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Abstract: A new population balance model is introduced, in which a pair of particles can coagulate
into a larger one if their encounter is a completely inelastic collision; otherwise, one of them breaks
into multiple fragments (two or more) due to the elastic collision. Mathematically, coagulation and
breakage models both manifest nonlinearity behavior. We prove the global existence and uniqueness
of the solution to this model for the compactly supported kinetic kernels and an unbounded breakage
distribution function. A further investigation dealt with the volume conservation property (necessary
condition) of the solution.
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1. Introduction

Aggregation (coagulation) and fragmentation are fundamental mechanisms that occur
in particulate processes such as granulation and crystallization in the pharmaceutical
industry [1]. When two particles merge to form a larger one, this process is defined as
aggregation. In reverse, fragmentation leads to the formation of smaller particles after the
breakup of the mother particle. The aggregation process is inherently nonlinear, while
fragmentation is of two types (a) linear, and (b) nonlinear. If fragmentation is spontaneous
and driven by an external agent then the process is linear. However, if the process occurs
due to the interactions (collisions) between the particles in the system, then it is recognized
as a nonlinear fragmentation. The byproducts of the original fragmentation undergo
repeated collisions and breakages to drive this process forward. The collisional-induced
fragmentation can also be observed in various fields of science and engineering, including
the formation of raindrops [2], communication systems [3] and milling processes [4]. Both
aggregation and fragmentation mechanisms have been intensively used in the literature for
developing mathematical models corresponding to granulation processes [1].

Mathematically, both aggregation and collisional-induced fragmentation mechanisms
are represented by a nonlinear integro-partial differential equation. The mathematical
expression for tracking the changes in the distribution ϕ(x, t) via these mechanisms can be
written as:

∂ϕ(x,t)
∂t = 1

2

∫ x
0 C (x− y, y)ϕ(x− y, t)ϕ(y, t)dy− ϕ(x, t)

∫ ∞
0 C (x, y)ϕ(y, t)dy

+
∫ ∞

0

∫ ∞
x K (y, z)B(x, y; z)ϕ(y, t)ϕ(z, t)dydz− ϕ(x, t)

∫ ∞
0 K (x, y)ϕ(y, t)dy (1)
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with the initial data

ϕ(x, 0) = ϕ0(x)(≥ 0), for all x ∈ R+ = (0, ∞). (2)

Here, ∂t stands for the partial derivative with respect to the time t. ϕ is the number
density function for particles of volume x at time t. The kernel C (x, y) is the aggregation
rate at which two particles with particle properties x and y combine to form a larger cluster.
K (x, y) is the collision kernel which describes the rate at which particles of properties
x and y are colliding. It is worth noting that both the kernels C (x, y) and K (x, y) are
symmetric,that is, C (x, y) = C (y, x) and K (x, y) = K (y, x). B(x|y; z) is the rate at which
particles of property y breaks into fragments of property x due to its impact with a particle
of property z. The breakage kernel B satisfies the following properties.

(i) B(x, y; z) is non negative and symmetric with respect to y and z, that is

B(x, y; z) = B(x, z; y).

(ii) Volume conservation law∫ y

0
xB(x, y; z)dx = y and B(x, y; z) = 0 for all y ≤ x; (3)

(iii) Number of particles after fragmentation∫ y

0
B(x, y; z)dx = ν(y, z) ≤ N̄ < ∞ for all y > 0, z > 0. (4)

The first integral on the right-hand side of Equation (1) represents the formation of the
particle property x due to the merging of particles of properties (x− y) and y. The second
term denotes the disappearance of the particle property x from the system. The third
integral describes the formation of the particle property x from y due to its collision with
another particle z at a specific breakup rate B(x, y; z). In this term, there is no restriction on
the particle property z, which acts as a catalyst, as it collides with the fragmenting particle
property y, which leads to the formation of x. The final term explains the disappearance of
particle property x due to their collision with the other particles present in the system at a
specific collision rate K (x, y).

To represent the full dynamical systems (specifically granulation and crystallization),
it is also required to identify the integral properties such as the total number of particles,
total volume in the system and total area of the particles. For this reason, the moments of
number density ϕ(x, t) must also be defined. LetMk(t) denote the kth order moment of
the number density function ϕ(x, t), and it is defined as follows:

Mk(t) =Mk(ϕ(x, t)) :=
∫ ∞

0
xk ϕ(x, t)dx. (5)

The zeroth order moment gives the total number of particles, whereas the total volume
in the system is given by the first order moment. The property of volume conservation is
expected to hold during both aggregation and fragmentation events.

Smoluchowski [5] was the first to develop an aggregation kinetics discrete model,
now known as the discrete Smoluchowski coagulation equation (SCE). Müller [6] pro-
posed a continuous model for the volume distribution of particles, which included other
phenomena such as particle fragmentation. Dubovskiı̌ and Stewart [7] established the
existence and uniqueness of the solution for this continuous model. In 1988, Cheng and
Redner [8,9] were the first to formulate a model on the nonlinear breakage equation. The
analytical solutions of the general nonlinear breakage equation were studied by Kostoglou
and Karabelas [10]. Ernst and Pagonabarraga [11] studied the collision-induced nonlinear
fragmentations caused by binary interactions. Vigil et al. [12] and Ke et al. [13] provided
the extensive analysis on coagulation with collision-induced fragmentation. Some other ex-
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istence and uniqueness studies can also be found in [14,15]. Various numerical approaches
in 1D and 2D for solving these models have been discussed in detail by [16–22].

In the SCE, the only possibility for the clusters is to continue growing due to the
aggregation mechanism, that is, smaller particles cannot be formed in the system. This
restricts the application of only the coagulation process in the granulation process, however,
it is still useful for polymerization process. This completely eliminates the possibility of the
system to reach a steady state or equilibrium solution. Thus, this presents an opportunity
for studying the Smoluchowski equation along with the fragmentation process, allowing
the system to reach equilibrium. We have highlighted some of the works conducted in this
regard in the above literature review. Our work in this article is another extension of the
previously mentioned articles, albeit with the establishment of a new model.

In the present work, we introduce an entirely new model for continuous coagulation
with collisional breakage. Earlier works have analysed equations with collsional breakage
but this is the first time that such a model has been studied. The model mentioned
includes the coagulation terms from the continuous SCE and the fragmentation process is
represented by the third and fourth terms in (1). This allows us to study the existence of an
equilibrium solution for these mechanisms and discuss the well-posedness of Equation (1).
The current research work is majorly focused on establishing this well-posedness for
compactly supported kernels. Furthermore, it is hypothesized that the breakage distribution
function has the structure of a power law. The volume conservation law and uniqueness of
the solution will also be proven to hold true.

Let us now mention the spaces considered in this article. For a fixed T(> 0), consider
a strip

W := {(x, t) : 0 < x < ∞, 0 ≤ t ≤ T}

and define Ψr,σ(T) to be the space of all continuous functions ϕ with the norm

‖ϕ‖Ψ := sup
0≤t≤T

∫ ∞

0

(
xr +

1
x2σ

)
|ϕ(x, t)|dx, r ≥ 1, σ ≥ 0. (6)

Furthermore, consider Ψ+
r,σ(T) the set of all non-negative functions from Ψr,σ(T). In

this article, we prove the existence of strong solutions for the coagulation fragmentation of
Equation (1) and (2) under the following assumptions over the kinetic kernels;

(A1) K (x, y) is a non-negative and continuous function on R+ ×R+.
(A2) B(x, y; z) is a non-negative, continuous function satisfying the condition∫ y

0
x−θσB(x, y; z)dx ≤ Φ(y), where Φ(y) = ηy−θσ,

where η and θ are considered to be positive constants.
A breakdown of the various sections of this paper is as follows: In Section 2, we

state and provide a detailed proof of the existence of solutions for the IVP (1) and (2). In
Section 3, the theoretical results for the volume conservation property of the solution is
provided. Meanwhile in Section 4, the uniqueness of the solution is proved. The last section
is devoted to some important remarks and conclusions.

2. Existence of Solutions

Theorem 1. Let the functions C (x, y), K (x, y) and B(x, y; z) be nonnegative and continuous
on R+ ×R+,R+ ×R+ and R+ ×R+ ×R+ respectively, and satisfy the conditions (A1), (A2).
Moreover, the kernel C and K have compact support for each time 0 ≤ t ≤ T. Then, the IVP (1)
and (2) has at least one solution ϕ ∈ Ψ+

r,σ(T).

Proof. We prove the theorem in the following steps;

• Local existence of the solution, that is, there exists a τ > 0 such that the IVP (1) and (2)
has at least one solution ϕ ∈ Ψ+

r,σ(τ);
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• Nonnegativity of the local solution;
• Global existence of the unique solution to the space Ψ+

r,σ(T).

Existence of local solution: Let us consider that there is a fixed R(> 0), the coagulation
and fragmentation kernels C (x, y) and K (x, y) have compact supports in the intervals
[0, R]× [0, R] for each t ∈ [0, T]. Followed from Equation (1), we have

ϕ(x, t) = ϕ0(x) +
∫ t

0

[
1
2

∫ x
0 C (x− y, y)ϕ(x− y, ξ)ϕ(y, ξ)dy−

∫ ∞
0 C (x, y)ϕ(x, ξ)ϕ(y, ξ)dy

+
∫ ∞

0

∫ ∞
x K (y, z)B(x, y; z)ϕ(y, ξ)ϕ(z, ξ)dydz− ϕ(x, ξ)

∫ ∞
0 K (x, y)ϕ(y, ξ)dy

]
dξ. (7)

Hence, the solution to (1) and (2) for x > 2R takes the value

ϕ(x, t) = ϕ0(x). (8)

The relation (8) provides an approximate solution function beyond the right hand side
of the compact domain, where the tails of the solution ϕ(x, t), that is, larger size particles,
does not alter at all and matches with the tails of the initial distribution ϕ0(x). Let us now
focus to show that the local existence of a unique solution for 0 < x ≤ 2R.

In this regard, let us define the integral operatorH as follows;

H(ϕ)(x, t) := right hand side of Equation (7).

Since C and K have compact supports and ϕ0 is a nonnegative continuous func-
tion,the integral operatorH is well-defined on Ψr,σ(τ). This result will be proven via the
contraction mapping principle. We began this exercise by showing that for small τ > 0
there exists a closed ball in Ψr,σ(τ), which is invariant relatively to the mapping H. Let
L0(> 0) be a constant such that

‖ϕ‖(τ)Ψ := sup
0≤t≤τ

∫ ∞

0

(
xr +

1
x2σ

)
|ϕ(x, t)|dx ≤ L0. (9)

Multiplying Equation (7), with
(

xr +
1

x2σ

)
on both hand sides and after performing

the integration over x, we reached

‖H(ϕ)‖(τ)Ψ ≤ ‖ϕ0‖
(τ)
Ψ +

∫ t

0

[
1
2

∫ ∞

0

(
xr +

1
x2σ

) ∫ x

0
C (x− y, y)ϕ(x− y, ξ)ϕ(y, ξ)dydx

+
∫ ∞

0

(
xr +

1
x2σ

) ∫ ∞

0

∫ ∞

x
K (y, z)B(x, y; z)ϕ(y, ξ)ϕ(z, ξ)dydzdx

−
∫ ∞

0

(
xr +

1
x2σ

)
ϕ(x, ξ)

∫ ∞

0
[C (x, y) +K (x, y)]ϕ(y, ξ)dydx

]
dξ. (10)

Further, we use the application of the Fubini theorem followed by changing the order
of integration and considering µ := max{N̄, η}, then, one can obtain the following∫ ∞

0

∫ ∞

0

∫ ∞

x

(
xr +

1
x2σ

)
K (y, z)B(x, y; z)ϕ(y, ξ)ϕ(z, ξ)dydzdx

=
∫ ∞

0

∫ ∞

0

∫ y

0

(
xr +

1
x2σ

)
K (y, z)B(x, y; z)ϕ(y, ξ)ϕ(z, ξ)dxdydz

≤
∫ ∞

0

∫ ∞

0

∫ y

0
yrB(x, y; z)K (y, z)ϕ(y, ξ)ϕ(z, ξ)dxdydz

+
∫ ∞

0

∫ ∞

0

∫ y

0
x−2σB(x, y; z)K (y, z)ϕ(y, ξ)ϕ(z, ξ)dxdydz

≤
∫ ∞

0

∫ ∞

0

[
N̄yr + ηy−2σ

]
yrK (y, z)ϕ(y, ξ)ϕ(z, ξ)dydz
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≤ µ
∫ ∞

0

∫ ∞

0

(
yr +

1
y2σ

)
K (y, z)ϕ(y, ξ)ϕ(z, ξ)dydz

Since C and K both have compact support, their supremiums exist. Let κ1 =
sup

σ
R≤x,y≤R

C (x, y) and κ2 = sup
σ
R≤x,y≤R

K (x, y). Applying this inequality in (10), we obtain

‖H(ϕ)‖(τ)Ψ ≤ ‖ϕ0‖
(τ)
Ψ + (2rκ1 + µκ2)

∫ t

0

∫ ∞

0

∫ ∞

0

(
yr +

1
y2σ

)(
zr +

1
z2σ

)
ϕ(y, ξ)ϕ(z, ξ)dydzdξ

≤ ‖ϕ0‖
(τ)
Ψ + (2rκ1 + µκ2)τL2

0 (11)

Further, let ζ1 := max{‖ϕ0‖
(τ)
Ψ , (2rκ1 + µκ2)}; then, the expression (11) reduces to

‖H(ϕ)‖(τ)Ψ ≤ ζ1

(
1 + τL2

0

)
.

Hence, ‖H(ϕ)‖(τ)Ψ ≤ L0, if ζ1
(
1 + τL2

0
)
≤ L0. This inequality holds if τ < 1

4ζ2
1

and

1−
√

1− 4ζ2
1τ

2ζ1τ
≤ L0 ≤

1 +
√

1− 4ζ2
1τ

2ζ1τ
. (12)

Presently, our focus will be to demonstrate that the mapping ofH is contracting. Using
the relation in (7), we have

‖H(ϕ)−H(ψ)‖(τ)Ψ ≤
∫ t

0

[
1
2

∫ ∞

0

(
xr +

1
x2σ

) ∫ x

0
C (x− y, y)|A(x− y, y, ξ)|dydx

+
∫ ∞

0

∫ ∞

0

∫ ∞

x

(
xr +

1
x2σ

)
K (y, z)B(x, y; z)|A(y, z, s)|dydzdx

+
∫ ∞

0

∫ ∞

0

(
xr +

1
x2σ

)
(C (x, y) +K (x, y))|A(x, y, s)|dydx

]
ds (13)

where A(x, y, s) = ϕ(x, s)ϕ(y, s)− ψ(x, s)ψ(y, s).
The first expression in the above inequality (13) can be estimated, as follows

1
2

∫ ∞

0

(
xr +

1
x2σ

) ∫ x

0
C (x− y, y)|A(x− y, y, ξ)|dydx ≤ 2rκ1‖ϕ− ψ‖(τ)Ψ

[
‖ϕ‖(τ)Ψ + ‖ψ‖(τ)Ψ

]
Furthermore, the second expression in the above inequality (13) is simplified using the

Fubini’s theorem with respect to z and x followed by interchanging the order of integration
with respect to y and x, which gives the following expression∫ ∞

0

∫ ∞

0

∫ ∞

x

(
xr +

1
x2σ

)
K (y, z)B(x, y; z)|A(y, z, s)|dydzdx

≤
∫ ∞

0

∫ ∞

0

∫ y

0
xrK (y, z)B(x, y; z)|A(y, z, s)|dxdydz

+
∫ ∞

0

∫ ∞

0

∫ y

0

1
x2σ

K (y, z)B(x, y; z)|A(y, z, s)|dxdydz

≤ µ
∫ ∞

0

∫ ∞

0

(
yr +

1
y2σ

)
K (y, z)|A(y, z, s)|dydz

≤ µκ2

∫ ∞

0

∫ ∞

0

(
yr +

1
y2σ

)
|ϕ(z, s)(ϕ(y, s)− ψ(y, s))

+ g(y, s)(ϕ(z, s)− ψ(z, s))|dydz

≤ κ2µ‖ϕ− ψ‖(τ)Ψ

[
‖ϕ‖(τ)Ψ + ‖ψ‖(τ)Ψ

]
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Using this estimation on the relation (13), the following is obtained

‖H(ϕ)−H(ψ)‖(τ)Ψ ≤ τ(κ1(2r + 1) + κ2(µ + 1))‖ϕ− ψ‖(τ)Ψ

[
‖ϕ‖(τ)Ψ + ‖ψ‖(τ)Ψ

]
(14)

Further, let ζ2 := 2[κ1(2r + 1) + κ2(µ + 1)], then the inequality (14) reduces to

‖H(ϕ)−H(ψ)‖(τ)Ψ ≤ τζ2L0‖ϕ− ψ‖(τ)Ψ . (15)

Thus, the mapping H is contractive on Ψ+
r,σ(τ) for τ < [ζ2L0]

−1. Using this result
together with the inequality (12), there exists an invariant ball of radius L0 for sufficiently
small τ > 0 and in this ball,H is contractive. Consequently, the ball contains a fixed point
ofH.

Nonnegativity: Case I: Consider ϕ0(x) > 0 for all x ∈ (0, R). Since ϕ is continuous,
there exists a small strip {(x, t) : 0 < x < R, t ∈ [0, t0)}, where ϕ is strictly positive. For a
particular t0, we can find an x0 ∈ (0, R) such that (x0, t0) is the point with the property that

ϕ(x0, t0) = 0 and ϕ(x, t) 6= 0 for all 0 < x < max{x0, R}, t ∈ [0, t0) (16)

Since the solution is continuous and satisfies (7) it must be continuously differentiable
with respect to t. Therefore,

∂t ϕ(x, t)|(x0,t0)
=

1
2

∫ x0

0
C (x0 − y, y)ϕ(x0 − y, t0)ϕ(y, t0)dy

+
∫ R

0

∫ R

x0

K (y, z)B(x0, y; z)ϕ(y, t)ϕ(z, t)dydz, (17)

• If x0 ≤ R, then ϕ(x, t) > 0 for all 0 < x ≤ R and 0 ≤ t < t0. The positivity of the right
hand side of (17) implies ∂t ϕ(x, t)|(x0,t0)

> 0.
• If x0 > R, we use the property (3) of the breakage function to obtain∫ R

0

∫ R

x0

K (y, z)B(x0, y; z)ϕ(y, t)ϕ(z, t)dydz = −
∫ R

0

∫ R

x0

K (y, z)B(x0, y; z)ϕ(y, t)ϕ(z, t)dydz

= 0

Thus, from the Equation (17), we have ∂t ϕ(x, t)|(x0,t0)
> 0.

The positive value of the time derivative establishes that there exists a point (x0, t),
with t < t0 such that ϕ(x0, t) < 0. However, this counters the hypothesis that (x0, t0) is
a point bearing a property provided by relation (16). Hence, the point (x0, t0) where the
solution vanishes does not exist.

Further, when x ≥ R by (7) and the compactly supported kernels C and K , the
solution coincides with the initial data. Hence, again it becomes positive. Consequently,
ϕ(x, t) is strictly positive provided that the initial distribution is strictly positive.

Case II: Suppose ϕ0 is not strictly positive. Then, we construct the sequence {ϕn
0} of

the positive function to satisfy the conditions listed in Theorem 1, which then converges
to ϕ0 uniformly in Ψr,σ(τ) with respect to t ∈ [0, τ]. We have established earlier that the
family of operatorsHn : Ψr,σ(τ)→ Ψr,σ(τ), defined as

Hn(ϕ)(x, t) =ϕn
0 (x) +

∫ t

0

[
1
2

∫ x

0
C (x− y, y)ϕ(x− y, ξ)ϕ(y, ξ)dy−

∫ ∞

0
C (x, y)ϕ(x, ξ)ϕ(y, ξ)dy∫ ∞

0

∫ ∞

x
K (y, z)B(x, y; z)ϕ(y, ξ)ϕ(z, ξ)dyd− ϕ(x, ξ)

∫ ∞

0
K (x, y)ϕ(y, ξ)dy

]
dξ
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is a contraction mapping. Therefore, as n→ ∞, we have

sup
‖ϕ‖(τ)Ψ ≤L

‖Hn(ϕ)−H(ϕ)‖(τ)Ψ ≤
∫ ∞

0

(
xr +

1
x2σ

)
|ϕn

0 (x)− ϕ0(x)|dx → 0.

Since the mapping is contractive in Ψr,σ(τ), therefore

‖ϕn − ϕ‖(τ)Ψ = ‖Hn(ϕn)−H(ϕ)‖(τ)Ψ ≤‖Hn(ϕn)−H(ϕn)‖(τ)Ψ + ‖H(ϕn)−H(ϕ)‖(τ)Ψ

≤‖Hn(ϕn)−H(ϕn)‖(τ)Ψ + ζ̄‖ϕn − ϕ‖(τ)Ψ ,

which implies(
1− ζ̄

)
‖ϕn − ϕ‖(τ)Ψ = ‖Hn(ϕn)−H(ϕn)‖(τ)Ψ → 0 whenever n→ ∞.

This shows that for a positive initial data, the solution ϕ is also positive.
Global existence of unique solution: Let us first discuss the boundedness of the moments

Mk(t) =
∫ ∞

0
xk ϕ(x, t)dx; where 0 ≤ k ≤ r and k = −2σ,

for compactly supported kernels. Simple calculations will lead us to the following results:

M1(t) ≤ m̄1, M−2σ(t) ≤ m̄−2σ, M0(t) ≤ m̄0, M2(t) ≤ m̄2, (18)

and so on. Here, terms m̄k, k = −2σ, 0, 1, . . . , r are all constants. Furthermore, it is important
to note that the boundedness of the kth moment ensures the boundedness of the (k + 1)th

moment for k = 2, 3, . . . , r. Thus, using the aforementioned results, we can conclude that the

‖ϕ‖Ψ ≤ m̄r + m̄−2σ.

implies that the solution of IVP (1) and (2) is bounded in the norm ‖.‖Ψ. Taking into account
the positivity/nonnegativity of the local solution, it is easy to extend it for 0 ≤ t ≤ T.
Recalling Theorem 2.2 of [23], the global existence of the unique solution belonging to
Ψ+

r,σ(T) can easily be proved.

3. Conservation of Volume

In order to show the volume conservation law, let us multiply equation (1) by the x by
performing integration over x; the following is obtained

dM(t)
dt

=
d
dt

∫ ∞

0
xϕ(x, t)dx =

1
2

∫ ∞

0

∫ x

0
xC (x− y, y)ϕ(x− y, t)ϕ(y, t)dy︸ ︷︷ ︸

M1∫ ∞

0

∫ ∞

0

∫ ∞

x
xK (y, z)B(x, y; z)ϕ(y, t)ϕ(z, t)dydzdx︸ ︷︷ ︸

M2

−
∫ ∞

0

∫ ∞

0
x(C (x, y) +K (x, y))ϕ(x, t)ϕ(y, t)dydx︸ ︷︷ ︸

M3

(19)

Under a suitable transformation, we can estimate the integral M1, as follows

M1 =
1
2

∫ ∞

0

∫ ∞

0
(x + y)C (x, y)ϕ(x, t)ϕ(y, t)dydx

=
∫ ∞

0

∫ ∞

0
xC (x, y)ϕ(x, t)ϕ(y, t)dydx (20)
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For the integralN1, using the application of the Fubini’s theorem followed by a change
in the order of integration with respect to y and x, and using (3), obtains

M2 =
∫ ∞

0

∫ ∞

0

∫ y

0
xK (y, z)B(x, y; z)ϕ(y, t)ϕ(z, t)dxdydz

=
∫ ∞

0

∫ ∞

0
yK (y, z)ϕ(y, t)ϕ(z, t)dydz

=
∫ ∞

0

∫ ∞

0
xK (x, y)ϕ(x, t)ϕ(y, t)dxdy (21)

Adding the estimations (20) and (21), M1 + M2 = M3 are obtained. Hence, by using
this relation on (19), we can conclude the volume conservation property of the existing
solution.

4. Uniqueness Theory

Theorem 2. Let the assumptions of Theorem 1 hold true, then the IVP (1) and (2) has a unique
solution in Ψ+

r,σ(T).

Proof. Let t 6= 0, ϕ1(x, t) and ϕ2(x, t) be two distinct solutions of (1), (2) along with
ϕ1(x, 0) = ϕ2(x, 0). Further suppose Q(x, t) := ϕ1(x, t)− ϕ2(x, t), and we construct an
auxiliary function

P(t) :=
∫ ∞

0
|Q(x, t)|dx.

Since both the solutions ϕ1(x, t) and ϕ2(x, t) satisfy the Equation (7), we have

P(t) ≤
∫ t

0

1
2

∫ ∞

0

∫ x

0
C (x− y, y)|A(x− y, y, ξ)|dydx︸ ︷︷ ︸

J0

+
∫ ∞

0

∫ ∞

0

∫ ∞

x
K (y, z)B(x, y; z)|A(y, z, ξ)|dydzdx︸ ︷︷ ︸

J1

+
∫ ∞

0

∫ ∞

0
(C (x, y) +K (x, y))|A(x, y, ξ)|dydx︸ ︷︷ ︸

J2

dξ (22)

Further performing the change in the order of integration followed by the application
of Fubini’s theorem, the integrals J0 and J1 can be estimated as

J0 ≤
1
2

k1(‖ϕ1‖Ψ + ‖ϕ2‖Ψ)P(s).

J1 ≤ k2N̄(‖ϕ1‖Ψ + ‖ϕ2‖Ψ)P(s).

Similar operations apply for the integral J2, and when using the relation (22), we obtain

N (t) ≤ Λ(‖ϕ1‖Ψ + ‖ϕ2‖Ψ)
∫ t

0
P(s)ds., (23)

where Λ is a positive constant depending only on k1, k2 and N̄. Since ϕ1 and ϕ2 both belong
to the space Ψ+

r,σ(T), the norms ‖ϕ1‖Ψ and ‖ϕ2‖Ψ are uniformly bounded with respect to
0 ≤ t ≤ T. Then, by applying Grownwall’s inequality on (23), we obtain

P(t) = 0. for all 0 ≤ t ≤ T,

which concludes the proof.
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5. Concluding Remarks

A new population balance model, including the nonlinear coagulation and frag-
mentation, was introduced in this paper. The model accounts for a completely inelastic
collision between a pair of particles, which leads to the formation of a larger particle. If
their encounter is not completely inelastic, then there is a possibility of the formation of
smaller particles when they collide. A proof has been given to obtain the existence and the
uniqueness of a solution to the purely nonlinear model for a set of kernels with compact
support. The results of the existence and uniqueness are further supported by providing
the theoretical outcome of the volume conservation law.
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