient of kurtosis
(
ψ̆K
)
, for 2-CMSM.
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3.4. Moment Generating Function

The 2-CMSM
(
∆̆
)
’s MGF is specified as:

M̃t(υ) = E
(
etυ) = ∞∫

0

etυ

{
π

ϑ2
1

ϑ2
1 + 1

(ϑ1 + t) exp(−ϑ1t) + π̆
ϑ2

2
ϑ2

2 + 1
(ϑ2 + t) exp(−ϑ2t)

}
dt, (22)

M̃t(υ) = π
ϑ2

1
(
ϑ2

1 − υϑ1 + 1
)(

ϑ2
1 + 1

)
(ϑ1 − υ)2 + π̆

ϑ2
2
(
ϑ2

2 − υϑ2 + 1
)(

ϑ2
2 + 1

)
(ϑ2 − υ)2 . (23)

3.5. Cumulants

The characteristic function (CF), ξ̆(υ) = E
[
e(iυt)

]
of 2-CMSM

(
∆̆
)

is obtained by putting
υ with ‘iυ’ in Equation (22); CF is obtained as

ξ̆(υ) = π
ϑ2

1
(
ϑ2

1 − iυϑ1 + 1
)(

ϑ2
1 + 1

)
(ϑ1 − iυ)2 + π̆

ϑ2
2
(
ϑ2

2 − iυϑ2 + 1
)(

ϑ2
2 + 1

)
(ϑ2 − iυ)2 , (24)

where i =
√
−1 is the complex unit.

3.6. Cumulant Generating Function

The CGF is

K̆(υ) = π

{
log

(
1− iυϑ1

ϑ2
1 + 1

)
− 2 log

(
1− iυϑ1

ϑ1

)}
+ π̆

{
log

(
1− iυϑ2

ϑ2
2 + 1

)
− 2 log

(
1− iυϑ2

ϑ2

)}
. (25)

3.7. Probability-Generating Function

In Equation (22), we may obtain the PGF by substituting υ with “ln(ω)” as shown
below:

Pt(ω) = E
(
ωt) = π

ϑ2
1
(
ϑ2

1 − ϑ1ln(ω) + 1
)(

ϑ2
1 + 1

)
(ϑ1 − ln(ω))2 + π̆

ϑ2
2
(
ϑ2

2 − ϑ2ln(ω) + 1
)(

ϑ2
2 + 1

)
(ϑ2 − ln(ω))2 . (26)

3.8. Factorial-Moment-Generating Function

The FMGF can be calculated by substituting υ with ‘ln(1 + φ)’ in Equation (22)

F̆t(ω) = E
(

et ln(1+φ)
)
= π

ϑ2
1
(
ϑ2

1 − ϑ1 ln(1 + φ) + 1
)(

ϑ2
1 + 1

)
(ϑ1 − ln(1 + φ))2 + π̆

ϑ2
2
(
ϑ2

2 − ϑ2 ln(1 + φ) + 1
)(

ϑ2
2 + 1

)
(ϑ2 − ln(1 + φ))2 . (27)

4. Reliability Measures

In reliability theory, lifespan models are categorized using the reliability function
and failure rate. A ratio of the lifespan model to the reliability function is the hazard rate
function. An item or component with a lower dependability value will have a shorter
lifespan, which means a higher hazard rate and a greater likelihood of failure. In contrast,
a lower hazard rate indicates a better reliability function value, which reduces the danger
of failure. The reliability characteristics of 2-CMSM

(
∆̆
)

are currently being explored.

4.1. Reliability Function

The reliability function of 2-CMSM
(
∆̆
)

is

R
(

t| ∆̆
)
= π

ϑ2
1 + 1 + ϑ1t

ϑ2
1 + 1

exp(−ϑ1t) + π̆
ϑ2

2 + 1 + ϑ2t
ϑ2

2 + 1
exp(−ϑ2t). (28)
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4.2. Hazard Function

The hazard rate function h( t| ∆̆) of 2-CMSM
(
∆̆
)

is described as follows:

h( t| ∆̆) =
π

ϑ2
1

ϑ2
1+1

(ϑ1 + t) exp(−ϑ1t) + π̆
ϑ2

2
ϑ2

2+1
(ϑ2 + t) exp(−ϑ2t)

π
ϑ2

1+1+ϑ1t
ϑ2

1+1
exp(−ϑ1t) + π̆

ϑ2
2+1+ϑ2t

ϑ2
2+1

exp(−ϑ2t)
. (29)

4.3. Mills Ratio

The Mills ratio approaches reliability in a unique way because of its relationship to
failure rates.

Υ
(

t| ∆̆
)
=

R
(

t| ∆̆
)

f
(

t| ∆̆
) =

π
ϑ2

1+1+ϑ1t
ϑ2

1+1
exp(−ϑ1t) + π̆

ϑ2
2+1+ϑ2t

ϑ2
2+1

exp(−ϑ2t)

π
ϑ2

1
ϑ2

1+1
(ϑ1 + t) exp(−ϑ1t) + π̆

ϑ2
2

ϑ2
2+1

(ϑ2 + t) exp(−ϑ2t)
. (30)

4.4. Cumulative Hazard Rate Function

The CHRF of 2-CMSM
(
∆̆
)

is

H
(

t| ∆̆
)
=

t∫
0

h(y| ∆̆)dy = − log
[
R( t| ∆̆)

]
. (31)

It serves as a risk indicator, with a larger H
(

t| ∆̆
)

value indicating a greater chance of
failure by t−time. It is observed that

R( t| ∆̆) = e−H( t| ∆̆) and f
(

t| ∆̆
)
= h

(
t| ∆̆

)
e−H( t| ∆̆). (32)

Therefore,

H( t|∆̆) = − log

[
π

ϑ2
1 + 1 + ϑ1t

ϑ2
1 + 1

exp(−ϑ1t) + π̆
ϑ2

2 + 1 + ϑ2t
ϑ2

2 + 1
exp(−ϑ2t)

]
. (33)

4.5. Reversed-Hazard-Rate Function

The ratio of life likelihood function to its distribution function represents the reversed
hazard rate for a random life.

h̆( t| ∆̆) =
f
(

t| ∆̆
)

F
(

t| ∆̆
) =

π
ϑ2

1
ϑ2

1+1
(ϑ1 + t) exp(−ϑ1t) + π̆

ϑ2
2

ϑ2
2+1

(ϑ2 + t) exp(−ϑ2t)

1− π
ϑ2

1+1+ϑ1t
ϑ2

1+1
exp(−ϑ1t)− π̆

ϑ2
2+1+ϑ2t

ϑ2
2+1

exp(−ϑ2t)
. (34)

4.6. Mean Time to Failure

The MTTF provides information about the anticipated (or average) period of time
during which a device performs satisfactorily. If 2-CMSM

(
∆̆
)
, the reliability function is

used to express MTTF and looks like this:

M̆
(

t| ∆̆
)
=

+∞∫
0

R̃(x)dx, (35)

where R̃(t) is given in Equation (28). Hence,

M̆
(

t| ∆̆
)
= π

(
ϑ2

1 + 2
)

ϑ1
(
ϑ2

1 + 1
) + π̆

(
ϑ2

2 + 2
)

ϑ2
(
ϑ2

2 + 1
) . (36)
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4.7. Mean Residual Life

The MRL has been investigated by reliability experts, statisticians, and survival ana-
lysts, among other disciplines. It has produced a lot of beneficial outcomes. The residual
lifetime after t for a system or component of age t is random. It is known as the mean
residual lifetime or mean remaining life M̆R

(
t| ∆̆

)
, and it is calculated as follows:

M̆R
(

t| ∆̆
)
=

1
R
(

t| ∆̆
) +∞∫

t

R( x| ∆̆)dx, (37)

M̆R
(

t| ∆̆
)
=

{
π(ϑ2

1+2+ϑ1t) exp(−ϑ1t)
ϑ1(ϑ2

1+1)
+

π̆(ϑ2
2+2+ϑ2t) exp(−ϑ2t)

ϑ2(ϑ2
2+1)

}
π

ϑ2
1+1+ϑ1t

ϑ2
1+1

exp(−ϑ1t) + π̆
ϑ2

2+1+ϑ2t
ϑ2

2+1
exp(−ϑ2t)

, (38)

where R
(

t| ∆̆
)

is given in Equation (28).

5. Estimation Inference via Simulation

This section contributes a number of statistical properties of the 2-CMSM
(
∆̆
)
, taking into

account that the parametric vector ∆̆ is unknown. Three widely used estimation techniques
(maximum likelihood estimation, least squares estimation, and weighted least squares estima-
tion) are used to evaluate parametric vectors ∆̆. From now, t1, t2, . . . , tn represent n observed
values from T and their ascending odering values t(1) ≤ t(2) ≤ . . . ≤ t(n).

5.1. Maximum Likelihood Estimation

The most used technique for the parameter estimate is the maximum likelihood
technique. The method’s widespread use is a result of its many desirable characteristics,
including consistency, normalcy, and asymptotic effectiveness. Suppose that n observed
values, t1, t2, . . . , tn from the Equation (2) and ∆̆ is the vector of unknown parameters. The
assesments of MLEs of ∆̆ can be provided by optimizing the likelihood function with respect

to ϑ1, ϑ2, and π given by L
(

t|∆̆
)
=

n
∏
i=1

f (ti; ∆̆) or likewise the log-likelihood function for ∆̆

given by

l
(

t|∆̆
)
= ln

n

∏
i=1

f (ti; ∆̆), (39)

l
(

t|∆̆
)
=

n

∑
i=1

ln

{
π

ϑ2
1

ϑ2
1 + 1

(ϑ1 + ti) exp(−ϑ1ti) + π̆
ϑ2

2
ϑ2

2 + 1
(ϑ2 + ti) exp(−ϑ2ti)

}
. (40)

So, by partially differentiating l
(

t|∆̆
)

with respect to parameters (ϑ1, ϑ2, π) and putting
the findings equal to zero, therefore, MLEs of the considered parameters are attained; the
likelihood equations are

∂l
(

t|∆̆
)

∂ϑ1
=

n

∑
i=1

exp(−ϑ1ti)

[
π(ϑ1 + ti)

{
2ϑ1

(ϑ2
1+1)

− ϑ2
1ti

(ϑ2
1+1)

− 2ϑ3
1

(ϑ2
1+1)

2

}
+

πϑ2
1

(ϑ2
1+1)

]
{

π
ϑ2

1
ϑ2

1+1
(ϑ1 + ti) exp(−ϑ1ti) + π̆

ϑ2
2

ϑ2
2+1

(ϑ2 + ti) exp(−ϑ2ti)

} , (41)

∂l
(

t|∆̆
)

∂ϑ2
=

n

∑
i=1

exp(−ϑ2ti)

[
π̆(ϑ2 + ti)

{
2ϑ2

(ϑ2
2+1)

− ϑ2
2ti

(ϑ2
2+1)

− 2ϑ3
2

(ϑ2
2+1)

2

}
+

π̆ϑ2
2

(ϑ2
2+1)

]
{

π
ϑ2

1
ϑ2

1+1
(ϑ1 + ti) exp(−ϑ1ti) + π̆

ϑ2
2

ϑ2
2+1

(ϑ2 + ti) exp(−ϑ2ti)

} , (42)
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∂l
(

t|∆̆
)

∂π
=

n

∑
i=1

ϑ2
1

ϑ2
1+1

(ϑ1 + ti) exp(−ϑ1ti)−
ϑ2

2
ϑ2

2+1
(ϑ + ti) exp(−ϑ2ti){

π
ϑ2

1
ϑ2

1+1
(ϑ1 + ti) exp(−ϑ1ti) + π̆

ϑ2
2

ϑ2
2+1

(ϑ2 + ti) exp(−ϑ2ti)

} . (43)

This nonlinear system of equations can therefore be solved to obtain the MLE. Al-
though we cannot solve these equations analytically, we can solve them using statistical
software using an iterative approach like the Newton method or fixed-point iteration
approaches.

5.2. Least Square Estimators

The ordinary least squares technique is well known for estimating unknown param-
eters [31]. The LSEs of ϑ1, ϑ2, and π, denoted by ϑ̃1LSE , ϑ̃2LSE , and π̃LSE can be attained by
minimizing the function

LS(∆̆) =
n

∑
i=1

[
F( t(i)

∣∣∣∆̆)− i
n + 1

]2
, (44)

with respect to ϑ1, ϑ2, and π, where F(·)is given by Equation (4). The following nonlinear
equations can be resolved in the same manner to generate them:

∂LS(∆̆)
∂ϑ1

=
n

∑
i=1

[
F( t(i)

∣∣∣∆̆)− i
n + 1

]
Ψ̆1( t(i)

∣∣∣ϑ1) = 0, (45)

∂LS(∆̆)
∂ϑ2

=
n

∑
i=1

[
F( t(i)

∣∣∣∆̆)− i
n + 1

]
Ψ̆2( t(i)

∣∣∣ϑ2) = 0, (46)

and
∂LS(∆̆)

∂π
=

n

∑
i=1

[
F( t(i)

∣∣∣∆̆)− i
n + 1

]
Ψ̆3( t(i)

∣∣∣π) = 0, (47)

where

Ψ̆1( t(i)
∣∣∣ϑ1) = π

t(i)ϑ1 exp
(
−ϑ1t(i)

)(
3ϑ1 + t(i) + ϑ3

1 + t(i)ϑ2
1

)
(
ϑ2

1 + 1
)2 , (48)

Ψ̆2( t(i)
∣∣∣ϑ2) = π̆

t(i)ϑ2 exp
(
−ϑ2t(i)

)(
3ϑ2 + t(i) + ϑ3

2 + t(i)ϑ2
2

)
(ϑ2 + 1)2 , (49)

Ψ̆3( t(i)
∣∣∣π) =

exp
(
−ϑ2t(i)

)(
1 + ϑ2

(
1 + t(i)

))
(
ϑ2

2 + 1
) −

exp
(
−ϑ1t(i)

)(
1 + ϑ1(1 + t(i))

)
(
ϑ2

1 + 1
) . (50)

5.3. Weighted Least Squares Estimators

Consider the weighted function below (see [32]).

κi =
(n + 1)2(n + 2)

i(n− i + 1)
. (51)

The WLSEs ϑ̃1WLSE , ϑ̃2WLSE , and π̃WLSE, can be attained via minimizing the function

WLS(∆̆) =
n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

[
F( t(i)

∣∣∣∆̆)− i
n + 1

]2
, (52)
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Additionally, one can obtain these estimators by solving:

∂WLS(∆̆)
∂ϑ1

=
n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

[
F( t(i)

∣∣∣∆̆)− i
n + 1

]
Ψ̆1( t(i)

∣∣∣ϑ1) = 0, (53)

∂WLS(∆̆)
∂ϑ2

=
n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

[
F( t(i)

∣∣∣∆̆)− i
n + 1

]
Ψ̆2( t(i)

∣∣∣ϑ2) = 0, (54)

and
∂WLS(∆̆)

∂π
=

n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

[
F( t(i)

∣∣∣∆̆)− i
n + 1

]
Ψ̆3( t(i)

∣∣∣π) = 0, (55)

where Ψ̆1( t(i)
∣∣∣ϑ1), Ψ̆2( t(i)

∣∣∣ϑ2) and Ψ̆3( t(i)
∣∣∣π) are given in Equations (48)–(50).

6. Simulation Study

The various estimation approaches described in the preceding subsection are evaluated
using the results of the simulation research. Monte Carlo simulations are run using different
model parameters and mixing proportions π. The efficiency of the LSEs, MLE, and WLSEs
of 2-CMSM(∆̆) parameters are calculated using four simulation experiments. The bias
and MSE indicators are used to discuss the ability of the MLEs, LSEs, and WLSEs. The
efficiency of each parameter estimation approach for the 2-CMSM

(
∆̆
)

model in terms of n
is considered. The simulation algorithm’s steps are as follows:

1. By varying the mixing proportion π and the model parameters (ϑ1, ϑ2, π) =
(0.25, 0.30, 0.56), (0.5, 0.3, 0.4), (0.15, 0.03, 0.6), and (0.35, 0.45, 0.65), generate ran-
dom samples of sizes 10, 25, . . . , 300 from the 2-CMSM

(
∆̆
)
. The simulation’s ran-

dom samples are generated as described in the next stage.
2. Using the R uniform generator (runif), create one variate u from the uniform distribu-

tion U(0, 1).
3. If u ≤ π, then generate a random variate from the first component, which is a Shanker

distribution (ϑ1). If u > π, the second component, the Shanker distribution (ϑ2), is
used to generate a random variate.

4. Follow (2) until you have the required sample size n.
5. Using 1000 replications, repeat steps 1–4 again. Compute the MLEs, LSEs, and WLSEs

for the 1000 samples, say θ̆j for j = 1, 2, . . . , 1000, using the optima function and the
Nelder-Mead technique in R to calculate the estimator values.

6. Determine biases and MSEs. These goals are accomplished using the following formulas:

Biasθ(n) =
1

1000

1000

∑
j=1

(
θ̆j − θ

)
, (56)

MSEθ(n) =
1

1000

1000

∑
j=1

(
θ̆j − θ

)2
, (57)

where θ = (ϑ1, ϑ2, π).

Figures 7–14 display the empirical findings. These empirical results demonstrate that
the 2-CMSM

(
∆̆
)

parameters may be accurately estimated using the suggested estimate
methods. We can infer that the estimators display asymptotic unbiasedness because the
bias goes to zero as n grows. On the other hand, the mean squared error behaviour suggests
consistency because the mistakes trend to zero as n grows. The following observations can
be drawn from Figures 7–14.
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Fig. 7. Fluctuations of bias of estimators under di¤erent methods for parametric set I.

18

Figure 7. Fluctuations of bias of estimators under different methods for parametric set I.Fig. 7. Fluctuations of bias of estimators under di¤erent methods for parametric set I.

18

Fig. 8. Fluctuations of MSE of estimators under di¤erent methods for parametric set I.

19

Figure 8. Fluctuations of MSE of estimators under different methods for parametric set I.



Axioms 2023, 12, 231 17 of 25

Fig. 8. Fluctuations of MSE of estimators under di¤erent methods for parametric set I.

19

Fig. 9. Fluctuations of bias of estimators under di¤erent methods for parametric set II.

Fig. 10. Fluctuations of MSE of estimators under di¤erent methods for parametric set II.
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Figure 9. Fluctuations of bias of estimators under different methods for parametric set II.
Fig. 9. Fluctuations of bias of estimators under di¤erent methods for parametric set II.

Fig. 10. Fluctuations of MSE of estimators under di¤erent methods for parametric set II.

20

Figure 10. Fluctuations of MSE of estimators under different methods for parametric set II.
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Fig. 11. Fluctuations of bias of estimators under di¤erent methods for parametric set III.
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Figure 11. Fluctuations of bias of estimators under different methods for parametric set III.
Fig. 11. Fluctuations of bias of estimators under di¤erent methods for parametric set III.
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Fig. 12. Fluctuations of MSE of estimators under di¤erent methods for parametric set III.

22

Figure 12. Fluctuations of MSE of estimators under different methods for parametric set III.
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Fig. 12. Fluctuations of MSE of estimators under di¤erent methods for parametric set III.

22

Fig. 13. Fluctuations of bias of estimators under di¤erent methods for parametric set IV

Fig. 14. Fluctuations of MSE of estimators under di¤erent methods for parametric set IV.

� The estimated bias of parameters #1; #2; �, decreases as n increases under all three estimation
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Figure 13. Fluctuations of bias of estimators under different methods for parametric set IV.Fig. 13. Fluctuations of bias of estimators under di¤erent methods for parametric set IV

Fig. 14. Fluctuations of MSE of estimators under di¤erent methods for parametric set IV.

� The estimated bias of parameters #1; #2; �, decreases as n increases under all three estimation

23

Figure 14. Fluctuations of MSE of estimators under different methods for parametric set IV.
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• The estimated bias of parameters ϑ1, ϑ2, π, decreases as n increases under all three
estimation approaches.

• For parametric Set-I, we can see that the estimated bias of parameters ϑ1 under LSE is
negative, whereas π and ϑ2 is over-estimated while MSE of ϑ2 is higher under WLSE
(see Figures 7 and 8).

• For parametric Set-II, we can see that the estimated bias of parameters ϑ1 and π is
over-estimated in all three estimation methods, while ϑ2 is under-estimated in the LSE
and WLSE estimation method (see Figure 9).

• The MSE of ϑ1 is strongly stimulated and higher under the LSE and WLSE estimation
methods when n < 100 (see Figure 10).

• Figures 10 and 11 demonstrate the influence of choice of the parameters on the esti-
mation approaches; here, bias and MSEs are comparatively low than selected set of
parameters (see Figures 11 and 12).

• Some big shifts in MSEs of ϑ1 under LSE and WLSE are observed when n < 30 and
n > 150.

• In terms of bias, the MLE’s performance is relatively favorable (see Figures 7, 9, 11 and 13).
• Moreover, when n grows, the MSE reduces for all three estimating techniques, satisfy-

ing the consistency criteria (Figures 8, 10, 12, and 14).
• The discrepancy between estimates and assumed parameters goes to zero as the

sample size grows in all estimating approaches.
• When compared to alternative estimate procedures for all specified parameter values,

the MLE estimation is frequently stronger in terms of bias and MSE as the sample size
approaches infinity (see Figures 7–14).

The final finding from the above figures is that as the sample size grows, under all
estimation methods, the estimated bias and MSE graphs for parameters ϑ1, ϑ2, and π finally
approach zero. This confirms the reliability of these estimating methods as well as the
numerical computations for the 2-CMSM(∆̆) parameters.

7. Applications

We demonstrate the flexibility of the 2-CMSM
(
∆̆
)

model in this section by examining
two real-world datasets. The fits of the 2-CMSM

(
∆̆
)

model are compared to the competitive
models such as the two component mixture of exponential model (2-CMEM

(
∆̆
)
) and the two

component mixture of Lindley (2-CMLM
(
∆̆
)
) using the function maxLik() in R. The following

excellently statistical benchmarks have been used to compare these models: -Log-likelihood
(-LL), the AIC (Akaike information criterion), the BIC (Bayesian information criterion), and the
AICC (Akaike information criterion corrected). The best model for the real data set might be
the one with the lowest values of the above-mentioned goodness-of-fit (GOF) measures.

DataSet-1: Ghitany et al. [33] evaluated and analyzed the first data set, which
represents the waiting times (in minutes) before the service of 100 Bank clients, in order
to fit the Lindley distribution.

DataSet-2: The first set of data is from [34]; it is also analyzed by [35]. It comprises 40
measurements of active repair times for airborne communication transceivers. The hour is
the unit of measurement.

Tables 1 and 2 show the MLEs for the 2-CMSM(∆̆) and goodness-of-fit (GoF) metrics.
Table 1 clearly demonstrates that the 2-CMSM(∆̆) is superior to the 2-CMEM(∆̆) and
2-CMLM(∆̆). For further visual detailed comparison of the estimated densities, the
estimated PDFs and CDFs for the considered models for Datasets I and II have been
graphed (Figures 15 and 16). The CDF of the 2-CMSM(∆̆), yet again, is clearly closer to
the empirical distribution than the 2-CMEM (∆̆) and 2-CMLM(∆̆). To provide a different
perspective, we employ probability–probability (PP) graphs in Figure 17 for Datasets I
and II, respectively, to demonstrate the models’ adequacy. As seen in the Figures, the
2-CMSM() gives a very strong fit for these datasets when compared to 2-CMEM(∆̆) and
2-CMLM(∆̆). Specifically, for Dataset II, it is obvious that the 2-CMSM(∆̆) model provides
a superior fit than the other models due to the exact adjustment of the scatter plot by the
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PP line. In summary, the 2-CMSM(∆̆) model emerges as the more appropriate model for
the two datasets, demonstrating its applicability in a real life situation.

Table 1. MLEs, and GOF statistics for Dataset I.

Distributions MLEs −LL AIC BIC AICC

2-CMSM
ϑ̆1 0.134313 −317.6296 641.2591 646.0098 641.5092
ϑ̆2 0.198818
π̆ 0.005594

2-CMLM
ϑ̆1 0.18601 −319.0374 644.0748 648.8254 644.3248
ϑ̆2 0.18658
π̆ 0.01055

2-CMEM
ϑ̆1 0.10124 −329.0209 664.0418 668.7924 664.2918
ϑ̆2 0.10125
π̆ 0.10561

Table 2. MLEs, and GOF statistics for Dataset II.

Distributions MLEs −LL AIC BIC CAIC

2-CMSM
ϑ̆1 0.15920 −93.12697 192.2539 197.0045 192.9206
ϑ̆2 0.65810
π̆ 0.14734

2-CMLM
ϑ̆1 0.15046 −93.31165 192.6233 197.3739 193.2900
ϑ̆2 0.61692
π̆ 0.14163

2-CMEM
ϑ̆1 0.10171 −94.13504 194.2701 199.0206 194.9367
ϑ̆2 0.36262
π̆ 0.17721

Table 2. MLEs, and GOF statistics for the Dataset II.

Distributions MLEs �LL AIC BIC CAIC

2-CMSM �#1 0.15920 -93.12697 192.2539 197.0045 192.9206
�#2 0.65810

�� 0.14734

2-CMLM �#1 0.15046 -93.31165 192.6233 197.3739 193.2900
�#2 0.61692

�� 0.14163

2-CMEM �#1 0.10171 -94.13504 194.2701 199.0206 194.9367
�#2 0.36262

�� 0.17721

Fig. 15. Plots for the estimated PDFs and CDFs for Dataset I.

Fig. 16. Plots for the estimated PDFs and CDFs for Dataset II.

26

Figure 15. Plots for the estimated PDFs and CDFs for Dataset I.
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Table 2. MLEs, and GOF statistics for the Dataset II.

Distributions MLEs �LL AIC BIC CAIC

2-CMSM �#1 0.15920 -93.12697 192.2539 197.0045 192.9206
�#2 0.65810

�� 0.14734

2-CMLM �#1 0.15046 -93.31165 192.6233 197.3739 193.2900
�#2 0.61692

�� 0.14163

2-CMEM �#1 0.10171 -94.13504 194.2701 199.0206 194.9367
�#2 0.36262

�� 0.17721

Fig. 15. Plots for the estimated PDFs and CDFs for Dataset I.

Fig. 16. Plots for the estimated PDFs and CDFs for Dataset II.

26

Figure 16. Plots for the estimated PDFs and CDFs for Dataset II.

Fig. 17. The probability�probability (P-P) plots for Dataset I and II.

Fig. 18. The PLLF for for Dataset I

Fig. 19. The PLLF for Dataset II.

Figures 18 and 19 show the pro�les of the log-likelihood function (PLLF) based on Datasets

which support the �ndings of Tables 1 and 2. Based on such graphical methods, we can suggest

that the 2-CMSM( ��) model is a better model for the data sets under consideration. Figs. 18-19

illustrate a graphical representation of the existence and uniqueness of MLEs, respectively.

8 Conclusion

In this paper, we worked on two component mixtures of Shanker models using three estimate

techniques: MLE, LSE, and WLSE. Additionally, the Shanker mixture model�s additional sta-

27

Figure 17. The probability–probability (P-P) plots for Dataset I and II.

Figures 18 and 19 show the profiles of the log-likelihood function (PLLF) based on
datasets that support the findings of Tables 1 and 2. Based on such graphical methods,
we can suggest that the 2-CMSM (∆̆) model is a better model for the data sets under
consideration. Figures 18 and 19 illustrate a graphical representation of the existence and
uniqueness of MLEs, respectively.Fig. 17. The probability�probability (P-P) plots for Dataset I and II.

Fig. 18. The PLLF for for Dataset I

Fig. 19. The PLLF for Dataset II.

Figures 18 and 19 show the pro�les of the log-likelihood function (PLLF) based on Datasets

which support the �ndings of Tables 1 and 2. Based on such graphical methods, we can suggest

that the 2-CMSM( ��) model is a better model for the data sets under consideration. Figs. 18-19

illustrate a graphical representation of the existence and uniqueness of MLEs, respectively.

8 Conclusion

In this paper, we worked on two component mixtures of Shanker models using three estimate

techniques: MLE, LSE, and WLSE. Additionally, the Shanker mixture model�s additional sta-

27

Figure 18. The PLLF for for Dataset I.
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Fig. 17. The probability�probability (P-P) plots for Dataset I and II.

Fig. 18. The PLLF for for Dataset I

Fig. 19. The PLLF for Dataset II.

Figures 18 and 19 show the pro�les of the log-likelihood function (PLLF) based on Datasets

which support the �ndings of Tables 1 and 2. Based on such graphical methods, we can suggest

that the 2-CMSM( ��) model is a better model for the data sets under consideration. Figs. 18-19

illustrate a graphical representation of the existence and uniqueness of MLEs, respectively.

8 Conclusion

In this paper, we worked on two component mixtures of Shanker models using three estimate

techniques: MLE, LSE, and WLSE. Additionally, the Shanker mixture model�s additional sta-

27

Figure 19. The PLLF for Dataset II.

8. Conclusions

In this paper, we worked on two component mixtures of Shanker models using three
estimate techniques: MLE, LSE, and WLSE. Additionally, the Shanker mixture model’s ad-
ditional statistical and reliability characteristics, including central moments, cumulants, the
cumulant generating function, the factorial-moment-generating function, the probability-
generating function, skewness and kurtosis, the coefficient of variation, the Mills ratio,
the mean time to failure, the reversed-hazard-rate function, and the mean residual life
were obtained. To investigate and compare the performance of the estimation method-
ologies, a simulation study with 1000 iterations was carried out. As a consequence, we
discovered that the ML technique performed better than the others in terms of accuracy
and consistency while predicting model unknown parameters. Furthermore, we used real
datasets to demonstrate the utility of the underlying mixture model. The current study can
be expanded in the future by using a mixture model with more than two components.
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Nomenclature

Symbols
f ( t|∆̆) PDF
R( t|∆̆) RF
H( t|∆̆) CHRF
Υ
(

t| ∆̆
)

Mills ratio
M̃t(υ) MGF
Pt(ω) PGF
K̆(υ) CGF
M̆
(

t| ∆̆
)

MTTF
F( t|∆̆) CDF
h( t|∆̆) HRF
Q(q; ∆̆) QF
R
(

t| ∆̆
)

RF
ξ̆t(υ) CF
F̆t(ω) FMGF
h
(

t| ∆̆
)

RHRF
M̆R
(

t| ∆̆
)

MRL
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Abbreviations
The following abbreviations are used in this manuscript:

PDF Probability density function
PGF Probability-generating function
CDF Cumulative distribution function
FMGF Factorial-moment-generating function
MLE Maximum likelihood estimator
MGF Moment-generating function
RHRF Reversed-hazard-rate function
WLSE Weighted least square estimator
CGF Cumulant generating function
CHRF Cumulative-hazard-rate function
TTF Time-to-failure
QF Quantile function
MTTF Mean time to failure
HRF Hazard rate function
MSE Mean square error
CF Characteristic function
RF Reliability function
MRL Mean residual life
MGF Moment-generating function
LSE Least square estimator
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