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Abstract: If T is a bounded linear operator on a Hilbert space H and V is a given linear isometry on a
Hilbert space K , we present necessary and sufficient conditions on T in order to ensure the existence
of a linear isometry π : H → K such that πT = V∗π (i.e., (π, V∗) extends T). We parametrize the
set of all solutions π of this equation. We show, for example, that for a given unitary operator U on a
Hilbert space E and for the multiplication operator by the independent variable Mz on the Hardy
space H2

D (D), there exists an isometric operator π : H → E ⊕ H2
D (D) such that (π, (U ⊕ Mz)∗)

extends T if and only if T is a contraction, the defect index δT ≤ dim D and, for some Y : AT → E ,
(Y, U∗) extends the isometric operator A1/2

T h 7→ A1/2
T Th on the space AT = ATH , where AT is the

asymptotic limit associated with T. We also prove that if T is isometric and V is unitary, there exists
an isometric operator π : H → K such that (π, V) extends T if and only if (a) the spectral measures
of the unitary part of T (in its Wold decomposition) and the restriction of V to one of its reducing
subspaces K0 possess identical multiplicity functions and (b) dim(ker T∗) = dim(K1 	VK1) for a
certain subspace K1 of K that contains K0 and is invariant under V. The precise form of π, in each
situation, and characterizations of the minimality conditions are also included. Several examples are
given for illustrative purposes.
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1. Introduction

Throughout this paper, our studies are directed toward the category of Hilbert spaces.
Its objects are all Hilbert spaces, i.e., real or complex vector spaces A endowed with
hermitian positive definite sesquilinear forms 〈·, ·〉 on A (inner products) such that the
associated norms A 3 a 7→ ‖a‖ :=

√
〈a, a〉 ∈ R+ are complete. The morphisms of

this category are all the maps C between Hilbert spaces A and B that are linear (i.e.,
C(αa + α′a′) = αCa + α′Ca′ for all scalars α and α′) and bounded (i.e., ‖C‖ := sup

{ ‖Ca‖
‖a‖ |

a 6= 0
}
< ∞).

The space B(A , B) of all bounded linear maps between Hilbert spaces A and B is
actually a Banach space with the pointwise operations and the operator norm defined above.
The adjoint of an operator T ∈ B(A , B) is the operator T∗ ∈ B(B, A ), defined uniquely
by the formula 〈Ta, b〉 = 〈a, T∗b〉, a ∈ A , b ∈ B. The space B(A ) := B(A , A ) has the
structure of a C∗ algebra with the usual composition of operators and with the involution
T 7→ T∗. Certain special operators A ∈ B(A ) are involved in our research: positive
operators (i.e., 〈Aa, a〉 ≥ 0, a ∈ A ), contractions (i.e., ‖A‖ ≤ 1), (linear) isometries (i.e.,
‖Aa‖ = ‖a‖, a ∈ A ; equivalently, A∗A = IA , where IA denotes the identity operator on
A ), coisometries (i.e., A∗ is isometric), and unitary (i.e., A is both isometric and coisometric)
and normal operators (i.e., AA∗ = A∗A). A ∈ B(A ) and B ∈ B(B) are said to be unitarily
equivalent if there exists a unitary operator U : A → B such that BU = UA.

If A and B are two Hilbert spaces, then the Cartesian product A ×B can be naturally
endowed with a Hilbert space structure using the addition and multiplication by com-
ponents and the inner product 〈(a, b), (a′, b′)〉 = 〈a, a′〉 + 〈b, b′〉, (a, b), (a′, b′) ∈ A ×B.
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The new structure is usually denoted by A ⊕B and called the direct sum between Hilbert
spaces A and B. If A ∈ B(A ) and B ∈ B(B), then their operator direct sum is the map
A⊕ B ∈ B(A ⊕B) given by (A⊕ B)(a, b) := (Aa, Bb), (a, b) ∈ A ×B.

A subspace A0 of a Hilbert space A is a closed linear manifold of A . Its orthogonal
complement A ⊥0 = A 	A0 is the subspace of all vectors a ∈ A , which are orthogonal to
A0 (i.e., 〈a, a0〉 = 0 for every a0 ∈ A0; the usual notation for this orthogonality is a ⊥ a0).
The orthogonal complement A ⊥0 is also a direct complement, i.e., A = A0 + A ⊥0 and a
representation of an element a ∈ A into the form a = a0 + a′0 is uniquely determined
by the conditions a0 ∈ A0 and a′0 ∈ A ⊥0 . Thus, we are entitled to define the orthogonal
projection PA0 = PA

A0
of A onto A0, which is a bounded linear operator between A and

A0 (or A ), by A 3 a 7→ a0 ∈ A0. The (Hilbert) dimension of A , denoted by dim A , is
the number of elements in an orthonormal basis (i.e., a maximal set of unit norm pairwise
orthogonal vectors in A ). For two subspaces A0 and A1 of A , we use the notation A0 ⊕A1
for the usual sum A0 +A1 indicating the fact that A0 and A1 are orthogonal (orthogonal
sum). For a family {Ai}i∈I of subspaces, their intersection

⋂
i∈I Ai is also a subspace. This

property is not inherited by their union. In this case, one can consider their closed linear
span

∨
i∈I Ai, i.e., the smallest subspace of A , which contains all the subspaces Ai, i ∈ I.

If Ai, i ∈ I are pairwise orthogonal, we use the notation
⊕

i∈I Ai for the closed span
∨

i∈I Ai.
If T ∈ B(A , B), then its kernel ker T := T−1({0}) is a subspace of A , while its range
ran T := TA is generally only a linear manifold of B. A subspace A0 of A is invariant
under A ∈ B(A ) if AA0 ⊆ A0. A0 is reducing for A if it is invariant under both A and A∗.

These basic facts on the category of Hilbert spaces can be found in any introductory
book on functional analysis or linear operator theory. The author’s recommendations
are [1–3].

The famous dilation theorem of Béla Sz.-Nagy [4] shows that every contraction T that
acts on a Hilbert space H can be (power) dilated by an isometric (equivalently, a unitary)
operator V on a bigger space K ⊇H :

Tn = PH Vn|H , n ≥ 0.

Nowadays, dilations represent an important instrument of study in many disciplines
such as invariant subspace theory, interpolation theory, operator algebras, dynamical
systems, control, prediction theory, and so on (see the excellent survey article of Orr Moshe
Shalit [5] or the books by Sz.-Nagy, Foias, , Bercovici and Kérchy [6], Foias, and Frazho [7],
Foias, , Frazho, Gohberg and Kaashoeck [8], Rosenblum and Rovnyak [9], Kakihara [10],
and so on).

If V∗ is a coisometric extension of T, i.e., H is invariant under V∗ and V∗|H = T,
then V is an isometric dilation of T∗. In minimality conditions, i.e., K =

∨
n≥0 VnH , the

two concepts are actually equivalent. In addition to the numerous applications in dilation
theory, the theory of extensions was proved by P.S. Muhly and B. Solel to be useful in the
representation theory of tensor algebras associated with C∗correspondences or in the study
of C∗ dynamical systems [11,12]. A good reference in this context is the Ph.D. thesis of T.
Wolf [13].

In our approach, a coisometric extension on a Hilbert space K of the contraction T
is a pair (π, V∗), where V ∈ B(K ) and π ∈ B(H , K ) are isometric operators such that
πT = V∗π (T is a quasi-affine transform of V∗, with quasi-affinity π, according to the
terminology introduced in [14]). In fact, in this setting, πH is invariant under V∗ and
V∗|πH is unitarily equivalent with T. Given the operator V, it is our aim in this paper
to characterize T such that there exists π, which intertwines T and V∗. We also describe
and classify the isometric operators π. This type of extension has been considered recently,
e.g., in [15,16].

By the Wold–Halmos decomposition theorem (Theorem 1), any isometric operator
on H can be represented as the direct sum between a unitary operator and a unilateral
shift. Unitary operators are well understood. They have a spectral representation and
an associated functional calculus. On the other hand, unilateral shifts possess a simple
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geometrical structure. In fact, a unilateral shift (or, simply, a shift) is just an operator that
is unitarily equivalent to the operator Mz of multiplication by the independent variable,
(Mz f )(λ) := λ f (λ), λ ∈ D, on the D-valued Hardy space

H2
D (D) := { f : D→ D | f (λ) =

∞

∑
n=0

λndn, λ ∈ D, {dn}n≥0 ⊆ D

and ‖ f ‖2 =
∞

∑
n=0
‖dn‖2 < ∞}

for a certain complex Hilbert space D . In fact, an isometric operator S on H is a shift if
and only if there exists a subspace L of H , which is wandering, i.e.,

SnL ⊥ SmL for m, n ≥ 0, m 6= n

and generating, i.e.,
H =

⊕
n≥0

SnL .

The subspace L is called the defect of S and can be computed in terms of S (in fact,
L = ker S∗). The dimension of L , i.e., the multiplicity of S determines S up to a unitary
equivalence. Let us also note that S is a shift if and only if it is completely non-unitary (i.e.,
there are no non-null subspaces reducing S to a unitary operator) if and only if S is of class
C·0 (or, S∗ is strongly stable). As introduced in [6] (Chapter II.4), a contraction T on H is of
class C0· if Tn tends strongly to 0 as n → ∞ (i.e., ‖Tnh‖ n→∞−−−→ 0 for every h ∈ H ). T is of
class C·0 if T∗ belongs to the class C0·. A very good introductory material on shifts is [17].
The included terminology has been extracted from [6] (Chapter I).

Let A and B be bounded linear operators acting on complex Hilbert spaces A and B,
respectively. Let also π : A → B be a linear isometry.

Definition 1. The pair (π, B) is said to:

• extend A if πA = Bπ;
• (power) dilate A if π∗Bnπ = An for every n ≥ 0.

The paper starts with a general discussion on the link between extensions and dilations.
Their main properties are emphasized here. We show that an extension is always a dilation.
However, if (π, B) is a dilation of A, then (π, B) is also an extension of A if and only if
πA is invariant under B. We also prove that for the property of a pair (π, B) for a dilation,
respectively, an extension is preserved when we restrict B to one of its invariant subspaces,
which contains πA .

Definition 2. A dilation (π, B) of A is said to be minimal if B is the smallest subspace that is
invariant under B and contains πA , i.e.,

B =
∨

n≥0
BnπA . (1)

We observe that, for a given minimal dilation (π, B) of A, its adjoint (π, B∗) extends
A∗. We also indicate necessary and sufficient conditions for two minimal dilations of A in
order to be equivalent. The novelty of the results presented in this section is that they are
formulated in full generality, while in books on dilation theory, the study is restricted to the
case when A is a contraction, B is isometric or unitary, A is a subspace of B, while π is just
the inclusion map (see, e.g., [6]).

In Section 3, we present necessary and sufficient conditions on an isometric operator
V on H in order to be π-extended by a given unitary operator U on K . This description
is given only by numerical invariants, i.e., multiplicities of certain isometric operators
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associated with U. In order to formulate this result precisely, we include some definitions
for increased readability. A complex spectral measure is a map E on the Borel σ-algebra
B on C into B(H ) such that E(C) = IH , E(M) = E(M)2 = E(M)∗ for every Borel
setM and E(

⋃
n≥0Mn) = ∑n≥0 E(Mn) for every pairwise disjoint family {Mn}n≥0 of

Borel sets. We sketch the construction of Halmos [18] (Chapter III) for the multiplicity
function u attached to the spectral measure E. For a given nonzero finite measure µ on B,
its multiplicity u(µ) is the minimum value between the powers of maximal orthogonal
systems of type P{h∈H |ρ(h)�µ0} for nonzero measures µ0, which are absolutely continuous
with respect to µ, where, for h ∈ H , ρ(h) is the measure B 3 M 7→ 〈E(M)h, h〉 ∈ C. We
show that (π, U) extends V if and only if (a) the spectral measures of the unitary part of V
and the restriction of U to one of its reducing subspaces K0 possess identical multiplicity
functions and (b) the shift part of V and the shift part of U|∨

n≥0(K1	UnK1)
have identical

multiplicities, where K1 is a subspace of K , which contains K0 and it is invariant under U.
An important result of Ciprian Foias, [19] describes the structure of contractions of

class C0·: they can be represented as restrictions of backward shifts (i.e., adjoints of shifts).
We prove, in the following section, that there exists an isometric operator π : H → H2

D (D)
such that (π, M∗z ) extends T if and only if T is a contraction of class C0· and δT ≤ dim D .
Any solution π of the equation πT = M∗z π has the form π = πV , where:

(πVh)(λ) = VDT(IH − λT)−1h, h ∈H , λ ∈ D,

where V : DT → D is an arbitrary isometric operator. Here, according to the B. Sz.-Nagy
and C. Foias, terminology [6] (Chapter I.3), DT := (IH − T∗T)1/2 is the defect operator of T,
DT := DTH is the corresponding defect space, and δT = dim DT is the defect index of T.

A model for the minimal isometric dilation V of T (hence, the model also describes
the coisometric extension V∗ of T∗) has been proposed by Schäffer in [20]. More pre-
cisely, the minimal isometric dilation of T is given on the Hilbert space H ⊕ H2

DT
(D) by

the formula:
V(h, f ) = (Th, DTh + Mz f ), h ∈H , f ∈ H2

DT
(D).

We deduce that the operator V∗ is a coisometric extension of T∗. This result was the
starting point for developing a precise geometrical structure for such dilations, respectively
extensions (cf. [21–23]). In the model above, in the terminology introduced in Definition 1,
the pair (iH , V∗) extends T∗, where iH is the embedding H ↪→ H ⊕ H2

DT
(D). In our

approach, our job is, given V, to find necessary and sufficient conditions on T in order
to ensure the existence of an isometric operator π such that πT = V∗π. Therefore, we
look for operators π that might be different from just an embedding. In order to solve
this problem, we need to introduce a special positive contraction. Since (T∗nTn)n≥0 is a
decreasing sequence of positive operators, it has a strong limit, which will be denoted
by AT and called the asymptotic limit associated with T. It has been used as a tool in the
construction of the isometric dilation in [6] (Chapter I.10), in various invariant subspace
problems [24], in similarity problems [25], for Putnam–Fuglede-type results [26], and so on
(see, also, [27–31]). It seems that this limit appeared for the first time in 1967, in the french
edition of the book [6]. Associated notions are the asymptotic space of T, i.e., the closure AT
of the range of AT and the asymptotic index aT of T, i.e., the Hilbert dimension of AT .

In the last section of the paper, we move on to the general case in which V is written,
by the Wold–Halmos decomposition theorem (Theorem 1), as the direct sum between a
unitary operator U and the shift Mz. We prove that, given complex Hilbert spaces D , E and
a unitary operator U on E , there exists an isometric operator π : H → E ⊕ H2

D (D) such
that (π, (U ⊕Mz)∗) extends T if and only if T is a contraction, δT ≤ dim D and (Y, U∗)
extends the isometric operator

AT 3 A1/2
T h 7→ VT A1/2

T h := A1/2
T Th ∈ AT ,
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for a certain isometric operator Y that acts from AT := ATH into E . Any solution π to this
problem has the form:

πh = (YA1/2
T h, WXh), h ∈H ,

where Y : AT → E is an isometric operator that intertwines VT and U∗, while WX has
the form:

(WXh)(λ) = XDT(IH − λT)−1h, λ ∈ D, h ∈H ,

X being any isometric operator from DT into D . We also characterize π-extensions in
which the corresponding adjoint dilations are minimal. Several examples are given for
illustrative purposes.

2. Extensions and Dilations

Throughout this section, the symbols A and B denote complex Hilbert spaces with
dim A ≤ dim B, π : A → B is a linear isometry, while A and B are bounded linear
operators acting on A and B, respectively.

When A is a closed subspace of B, one can take π as the inclusion map of A into B.
Then π∗ is the orthogonal projection PA of B onto A . Hence, (iA , B) is the usual extension
of A: A is invariant under B and B|A = A. At the same time, the pair (iA , B) dilates A if

PA Bna = Ana, a ∈ A , n ≥ 0,

which is exactly the concept introduced by Béla Sz.-Nagy in [4].
Even under minimality conditions, a dilation (π, B) might not be unique, up to a

unitary equivalence. One may note that, in general, the structures of π and B could become
quite complicated.

It is an immediate consequence of Definition 1 that (π, B) is a dilation of A if and
only if (π, B∗) is a dilation of A∗. Such a property is not valid, in general, for extensions.
Another easy consequence of the corresponding definitions is their transitive properties:
if (π, B) extends (dilates) A and (ρ, C) extends (dilates) B, then (ρπ, C) extends (dilates)
A. Here, C is a bounded linear operator that acts on the complex Hilbert space C , and
ρ : B → C is a linear isometry.

Remark 1. (a) If (π, B) extends A, i.e., πA = Bπ, then πA2 = BπA = B2π and, inductively,
πAn = BπAn−1 = Bnπ for every n ≥ 1. This shows that (π, B) dilates A.

The converse is, in general, false. However,
(b) If (π, B) dilates A, then (π, B) also extends A if and only if πA is invariant under B.

Indeed, for each a ∈ A , it holds:

〈πAa, Bπa− πAa〉 = 〈Aa, π∗Bπa〉 − 〈πAa, πAa〉 = 0,

so
‖Bπa‖2 = ‖Aa‖2 + ‖Bπa− πAa‖2. (2)

Hence, (π, B) extends A if and only if ‖Bπa‖ = ‖Aa‖, a ∈ A . Since A = π∗Bπ, we
deduce that, for every a ∈ A , Bπa must be in the range of π. It follows that BπA ⊆ πA ,
as required.

(c) In particular, if (π, B) dilates A, A is an isometry and B is a contraction, then (π, B)
extends A. Indeed, for a ∈ A , ‖Bπa‖ ≤ ‖πa‖ = ‖a‖ and ‖Aa‖ = ‖a‖. This forces ‖Bπa−
πAa‖ = 0 in (2).

(d) If πA is invariant under B, then A = π∗Bπ is a restriction of (π, B), i.e., (π, B) extends
A. Any restriction of (π, B) has this form. We use the fact that πA is invariant under B if and
only if Bπ = ππ∗Bπ, that is Bπ = πA. Hence, (π, B) is an extension of A. If A′ ∈ B(A ) is a
restriction of (π, B), then

A′ = π∗πA′ = π∗Bπ.
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If B0 is a subspace of B, which is invariant under B and contains πA , then one can
consider the operators B0 = B|B0 and π0 : A → B0 defined by π0a = πa, a ∈ A . Since
π∗0 = π∗|B0 , we immediately deduce that (π, B) dilates (extends) A if and only if (π0, B0)
dilates (extends) A. This property can be extended to the case when B0 is not necessarily a
subspace of B.

Proposition 1. Let B0 be a complex Hilbert space and ρ : B0 → B an isometric operator such
that ρB0 contains πA , and it is invariant under B. Then (π, B) dilates (extends) A if and only
if (ρ∗π, B0 := ρ∗Bρ) dilates (extends) A. In this case, (ρ, B) extends B0, which is unitarily
equivalent to B|ρB0 , i.e., B0 = U∗B|ρB0U, where U : B0 → ρB0 is the unitary operator

B0 3 b0 7→ ρb0 ∈ ρB0.

Proof. As seen before, ρB0 is invariant under B if and only if ρρ∗Bρ = Bρ. Observe, also,
that ρ∗π is an isometric operator:

‖ρ∗πa‖ = ‖U∗πa‖ = ‖a‖, a ∈ A .

We used, for the first equality above, the fact that ρB0 contains πA and U∗ = ρ∗|ρB0 .
We note that, for a ∈ A and n ≥ 0, the following set of inequalities holds true:

π∗ρBn
0 ρ∗πa = π∗ρ (ρ∗Bρ) . . . (ρ∗Bρ)︸ ︷︷ ︸

n times

ρ∗πa

= π∗Bρ (ρ∗Bρ) . . . (ρ∗Bρ)︸ ︷︷ ︸
n− 1 times

ρ∗πa

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= π∗Bnρρ∗πa

= π∗BnPρB0 πa

= π∗Bnπa.

(3)

Similarly,
B0ρ∗πa = ρ∗Bρρ∗πa = ρ∗Bπa, a ∈ A . (4)

According to (3), (π, B) is a dilation of A if and only if (ρ∗π, B0) is a dilation of A.
In view of (4), if A is extended by (π, B), then B0ρ∗π = ρ∗Bπ = ρ∗πA. Conversely, if A is
extended by (ρ∗π, B0), then it follows by (4) that ρ∗Bπa = ρ∗πAa, a ∈ A . Since both Bπa
and πAa are elements of ρB0 and U∗ = ρ∗|ρB0 , we deduce that U∗Bπa = U∗πAa, a ∈ A .
Therefore, Bπ = πA, as required.

(ρ, B) extends B0 followed by Remark 1(d). The unitary equivalence between B0 and
B|ρB0 is a consequence of the definition of B0.

We now start with a bounded linear operator A on A , with a Hilbert space B such
that dim B ≥ dim A and with a linear isometry π : A → B. Our next aim is to build and
parametrize the class of all operators B ∈ B(A ) such that (π, B) is an extension of A.

In order to obtain the equality, πA = Bπ is enough to define B on πA as follows:

Bb := πAπ∗b, b ∈ πA .

One can take for B|B	πA any bounded linear operator from B 	 πA into B. Thus,
according to the decomposition B = πA ⊕ (B 	 πA ), B has the matrix representation:

B =

(
πAπ∗|πA X

0 Y

)
.

where X ∈ B(B 	 πA , πA ) and Y ∈ B(B 	 πA ).
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We observe that, by an easy computation with matrices, B is isometric if and only if A
is isometric, πAA is orthogonal to ran X, and (X, Y) is a row isometry (i.e., X∗X + Y∗Y =
IB	πA ). One can take X = 0 and A, Y isometric operators in order to build an isometric
extension (π, B) of A.

Similar computations show that B is coisometric if and only if Y is coisometric, ran X∗

and ran Y∗ are orthogonal and XX∗ = π(IA − AA∗)π∗|πA . Taking again X = 0, the ex-
tension (π, B) is coisometric if and only if A and Y are coisometric operators.

We deduce that B is unitary if and only if A is isometric, Y is coisometric, ran X∗ ⊥
ran Y∗, ran X ⊥ πAA and X∗X + Y∗Y = IB	πA .

As observed in Proposition 1, the dilation extension properties, respectively, are
preserved if we restrict B to one of its invariant subspaces, which contains πA .

As we will see later in this section, the minimality condition does not always ensure
the uniqueness, up to a unitary equivalence, of such a dilation.

As noted earlier, (π, B) is a dilation of A if and only if (π, B∗) is a dilation of A∗.
However, there is no reason to assume that the minimality of (π, B) implies the minimality
of (π, B∗). If (π, B) extends A, then the smallest subspace of B that is invariant under B
and contains πA is ∨

n≥0
BnπA =

∨
n≥0

πAnA = πA .

In other words, if π0 is the unitary operator A 3 a 7→ π0a := πa ∈ πA and
B0 := B|πA ∈ B(πA ), then (π0, B0) is an extension of A, which is unitarily equivalent
to A:

A = π∗0 B0π0.

Hence, this situation does not present any real interest.
A dilation is not, in general, an extension. However, under the minimality assumption,

the dilation adjoint is actually an extension.

Remark 2. If (π, B) is a minimal dilation of A, then (π, B∗) is an extension of A∗. Let
a, a′ ∈ A and n ≥ 0. Then

〈B∗πa− πA∗a, Bnπa′〉 = 〈a, π∗Bn+1πa′〉 − 〈A∗a, π∗Bnπa′〉 = 0,

since π∗Bmπa = Ama for m ∈ {n, n + 1}. In view of the minimality condition (1), this implies
that B∗π = πA∗.

Our final aim in this section is to express the necessary and sufficient conditions in
order to ensure that a minimal dilation is unique.

Definition 3. Two minimal dilations (π1, B1) and (π2, B2) of A are said to be equivalent if
there exists a unitary operator U : B1 → B2 (here, B1 ∈ B(B1) and B2 ∈ B(B2)) such that
Uπ1 = π2 and UB1 = B2U.

If (π1, B1) and (π2, B2) are equivalent, then, according to Definition 1, (U, B2) extends
B1 and (U∗, B1) extends B2.

We are now in a position to present the conditions that describe the equivalence
between two minimal dilations.

Proposition 2. Two minimal dilations (π1, B1) and (π2, B2) of A are equivalent if and only if

π∗1 B∗m1 Bn
1 π1 = π∗2 B∗m2 Bn

2 π2 for every m, n ≥ 0. (5)
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Proof. The operator U must be defined on the generators of B1, which are, by minimality,
Bn

1 π1a, where n ≥ 0 and a ∈ A . More precisely, in view of the axioms of Definition 3, we
must have:

UBn
1 π1a = B2UBn−1

1 π1a = · · · = Bn
2 Uπ1a = Bn

2 π2a. (6)

Formula (6) correctly defines an isometric operator on B1 if and only if

〈∑
m≥0

Bm
1 π1am, ∑

n≥0
Bn

1 π1a′n〉 = 〈∑
m≥0

Bm
2 π2am, ∑

n≥0
Bn

2 π2a′n〉 (7)

for all sequences (am)m≥0 and (a′n)n≥0 of elements in A with finite support. We can write (7)
in equivalent form as:

∑
m,n≥0

〈am, π∗1 B∗m1 Bn
1 π1a′n〉 = ∑

m,n≥0
〈am, π∗2 B∗m2 Bn

2 π2a′n〉.

We finally deduce (5).
By minimality, the operator U, as defined in (6), is also surjective. Hence, U is a unitary

operator. Moreover, by the same Formula (6), Uπ1 = π2 (n = 0) and

UB1(Bn
1 π1a) = UBn+1

1 π1a = Bn+1
2 π2a = B2U(Bn

1 π1a), n ≥ 0, a ∈ A ,

that is, UB1 = B2U, according to the minimality of B1.

Minimal extensions are indeed equivalent: if (π, B) extends A, then

π∗B∗mBnπ = A∗m An, m, n ≥ 0

it is independent of the choices of π and B.
Examples of equivalent classes of dilations are the ones of selfadjoint operators and

isometric operators, respectively.

3. Unitary Extensions

In this section, we provide necessary and sufficient conditions on a given unitary
operator U in order to extend, in the sense of Definition 1, a given isometric operator V.
We also discuss the structure of U.

The Norwegian statistician Herman Wold discovered in [32] a remarkable decomposi-
tion for every stationary stochastic process. More precisely, his decomposition separates the
deterministic part from the part corrupted by noises (in fact, the moving average of white
noise). It was the cornerstone of prediction theory for such processes and has nowadays
applications in many domains such as machine learning [33], traffic flow prediction [34],
modeling of helicopter rotor aerodynamic noise [35], or image processing [36]. The Wold
decomposition theorem has been formulated for the general case of isometric operators on
Hilbert spaces (cf., e.g., [17,37,38]):

Theorem 1. Let V be an isometric operator on the Hilbert space H . Then there exists an orthogonal
decomposition of the form

H = H V
u ⊕H V

s ,

uniquely determined by the conditions:

(a) H V
u reduces V to a unitary operator Vu;

(b) H V
s reduces V to a shift Vs.

More precisely, H V
u =

⋂
n≥0 VnH and H s

u =
⊕

n≥0 Vn ker V∗.

According to the classical spectral theorem, to every normal operator N on a complex
Hilbert space H , it corresponds a unique compact, complex spectral measure E such
that N =

∫
λdE(λ) (cf., e.g., [18], §44, Theorem 1). It follows immediately that U∗NU =
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∫
λd(U∗E(λ)U) for any given unitary operator U from a complex Hilbert space K onto

H . In other words, two normal operators N1 and N2 are unitarily equivalent if and only if
their spectral measures E1 and E2 are unitarily equivalent:

U∗E1(M)U = E2(M)

for a certain unitary operator U and for all complex Borel setsM. According to the theory
developed for nonseparable Hilbert spaces by Paul R. Halmos [18] (Chapter III) and Arlen
Brown [39], the equivalence of two spectral measures is characterized by the equality of
their multiplicity functions. Therefore, it holds the following description of the unitary
equivalence between two normal operators.

Theorem 2. Two normal operators are unitarily equivalent if and only if their spectral measures
possess identical multiplicity functions.

We now have all the ingredients to prove the main result of this section.

Theorem 3. Let V be an isometric operator on a complex Hilbert space H with the Wold decom-
position H = Hu ⊕Hs. Furthermore, let U be a unitary operator on another complex Hilbert
space K . Then, there exists an isometric operator π : H → K such that (π, U) extends V if and
only if:

(a) There exists a subspace K0 of K , which reduces U such that the spectral measures of the
unitary operators Vu and U|K0 possess identical multiplicity functions;

(b) There exists a subspace K1 of K , which contains K0, and it is invariant under U such that
the shifts Vs and (U|

K̃1
)s possess identical multiplicities (here, K̃1 :=

∨
n≥0(K1	UnK1));

equivalently, dim(ker V∗) = dim(K1 	UK1).

The operator π has the form:

πh := U1hu + U2hs, h = hu + hs, hu ∈H V
u , hs ∈H V

s . (8)

Here U1 : H V
u → K0 is a unitary operator that satisfies U∗1 U|K0U1 = V|H V

u
, while U2 is the

unitary operator defined for every hs = ∑n≥0 Vnhn ∈H V
s ({hn}n≥0 ⊆ ker V∗), by

U2hs := ∑
n≥0

Un ϕhn ∈ K̃1, (9)

where ϕ is a unitary operator between ker V∗ and K̃1 	UK̃1 = K1 	UK1.

Proof. We firstly show that, for a subspace K1 of K that is invariant under U, K1 	UK1
is wandering for U and

K̃1 =
⊕
n≥0

Un(K1 	UK1). (10)

Indeed, for k, k′ ∈ K1 	UK1 and n ≥ 1, Un−1k ∈ K1 and U∗k′ ⊥ K1, that is

〈Unk, k′〉 = 〈Un−1k, U∗k′〉 = 0.

Furthermore, for any n ≥ 0,

K1 	UnK1 =
n⊕

k=0

Uk(K1 	UK1).

The equality K̃1 	UK̃1 = K1 	UK1 is a consequence of (10).
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Let us now suppose that, for a certain isometric operator π : H → K , (π, U) extends
V. Then K0 := πH V

u is a closed subspace of K (as π is isometric), which reduces U:

UK0 = UπH V
u = πVH V

u = πH V
u = K0.

The unitary operator πu := π|H V
u

: H V
u → K0 intertwines U|K0 and V|H V

u
:

U|K0 πuhu = Uπhu = πVhu = πuV|H V
u

hu, hu ∈H V
u .

In view of Theorem 2, the spectral measures of U|K0 and V|H V
u

possess identical
multiplicity functions. Finally, the subspace K1 := πH is invariant under U (indeed,
UK1 = π ran V), it contains K0 and

K1 	UK1 = π(H 	 ran V) = π ker V∗.

Hence, K1 	UK1 and ker V∗ have identical Hilbert dimensions.
Conversely, let K0 be a reducing subspace for U, U1 : H V

u → K0, a unitary operator
that intertwines Vu and U|K0 , K1, a subspace of K that is invariant under U, contains K0
and such that there exists a unitary operator ϕ : ker V∗ → K1 	UK1 (according to (a)
and (b)). Let U2 be the operator defined as in (9). Then, for every hs = ∑n≥0 Vnhn ∈H V

s
({hn}n≥0 ⊆ ker V∗),

‖U2hs‖2 = ∑
n≥0
‖Un ϕhn‖2 = ‖hs‖2.

This shows that U2 is an isometric operator. It is also surjective since for every
k = ∑n≥0 Unkn ∈ K̃1 (kn ∈ K1 	UK1, n ≥ 0), hs = ∑n≥0 Vn ϕ∗kn ∈ H V

s and U2hs = k.
In addition,

UU2(Vnh) = U(Un ϕh) = Un+1 ϕh = U2(Vn+1h) = U2V(Vnh), n ≥ 0, h ∈ ker V∗.

We deduce that U|
K̃1

U2 = U2Vs.
The operator π, defined by (8), is isometric:

‖πh‖2 = ‖U1hu‖2 + ‖U2hs‖2 = ‖h‖2, h = hu + hs, hu ∈H V
u , hs ∈H V

s ,

since U1H
V

u = K0 and U2H
V

s = K̃1 are orthogonal subspaces:

〈k0, Unk1〉 = 〈UU∗n+1k0, k1〉 = 0, k0 ∈ K0, k1 ∈ K1 	UK1,

due to the observation that UU∗n+1k0 ∈ UU∗n+1K0 = UK0 ⊆ UK1 and k1 ⊥ UK1.
Finally,

πVh = π(Vhu + Vhs) = U1Vuhu + U2Vshs

= UU1hu + UU2hs = Uπh, h = hu + hs, hu ∈H V
u , hs ∈H V

s .

This proves that (π, U) extends V.

As observed in the first section, (π, U∗) dilates V∗. We can thus consider the smallest
subspace of K , which is invariant under U∗ and contains πH :

K0 :=
∨

n≥0
U∗nπH .

We observe that

UK0 = UπH ∨K0 = πVH ∨K0 = K0,
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that is, K0 reduces U. We next show that:

U∗πH = πH ⊕U∗π ker V∗. (11)

The sum in the right side of this equation is orthogonal:

〈πh, U∗πh′〉 = 〈Uπh, πh′〉 = 〈πVh, πh′〉 = 〈h, V∗h′〉 = 0, h ∈H , h′ ∈ ker V∗.

If we apply U to equation (11), we obtain the relation:

πH = UπH ⊕ π ker V∗ = π(VH ⊕ ker V∗),

which is obviously true. We proceed inductively to prove that:

n∨
k=1

U∗kπH = πH ⊕
n⊕

k=1

U∗kπ ker V∗, n ≥ 1.

Consequently,
K0 = πH ⊕

⊕
n≥1

U∗nπ ker V∗.

Let Z : H ⊕ H2
ker V∗(D)→ K be the isometric operator defined by:

Z(h, f ) := πh + ∑
n≥0

U∗n+1πhn,

where h ∈H and f ∈ H2
ker V∗(D),

D 3 λ 7→ f (λ) := ∑
n≥0

λnhn ∈ ker V∗.

Then

Z∗UZ(h, f ) = Z∗U(πh + ∑
n≥0

U∗n+1πhn)

= Z∗(πVh + ∑
n≥0

U∗nπhn)

= Z∗(π(Vh + h0) + ∑
n≥0

U∗n+1πhn+1)

= (Vh + f (0), M∗z f ).

We deduce, by Proposition 1, that (Z∗π, Z∗UZ) is a unitary extension of V, while
(Z, U) is a unitary extension of Z∗UZ.

We proved the following theorem.

Theorem 4. Let V be a linear isometry on the complex Hilbert space H . Then (iH , W) is a
unitary extension of V, where iH is the inclusion map of H into H ⊕ H2

ker V∗(D), while W,
which acts on H ⊕ H2

ker V∗(D), has the matrix representation:

W =

(
V E0
0 M∗z

)
,

E0 being the map of evaluation in 0:

H2
ker V∗(D) 3 f 7→ f (0) ∈ ker V∗.

In addition, (iH , W∗) is a minimal unitary dilation of V∗.
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4. Restrictions of Backward Shifts

Our next aim is to study the case of extensions (π, B) of a given operator T on a
complex Hilbert space H , where B is a backward shift. In this situation or, more generally,
when B is just contractive, T should necessarily be a contraction:

‖Th‖ = ‖πTh‖ = ‖Bπh‖ ≤ ‖πh‖ = ‖h‖, h ∈H .

The following norm formula, which relates the contraction T with its defect operator
DT , will be frequently used in our discussion:

‖DTh‖2 = ‖h‖2 − ‖Th‖2, h ∈H . (12)

Let us also note that, for every h ∈ H , the sequence (‖Tnh‖)n≥0 is decreasing and
bounded below and, hence, convergent.

As mentioned in Section 1, shift operators S are unitarily equivalent with the operators
Mz of multiplication by the independent variable on the Hardy space H2

ker S∗(D). This is
the reason why in our description of backward shift extensions of T, we replace B by M∗z .

Theorem 5. Let H , D be complex Hilbert spaces and T ∈ B(H ). Then there exists a linear
isometry π : H → H2

D (D) such that (π, M∗z ) extends T if and only if ‖T‖ ≤ 1, T ∈ C0· and
δT ≤ dim D .

Any solution π to the equation πT = M∗z π has the form π = πV , where

(πVh)(λ) := VDT(IH − λT)−1h, h ∈H , λ ∈ D (13)

and V : DT → D is an arbitrary isometric operator.

Proof. It T is extended by (π, M∗z ), then, according to the discussion at the beginning of
this section, T must be a contraction.

Any isometric operator π from H into H2
D (D) has the general form:

(πh)(λ) = ∑
n≥0

λnTnh, h ∈H , λ ∈ D,

where Tn ∈ B(H , D), n ≥ 0 and

∑
n≥0
‖Tnh‖2 = ‖h‖2, h ∈H . (14)

The condition π(Th)(λ) = M∗z (πh)(λ), h ∈ H , λ ∈ D can be written in equivalent
form as:

TnT = Tn+1, n ≥ 0.

If we fix T0, then any contraction operator Tn, n ≥ 0 can be represented in terms of T0
and T: Tn = T0Tn. Thus, Formula (14) becomes:

∑
n≥0
‖T0Tnh‖2 = ‖h‖2, h ∈H . (15)

We replace h by Th in (15) and obtain that

‖Th‖2 + ‖T0h‖2 = ‖h‖2, h ∈H ,

that is
‖T0h‖ = ‖DTh‖, h ∈H (by (12)). (16)
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Consequently, we can eliminate T0 from (15):

∑
n≥0
‖DTTnh‖2 = ‖h‖2, h ∈H .

Another application of (12), i.e., ‖DTTnh‖2 = ‖Tnh‖2 − ‖Tn+1h‖2, n ≥ 0, shows that:

‖h‖2 = lim
n→∞

n

∑
k=0

(‖Tkh‖2 − ‖Tk+1h‖2), h ∈H .

Hence, T is of class C0·, and the only condition imposed on T0 should be (16). In other
words, there exists an isometric operator V : DT → D such that T0h = VDTh, h ∈H . Thus
δT = dim DT ≤ dim D and π has the form given by (13).

Conversely, if T is a contraction of class C0· and δT ≤ dim D , there exists an iso-
metric operator V : DT → D . The operator πV , introduced by (13), is well-defined and
isometric since

∑
n≥0
‖VDTTnh‖2 = ‖h‖2 − lim

n→∞
‖Tn+1h‖2 = ‖h‖2.

In addition,

(πV(Th))(λ) = ∑
n≥0

λnVDTTn+1h = M∗z (πVh)(λ), h ∈H , λ ∈ D,

which shows that (πV , M∗z ) extends T.

We compute the elements involved in this theorem for rank one contractions.

Example 1. Let H , D be infinite dimensional complex Hilbert spaces and x, y ∈ H be two
linearly independent vectors such that ‖x‖‖y‖ ≤ 1. If T = x⊗ y is the tensor product:

H 3 h 7→ 〈h, y〉x ∈H ,

then T is a contraction of class C0·. In fact, Tn = 〈x, y〉n−1x⊗ y (n ≥ 1) tends uniformly to 0 as
n tends to ∞:

‖Tn‖ = |〈x, y〉|n−1‖x‖‖y‖ → 0 as n→ ∞,

since, by the Cauchy–Schwarz inequality, |〈x, y〉| < ‖x‖‖y‖ ≤ 1.
Our next aim is to compute the square root DT of IH − T∗T = IH − ‖x‖2y⊗ y. DT must

be in the C∗-subalgebra of B(H ) generated by IH and the orthogonal projection 1
‖y‖2 y⊗ y. We

write it as a linear combination of IH and y⊗ y and identify the corresponding coefficients in order
to obtain:

DT = IH −
1−

√
1− ‖x‖2‖y‖2

‖y‖2 y⊗ y.

If T is a strict contraction (i.e., ‖T‖ < 1), we observe that 0 does not belong to the spectrum
σ(DT) of DT . Otherwise, by the spectral mapping theorem,

1
‖x‖2‖y‖2 ∈ σ

( 1
‖y‖2 y⊗ y

)
= {0, 1},

which is a contradiction. It follows that DT is invertible, so DT = H and δT = dim H . On the
other hand, if ‖x‖‖y‖ = 1, then DT is an orthogonal projection DT = {y}⊥ and δT = dim H .
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We also observe that, for every λ ∈ D,

DT(IH − λT)−1 = ∑
n≥0

λnDTTn

= DT + ∑
n≥1

λn〈x, y〉n−1
(

IH −
1−

√
1− ‖x‖2‖y‖2

‖y‖2 y⊗ y
)

x⊗ y

= DT +
λ

1− λ〈x, y〉 x⊗ y− 1−
√

1− ‖x‖2‖y‖2

‖y‖2
λ〈x, y〉

1− λ〈x, y〉y⊗ y

= IH +
λ

1− λ〈x, y〉 x⊗ y− 1−
√

1− ‖x‖2‖y‖2

‖y‖2(1− λ〈x, y〉) y⊗ y.

We express our findings in terms of the previous theorem.
“Let H , D be infinite dimensional complex Hilbert spaces and x, y ∈ H be two

linearly independent vectors. Then there exists a linear isometry π : H → H2
D (D) such

that M∗z π = πx⊗ y (i.e., x⊗ y has a backward shift extension) if and only if ‖x‖‖y‖ ≤ 1
and dim H ≤ dim D . Any solution π of the equation M∗z π = πx ⊗ y has the form
π = πV , where

(πVh)(λ) := Vh +
λ〈h, y〉

1− λ〈x, y〉Vx− (1−
√

1− ‖x‖2‖y‖2)〈h, y〉
‖y‖2(1− λ〈x, y〉) Vy, h ∈H , λ ∈ D

and V : DT → D is an arbitrary isometric operator. Here, DT = H or DT = {y}⊥
according to whether T, is a strict contraction or not.”

We describe the conditions under which the dilation (πV , Mz) of T∗ is minimal:

H2
D (D) =

∨
n≥0

Mn
z πVH .

Obviously, F :=
∨

n≥0 Mn
z πVH ⊆ H2

VDT
(D). We prove that the reverse inclusion

is also true. Let h ∈ H and λ ∈ D. Easy computations, based on the definition of πV ,
show that:

VDTh = (MzπV(Th)− πVh)(λ).

One can successively apply the multiplication operator to prove that:

λmVDTh = (Mm+1
z πV(Th)−Mm

z πVh)(λ) for every m ≥ 0.

We deduce that H2
VDT

(D) ⊆ F . Consequently, the dilation (πV , Mz) of T∗ is minimal
if and only if VDT = D .

We are now able to reformulate Theorem 5 in minimality conditions.

Theorem 6. Let H , D be complex Hilbert spaces and T ∈ B(H ). Then there exists a linear
isometry π : H → H2

D (D) such that (π, Mz) is a minimal isometric dilation of T if and only if
‖T‖ ≤ 1, T ∈ C·0 and δT∗ = dim D .

Any solution π to this problem has the form π = πV , where

(πVh)(λ) := VDT∗(IH − λT∗)−1h, h ∈H , λ ∈ D

and V : DT∗ → D is an arbitrary unitary operator.

5. The General Case

At the beginning, we present two examples. The first one shows that the converse of
the result presented in Remark 2 is not always valid.
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Example 2. Let H0, H1 be non-null complex Hilbert spaces, S a shift on H0 and T = S∗ ⊕ 0
acting on H = H0 ⊕H1.

The operator V defined on H2
H (D) by:

(V f )(λ) := T∗ f (0) + λ( f (λ)− PH0 f (0)), λ ∈ D, f ∈ H2
H (D)

is isometric:

‖V f ‖2 = ‖(S⊕ 0)PH0 f (0)‖2 + ‖PH1
f (0)‖2 + ‖M∗z f ‖2 = ‖ f ‖2, f ∈ H2

H (D)

and its adjoint can be computed according to the formula

(V∗ f )(λ) = T f (0) + PH1
(M∗z f )(0) + λ(M∗2z f )(λ), λ ∈ D, f ∈ H2

H (D).

If π is the embedding of H into H2
H (D):

(πh)(λ) := h, h ∈H , λ ∈ D,

then (π, V∗) extends T:

V∗(πh)(λ) = Th = π(Th)(λ), h ∈H , λ ∈ D.

In order to prove that the isometric dilation (π, V) of T∗ is not minimal, we compute the
smallest subspace, which is invariant under V and contains πH :

K :=
∨

n≥0
VnπH .

With this aim, we observe that, for every h = (h0, h1) ∈ H and λ ∈ D, V(πh)(λ) =
(Sh0, λh1) and, inductively,

Vn(πh)(λ) = (Snh0, λnh1), n ≥ 0.

Obviously, for a given h = (h0, 0) ∈ H with h0 6= 0, Mzπh ⊥ Vn(πh′) for every
h′ ∈H . This observation proves that K is strictly contained in H2

H (D), so the dilation (π, V) is
not minimal.

The second example shows that the minimality condition is necessary in order to
obtain the conclusion of Remark 2.

Example 3. We use the objects (spaces and operators) from the previous example. Let us firstly
observe that K reduces V since, on the one hand, VK ⊆ K and, on the other hand, for h ∈H
and n ≥ 0,

V∗(Vn(πh)) =

{
Vn−1(πh) if n ≥ 1
V∗(πH ) = π(Th) if n = 0

.

Let h1 be a fixed element in H1 of unit norm and h = (0, h1). Then πh ∈ K 	 VK =
ker(V∗|K ). Consider also a fixed function g ∈ K ⊥ := H2

H (D) 	K of norm 1. Let P =

PH2
H (D)

K and P⊥ = IK − P. The operator W, defined on H2
H (D) by:

(W f )(λ) := V(P f )(λ) + (P⊥ f )(λ) + 〈P⊥ f , g〉(h− g(λ)), f ∈ H2
H (D), λ ∈ D, (17)
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is isometric. Indeed, for any f ∈ H2
H (D), V(P f ) ∈ VK ⊆ K , while g and P⊥ f are elements of

K ⊥. Then

‖W f ‖2 = ‖V(P f ) + 〈P⊥ f , g〉πh‖2 + ‖P⊥ f − 〈P⊥ f , g〉g‖2

= ‖V(P f )‖2 + |〈P⊥ f , g〉|2 + 2Re(〈P⊥ f , g〉〈V(P f ), πh〉)
+ ‖P⊥ f ‖2 + |〈P⊥ f , g〉|2 − 2|〈P⊥ f , g〉|2

= ‖V(P f )‖2 + ‖P⊥ f ‖2

= ‖P f ‖2 + ‖P⊥ f ‖2 = ‖ f ‖2.

In this series of equalities, we used the fact that 〈V(P f ), πh〉 = 0 since V(P f ) ∈ VK and
πh ∈ K 	VK . The adjoint of W can be computed according to the formula:

W∗ f = PV∗ f + P⊥ f + 〈 f , πh− g〉g, f ∈ H2
H (D).

Then, for any h′ ∈H , it holds:

W∗πh′ = PV∗πh′ + 〈πh′, πh〉g = πTh′ + 〈h′, h〉g.

We deduce that (π, W∗) cannot be an extension of T since, otherwise, h1 = 0, which con-
tradicts its choice. We also observe that, by (17), W(πh′) = V(πh′), W2(πh′) = WV(πh′) =
V2(πh′) and, inductively, Wn(πh′) = Vn(πh′) for every n ≥ 0 and h′ ∈H . Consequently,

π∗Wnπh′ = π∗Vnπh′ = T∗nh′, h′ ∈H , n ≥ 0.

Hence, (π, W) is a dilation of T∗.

We pass now to the study of the structure of coisometric extensions (π, V∗) of contrac-
tion operators T on a complex Hilbert space H .

In the description of (π, V), the asymptotic limit associated with T plays an important
role. Some of its main properties are collected in the following proposition.

Proposition 3 ([40], Chapter 3). Let AT be the asymptotic limit associated with a contraction
T ∈ B(H ). Then:

(a) 0 ≤ AT ≤ IH ;
(b) T∗ATT = AT ;
(c) ker AT = {h ∈H | Tnh→ 0 as n→ ∞};
(d) ker(I − AT) = {h ∈H | ‖Tnh‖ = ‖h‖ for all n ≥ 0}.

In view of condition (b), we can show that, for all h ∈ H , the following equalities
hold true:

‖A1/2
T Th‖2 = 〈T∗ATTh, h〉 = 〈ATh, h〉 = ‖A1/2

T h‖2.

This formula allows us to define the isometric operator

AT 3 A1/2
T h 7→ VT(A1/2

T h) := A1/2
T Th ∈ AT ,

which will be called the asymptotic isometry associated with T.
According to the Wold–Halmos decomposition theorem (Theorem 1), the isometric

operator V can be represented as the direct sum between a unitary operator and a shift.
This is the reason why we study coisometric extensions (π, V∗), where V is the direct sum
between a unitary operator U acting on a complex Hilbert space E and the operator Mz of
multiplication by the independent variable on the Hardy space H2

D (D).

Theorem 7. Let H , D , E be complex Hilbert spaces, T ∈ B(H ) and U ∈ B(E ) a unitary
operator. Then there exists a linear isometry π : H → E ⊕ H2

D (D) such that (π, (U ⊕Mz)∗)
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extends T if and only if ‖T‖ ≤ 1, δT ≤ dim D and there exists an isometric operator Y : AT → E
such that (Y, U∗) extends VT .

Any solution π of the equation πT = (U ⊕Mz)∗π has the form π = πX,Y, where

πX,Yh = (YA1/2
T h, WXh), h ∈H , (18)

Y ∈ B(AT , E ) being any isometry with YVT = U∗Y, while

(WXh)(λ) = XDT(IH − λT)−1h, h ∈H , λ ∈ D, (19)

X ∈ B(DT , D) being an arbitrary isometric operator.

Proof. Let π : H → E ⊕ H2
D (D) be an isometric operator such that:

πT = (U∗ ⊕M∗z )π. (20)

If π has the matrix representation π =

(
Z
W

)
, where Z ∈ B(H , E ) and W ∈

B(H , H2
D (D)), then equation (20) can be translated by:

ZT = U∗Z and WT = M∗z W. (21)

Furthermore,
‖Zh‖2 + ‖Wh‖2 = ‖h‖2, h ∈H , (22)

due to the fact that π is isometric.
We proceed as in the proof of Theorem 5. Since W has the form:

(Wh)(λ) = ∑
n≥0

λnTnh, h ∈H , λ ∈ D,

where {Tn}n≥0 ⊂ B(H , D), we deduce immediately that Tn = T0Tn, n ≥ 0. Equation (22)
becomes:

‖Zh‖2 + ∑
n≥0
‖T0Tnh‖2 = ‖h‖2, h ∈H . (23)

We replace h with Th in (23) and obtain that:

‖ZTh‖2 + ‖h‖2 = ‖Th‖2 + ‖Zh‖2 + ‖T0h‖2, h ∈H .

We finally arrive at the equality

‖T0h‖ = ‖DTh‖, h ∈H ,

by (12) and the first condition of (21). Equivalently, there exists an isometric operator
X : DT → D such that T0h = XDTh, h ∈H . This also implies that δT ≤ dim D . We replace
our findings in (23) and use (12) again to obtain that, for every h ∈H ,

‖Zh‖2 = ‖h‖2 − ∑
n≥0
‖DTTnh‖2

= ‖h‖2 − lim
n→∞

n

∑
k=0

(‖Tkh‖2 − ‖Tk+1h‖2)

= lim
n→∞

‖Tnh‖.

Since (T∗nTn)n≥0 tends strongly to AT as n → ∞, it also tends weakly to the same
limit. Thus,

‖Zh‖2 = lim
n→∞

‖Tnh‖2 = lim
n→∞
〈T∗nTnh, h〉 = 〈ATh, h〉 = ‖A1/2

T h‖2, h ∈H .
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Let Y : AT → E be an isometric operator such that YA1/2
T h = Zh, h ∈H . The equation

ZT = U∗Z can be rewritten as:

YA1/2
T Th = U∗YA1/2

T h, h ∈H ,

or, equivalently, as:
YVT = U∗Y.

This means that (Y, U∗) is a unitary extension of the isometric operator VT . As a
conclusion, π has the form πX,Y given by (18).

Conversely, if T is a contraction with its defect index δT ≤ dim D , there exists an
isometric operator X ∈ B(DT , D). Let Y ∈ B(AT , E ) be the isometric operator that
intertwines VT and U∗. The operator πX,Y, introduced by (18) and (19), is well-defined and
isometric since

‖YA1/2
T h‖2 + ∑

n≥0
‖XDTTnh‖2 = ‖A1/2

T h‖2 + ‖h‖2 − lim
n→∞

‖Tnh‖2 = ‖h‖2, h ∈H .

In addition,

(U ⊕Mz)
∗πX,Yh = (U∗YA1/2

T h, M∗z WXh)

= (YA1/2
T Th, WX(Th)) = πX,Y(Th), h ∈H ,

which shows that (πX,Y, (U ⊕Mz)∗) extends T.

Sometimes, we can numerically express this extendability problem, as we can see in
the following example.

Example 4. Let H , D , E be complex Hilbert spaces, H0 a non-null subspace of H , U ∈ B(E ), a
unitary operator and µ ∈ T (T denotes the unit circle). If P = PH0 denotes the orthogonal projection
of H onto H0, then T = µP has unit norm. Obviously, DT = IH − P and T∗nTn = P, n ≥ 1.
Consequently, DT = H ⊥

0 , δT = dim H ⊥
0 , AT = A1/2

T = P, AT = H0 and aT = dim H0.
We deduce immediately that VT = µIH0 . Therefore, (Y, U∗) extends VT for a certain given
isometric operator Y : H0 → E if and only if ran Y reduces U and U|ran Y = λ̄Iran Y (equivalently,
ran Y ⊆ ker(µ̄IE −U)). In other words, there exists such an isometric operator Y if and only
if dim H0 ≤ nullity(µ̄IE −U) (here, the nullity of an operator is the Hilbert dimension of its
kernel). Moreover, for every λ ∈ D,

DT(IH − λT)−1 = ∑
n≥0

λn(IH − P)Pn = IH − P.

With these computations, Theorem 7 takes the form:
“There exists a linear isometry π : H → E ⊕H2

D (D) such that (π, (U⊕Mz)∗) extends
µPH0 if and only if dim H ⊥

0 ≤ dim D and dim H0 ≤ nullity(µ̄IE −U).
Any solution π of the equation µπPH0 = (U ⊕Mz)∗π has the form π = πX,Y, where

πX,Yh = (YPH0 h, WXh), h ∈H ,

while
(WXh)(λ) = Xh− XPH0 h, h ∈H , λ ∈ D,

X ∈ B(H ⊥
0 , D) and Y ∈ B(H0, ker(µ̄IE −U)) being arbitrary isometric operators.”

Remark 3. The condition on the existence of an isometric operator Y : AT → E with the property
that (Y, U∗) is a unitary extension of VT can be characterized by Theorem 3 as follows:

(a) There exists a subspace E0 of E , which reduces U such that the spectral measures of the
unitary operators VT |⋂

n≥0 A1/2
T TnH

and U∗|E0 possess identical multiplicity functions;
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(b) There exists a subspace E1 of E that contains E0, and it is invariant under U∗ such that the
shifts (VT)s and (U∗|∨

n≥0(E1	U∗nE1)
)s possess identical multiplicities.

We describe the necessary and sufficient conditions under which the dilation (πX,Y, U⊕
Mz) of T∗ is minimal:

E ⊕ H2
D (D) =

∨
n≥0

(U ⊕Mz)
nπX,YH .

Our aim is to compute the subspace F :=
∨

n≥0(U ⊕Mz)nπX,YH . Let h ∈H . Then

(U ⊕Mz)(πX,Y(Th)) = (UYVT A1/2
T h, WX(Th)) = (YA1/2

T h, WX(Th)),

so
(U ⊕Mz)(πX,Y(Th))− πX,Yh = (0, π0(XDTh)),

where π0 : D → H2
D (D) is the map:

(π0d)(λ) = d, d ∈ D , λ ∈ D.

One can apply, successively, the operator U⊕Mz to this equation in order to obtain that:

(U ⊕Mz)
n+1(πX,Y(Th))− (U ⊕Mz)

n(πX,Yh) = (0, Mn
z π0(XDTh)), h ∈H , n ≥ 0.

We deduce that {0} ⊕ H2
XDT

(D) ⊆ F .
We proceed by computing the powers (U ⊕Mz)nπX,Yh for every h ∈ H and n ≥ 0.

An inductive procedure shows that:

(U ⊕Mz)
nπX,Yh = (UnYA1/2

T h, fn),

where fn ∈ H2
XDT

(D). Since (0, fn) ∈ F by our remarks above, it follows that(∨
n≥0

UnYAT

)
⊕ {0} ⊆ F .

Finally, by a summation of subspaces,(∨
n≥0

UnYAT

)
⊕ H2

XDT
(D) ⊆ F .

The converse inclusion is obvious.
We conclude that F = E ⊕ H2

D (D) if and only if XDT = D and
∨

n≥0 UnYAT = E .
Equivalently, X is a unitary operator and the dilation (Y, U) of V∗T is minimal.

With these findings, we can now reformulate Theorem 7 in order to obtain minimal
isometric dilations.

Theorem 8. Let H , D , E be complex Hilbert spaces, T ∈ B(H ) and U ∈ B(E ) a unitary
operator. Then there exists a linear isometry π : H → E ⊕ H2

D (D) such that (π, U ⊕Mz) is a
minimal isometric dilation of T if and only if ‖T‖ ≤ 1, δT∗ = dim D and there exists an isometric
operator Y : AT∗ → E such that (Y, U) is a minimal unitary dilation of V∗T∗ .

Any solution π of this problem has the form π = πX,Y, where

πX,Yh = (YA1/2
T∗ h, WXh), h ∈H ,

Y ∈ B(AT∗ , E ) being any isometry with YVT∗ = U∗Y, while

(WXh)(λ) = XDT∗(IH − λT∗)−1h, h ∈H , λ ∈ D,
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X ∈ B(DT∗ , D) being an arbitrary unitary operator.

Remark 4. If Z : AT∗ ⊕ H2
AT∗	A1/2

T∗ T∗H
(D)→ E is the unitary operator defined by:

Z(h, f ) := Yh + ∑
n≥0

Un+1Y(M∗nz f )(0), h ∈ AT∗ , f ∈ H2
AT∗	A1/2

T∗ T∗H
(D),

then (iAT∗ , Z∗U∗Z) is a unitary extension of VT∗ , the dilation (iAT∗ , Z∗UZ) of V∗T∗ is minimal
and Z∗U∗Z has the matrix representation:

Z∗U∗Z =

(
VT∗ E0

0 M∗z

)
.

These observations are consequences of Theorem 4.

We also discuss the particular situation when U is the identity operator on E . Then the
condition that (Y, U∗) extends VT can be expressed by VT = IAT . Equivalently, A1/2

T T =

A1/2
T or, as A1/2

T and AT have identical closures AT of their ranges, ATT = AT .

Corollary 1. Let H , D , E be complex Hilbert spaces and T ∈ B(H ). Then there exists a linear
isometry π : H → E ⊕ H2

D (D) such that (π, (IE ⊕Mz)∗) extends T if and only if ‖T‖ ≤ 1,
δT ≤ dim D , aT ≤ dim E and ATT = AT .

Any solution π of the equation πT = (IE ⊕Mz)∗π has the form π = πX,Y, where

πX,Yh = (YA1/2
T h, WXh), h ∈H

and
(WXh)(λ) = XDT(IH − λT)−1h, h ∈H , λ ∈ D,

X ∈ B(DT , D) and Y ∈ B(AT , E ) being arbitrary isometric operators.

Corollary 2. Let H , D , E be complex Hilbert spaces and T ∈ B(H ). Then there exists a linear
isometry π : H → E ⊕ H2

D (D) such that (π, IE ⊕Mz) is a minimal isometric dilation of T if
and only if ‖T‖ ≤ 1, δT∗ = dim D , aT∗ = dim E and TAT∗ = AT∗ .

Any solution π of this problem has the form π = πX,Y, where

πX,Yh = (YA1/2
T∗ h, WXh), h ∈H

and
(WXh)(λ) = XDT∗(IH − λT∗)−1h, h ∈H , λ ∈ D,

X ∈ B(DT∗ , D) and Y ∈ B(AT∗ , E ) being arbitrary unitary operators.

6. Conclusions

Given a bounded linear operator T acting on a complex Hilbert space H and an
isometric operator V, which is defined on the complex Hilbert space K , we completely
describe the conditions that should be imposed on T in order to ensure the existence of an
isometry π ∈ B(H , K ) such that πT = V∗π. We provide, in addition, parametrizations
for the set of all solutions π of this problem. We also discuss the connection with the
problem of finding linear isometries π : H → K such that T∗n = π∗Vnπ for every
positive integer n. The two problems are actually equivalent in minimality conditions,
i.e., when K is the smallest subspace, which is invariant under V and contains πH . This
means that a result on extensions can be translated into a result on dilations and the other
way around. However, when the minimality assumption is not satisfied, dilations are more
general than extensions. We formulated an example in which (π, V) is a dilation of T∗,
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but (π, V∗) is not an extension of T. Another example shows that even if (π, V∗) is an
extension of T, the dilation (π, V) of T∗ is not always minimal.

When H is a subspace of K and π is the corresponding inclusion iH (so, π∗ is the
orthogonal projection PH of K onto H ), the first equation becomes an extension problem,
i.e., V∗|H = T, while the second one is the classical dilation problem proposed by Sz.-Nagy,
i.e., T∗n = PH Vn|H for every n ≥ 0. In other words, we propose generalized versions
of the classical results and provide some clarification on the structure of these dilations
or extensions. Our approach is, in some sense, different from the one usually followed in
dilation theory. We have the operator V, with all its structure, and we study the properties
of T such that it can be π-extended to V∗. Finally, we precisely describe the operator π.

The first particular situation that was taken into consideration in this study is when
V is a unitary operator. In this case, T must be a linear isometry. Our characterization is
exclusively numeric, and it involves the multiplicities of certain unilateral shifts and the
multiplicity functions associated with the spectral measures of some unitary operators. It is
also connected with the invariant subspace theory since it requires the existence of some
subspaces that are reducing for V or that are invariant under V. Passing to the case when
V is a given shift, we obtain similar results as the one obtained by Foias, in the classical
case, i.e., T must be a contraction of class C0·. We present, in addition, the exact form of π.
In full generality, by the Wold–Halmos theorem, a linear isometry V can be written as the
direct sum between a unitary operator U on a Hilbert space E and a unilateral shift Mz (i.e.,
the multiplication by the independent variable on a certain D-valued Hardy space on the
unit disc). We obtain that T must be a contraction, its defect index is less than the Hilbert
dimension of D and U∗ is a unitary extension of the asymptotic isometry VT associated
with T. For the last assertion, in order to obtain a more precise description, we are able
to use the results of Section 3. One can also note that the isometry VT associated with
the asymptotic limit AT has been extensively studied in the literature, so we have a good
chance of clarifying the connection between T, AT and VT . We also gave an example in
which U has a particular form; namely, it is the identity operator IE . In this case, VT = IAT
and ATT = AT .

While the classical results were widely studied and are useful in many domains,
e.g., in invariant subspace theory, interpolation theory, prediction, control, and so on, it is
natural to expect that these generalizations would provide larger classes of applications.
Some steps forward in this direction were already made recently (see, e.g., [15,16,41,42]).
A natural way to extend these results is to pass to the multivariable case, i.e., to systems
(T1, . . . , Tn) of commuting contractions acting on the same Hilbert space H . The starting
point in this direction is a result of Curto and Vasilescu [43] (a refined version has been
proposed in [44]), who provided necessary and sufficient conditions on such a tuple in
order to possess a backward multishift extension. This subject will be treated elsewhere.
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