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Abstract: A theory of unbounded measures is constructed based on the quantum logics of orthogonal
projections. As an analogue of the ring of sets, the projector ideal is proposed. Finite and maximal
measures regarding the projector ideals are described. Analogues of a number of classical theorems of
measure theory are found. A wide class of unbounded measures on projection ideals is characterized.
A number of sufficient conditions are found to extend unbounded measures to an integral of the
entire algebra. The problem of describing unbounded σ-finite measures in semifinite algebras using
von Neumann is similar to the Gleason problem.
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1. Introduction

The algebraic axiomatic system of quantum logic is the subject of many research
papers [1]. Classical quantum logics consist of all orthogonal projections (=idempotents) of
a complex Hilbert space. In quantum logic, the states (=probability measures) are described
by Gleason’s theorem [2], and [3].

Let Π be a set of all orthogonal (=self-adjoint) projections in a separable Hilbert space
H, dimH ≥ 3. Let the function µ : Π→ R+ be such that µ(∑i Pi) = ∑i µ(Pi). Then, there is
a unique non-negative trace-class (nuclear) operator T such that µ(P) = tr(TP).

Note that Gleason’s theorem (countable-additive) measurements may be extended
to a linear normal functional on B(H)-algebra. In this sense, the measurement may be
called linear. Gleason’s theorem has been generalized to orthogonal projections from von
Neumann algebras (see, for example, [4]) and to real-orthogonal projections (see [5]).

The following question remains open: are there logics in Hilbert space other than
orthogonal projections, which allow for one to develop a theory of quantum mechanics as
efficiently as the logic of orthogonal projections?

The papers known to the author on unbounded measures of projections mainly belong
to Kazan mathematicians. These results are most fully presented in the PH thesis of
G.Lugovaya [6]. In this paper, the most attention is paid to measures for projections in
B(H). Since the algebra B(H) is discrete, the methods developed by G.Lugovaya are not
applicable to algebras of a continuous type, particularly algebras of type I I.

Vector fields were studied i [7], and orthogonal vector fields were studied in article [8].
Our goal is to develop an analogue of the classical measures in orthogonal projections

of Hilbert space that leads to a normal, semi-finite weight and serves as a good analogue of
the integral.

Let H be a separable complex Hilbert space with scalar product (·, ·); B(H) is a
set of all linear bounded operators on H; I is a unity on B(H). Let A ∈ B(H). Then,
|A| = (A∗A)1/2. Using P∆A, we can denote the orthogonal projection on AH. Let A, B be
bounded self-adjoint operators in B(H). We write that A ≤ B, if (Ax, x) ≤ (Bx, x) for all
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x ∈ H. P⊥ = I − P is used for any P ∈ Π, P ⊥ Q if PQ = 0. Two projections, P and Q, are
said to be in a general position if P ∧Q = P ∧Q⊥ = P⊥ ∧Q.

LetM ⊆ B(H) be such that if A ∈ M, then A∗ ∈ M. The setM′ = {B ∈ B(H) :
BA = AB, ∀A ∈ M} is said to be commutant ofM. IfM = M′′, thenM is said to be
von Neumann algebra on H. Basic information about von Neumann algebras can be found
in [9].

Let M+ be a set of all non-negative operators from M, and let Π be a set of all
orthogonal projections from M. Projections P, Q ∈ Π are said to be equivalent (when
writing P ∼ Q), if there is a unitary operator U ∈ M such that U∗PU = Q.

Von Neumann algebraM is a type I algebra if there is an abelian orthogonal projection
with central cover that leads to unity I onM. For instance, B(H) is a von Neumann algebra
of type I.

Von Neumann algebraM is a type I I algebra if any projection P may be “divided”
into two equivalent sub-projections P1, P2, P = P1 + P2, and P1 ∼ P2, and there is a faithful,
normal, and semi-finite trace onM+. (In particular, for a definition Neumann algebras of
of types I, I I, I I I of, see page 126 of [9]).

Note that P = ∑i Pi, P, Pi ∈ Π implies Pi ⊥ Pj, i.e., PiPj = 0. An operator T is said to
be attached to algebraM, if U∗TU = T for any unitary operator U from the commutant
M′. Let P ∈ Π. PlaceMP = {PAP : A ∈ M}. Let us identify operator A ∈ MP in PH
with operator AP ∈ M in H.

A lineal D ⊆ H is said to be strongly dense (with respect von Neumann algebraM) if
there is a sequence of orthogonal projections Pn ∈ M that increases to the unity I, such that
τ(I − Pn)n→+∞ ↘ 0 and Pn H ⊂ DZ. Here, τ is a faithful, normal, semi-finite trace onM+.

It is known that, for any sequence of strongly dense lineals {Dn}, the lineal ∩nDn is
strongly dense. Let P ∈ Π, P 6= 0 and let D be a strongly dense lineal. Then, PH ∩ D is
strongly dense for the PH lineal.

For an unbounded self-adjoint operator T ≥ 0 attached to the algebraM, the value
τ(Tp), p ∈ Π can be determined using equation τ(Tp) = limε↘0 τ(T1/2

ε pT1/2
ε ). Here,

Tε = T(I + εT)−1, ε > 0.
We can offer another option that is equivalent to the first. Let T =

∫ +∞
0 λd(eλ) be a

spectral decomposition of T. Then, τ(Tp) = limn→+∞ τ(pTn p). Here, Tn =
∫ n

0 λd(eλ).
Let us denote the set of all integrables (square-integrable) with respect to τ operators

by L1(τ,M) (by L2(τ,M)).
A function a(x, y) → C with a(x + z, y) = a(x, y) + a(z, y), a(x, y) = a(y, x) and

a(λx, y) = λa(x, y) ∀x, y ∈ H, and λ ∈ C is said to be a bilinear form (b.f.).
The structure of the article is as follows: the first section §1, discusses sufficient

conditions for extending a measure from the ideal of projections to the weight; the second
section §2 demonstrates the possibility of extending an infinitely valued measure to a
weight.

Main results. Ideals of projections and their properties

Definition 1. Let P, Q ∈ Π. The set M ⊆ Π is said to be ideal (of projections), if
(i) P ≤ Q, Q ∈M follow P ∈M;
(ii) P, Q ∈M and ‖PQ‖ < 1 follow P ∨Q ∈M.
(iii) sup{P : P ∈M} = I.

Note that condition (iii) is only necessary to the uniqueness of the continued measures.

Definition 2. The function φ :M+ → [0,+∞] with
(i) φ(A + B) = φ(A) + φ(B);
(ii) φ(λA) = λφ(A), λ ∈ C, 0∞ = 0.

is called the weight.

The weight is said to be:
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faithful, if φ(A) = 0 follows A = 0;
semi-finite if lin{A ∈ M+ : φ(A) < +∞} is an ultra-weakly dense set onM;
normal if Ai ↗ A ∈ M+ follows φ(A) = supi φ(Ai);
trace if φ(A∗A) = φ(AA∗) ∀A ∈ M.
Let us denote Mτ = {P ∈ Π : τ(P) < +∞}. Mτ is a lattice and ideal of projections.

Further, we can see that any measure is regular on this ideal for von Neumann algebra of
type I I.

First, we will study the set of projections on which any weight is finite.

Proposition 1. Let P, Q ∈ Π be such that ‖PQ‖ < 1. Then α(P ∨ Q) ≤ (P + Q) for same
α > 0.

Proof. By ‖PQ‖ < 1, the operator P + Q has a bounded inverse on (P ∨ Q)H. Place
c = ‖PQ‖. For any x ∈ H, we have ‖(P ∨ Q)x‖ >(1 − c)1/2‖Px‖. According to this,
(P ∨ Q− P)QH = (P ∨ Q− P)H. Therefore if x ∈ (P ∨ Q)H, then there exists x1 ∈ QH,
such that (P ∨ Q − P)(x − x1) = 0. Thus, x − x1 ∈ PH. Thus, we established that
(P + Q)H = (P ∨Q)H. This proves the Proposition.

By complicating the proof of Proposition 1, we can significantly strengthen it.

Proposition 2. Let P, Q ∈ Π be such that ‖PQ‖ < 1. Then,

P ∨Q ≤ 1
1− ‖PQ‖ (P + Q).

Proof. (1) Let us first establish the inequality that occurs when projectors P, Q are one-
dimensional and dimH = 2. Note, P ∨ Q = I. Then, PQP = (cos2α)P, where α ∈
(0, π/2), i.e., ‖PQP‖ = cos2α. The spectral decomposition of self-adjoint operator P + Q
is P + Q = (1− cosα)(I − F) + (1 + cosα)F = (1− cosα)I + (2cosα)F; here, F is a suitable
one-dimensional projection. Thus, P + Q ≥ (1− ‖PQ‖)I.

(2) Let the projections P, Q occur in the general position and let us denote, using
M(P, Q), the minimal von Neumann algebra generated by P, Q. In a separable Hilbert
space H M(P, Q), undergo a central decomposition into a direct integral of factors of
type I2 [9] Hapter II. P =

∫ ⊕
Λ pλdλ and Q =

∫ ⊕
Λ qλdλ, and Pλ, Qλ almost everywhere in

one-dimensional projectors ‖pλqλ‖ ≤ ‖PQ‖. Furthermore,

P ∨Q =
∫ ⊕

Λ
Pλ ∨Qλdλ ≤

∫ ⊕
Λ

(1− ‖PQ‖)−1(pλ + qλ)dλ = (1− ‖PQ‖)−1(P + Q).

(3) Let us consider the general case of P, Q. Then, P = P1 + P2 and Q = Q1 + Q2,
where P2 = P ∧ Q⊥, Q2 = Q ∧ P⊥, in addition to the projections P1, Q1, which are in a
general position. Finally, let us apply step (2).

Lemma 1. Let φ be a weight on von Neumann algebraM.
(i) Let P, Q ∈ Π be such that: φ(P) < +∞, φ(Q) < +∞ and ‖PQ‖ < 1. Then

φ(P ∨Q) < +∞.
(ii) Let φ be semi-finite; then, sup{P : φ(P) < +∞} = I.

Proof. (i) The operator P + Q has a bounded inverse operator in PH + QH. Therefore,
α > 0 occurs, such that α(P ∨ Q) ≤ P + Q. Thus φ(α(P ∨ Q)) ≤ φ(P + Q). Hence,
φ(P ∨Q) < +∞.

According to the definition of the semi-finiteness of a weight, (ii) holds.

2. Measures on Ideals

Let us denote, using MP, the set {Q : Q ∈M, Q ≤ P}



Axioms 2023, 12, 167 4 of 14

Definition 3. The function µ : M→ R+ is said to be a measure if µ(∑i Pi) = ∑i µ(Pi), Pi ∈M.

Let µ : M→ R+ be a measure. Let B ≥ 0, B ∈ M, B = PBP, P ∈M and
∫

eλdλ be the
spectral decomposition of B. Place µ′(B) =

∫
µ(eλ)dλ.

The measure µ : M→ R+ is said to be:
finite(=bounded) if sup{µ(P) : P ∈M} < +∞,
infinite(=unbounded) if sup{µ(P) : P ∈M} = +∞,
regular if there is weight φ, such that µ(P) = φ(P) for all P ∈M .
Let µ1 : Mk → R+ and µ : M→ R+ serve as measures. The measure µk is said to be a

continuation of µ if M ⊂Mk and µ1(P) = µ(P) for all P ∈M. In this case, we write µ ≤ µ1.

Remark 1. Any measure µ on a finite algebra of type II in separable Hilbert space is regular. If,
in addition, µ is finite, then µ(P) = τ(AµP). Here, τ is a faithful, normal, semi-finite trace and
Aµ ∈ L1(τ,M) is a unique, non-negative operator (see [4]).

LetM be a type I I von Neumann algebra and µ : M→ R+ be a measure. Let P ∈ Π. Put
MP = {Q ∈M : Q ≤ P}. We say that projection P has a finite measure (finite µ-measure) if

sup{Q : Q ∈MP} = P and µ(P) = sup{µ(Q) : Q ∈MP}

Theorem 1. Let µ : M→ R+ be a measure. Let M be the largest hereditary class of projections of
finite µ-measure. Then, M is the ideal of projections and there is a unique measure µ1 on M, such
that µ ≤ µ1.

Proof. Let us show that P, Q ∈M and ‖PQ‖ ≤ δ < 1 entails P ∨Q ∈M. Using ‖PQ‖ ≤
δ < 1, subspace (P ∨Q)H is the direct sum of subspaces PH, QH. Hence, any vector f ∈
(P ∨Q−Q)H can be represented as f = fP + fQ. Here, fP ∈ PH, fQ ∈ QH. The function
A : f → fP ( f ∈ (P ∨Q−Q)H) is a restricted operator (since ‖ fP‖2 ≤ (1− ‖PQ‖)−1‖ f ‖2).

This means that for any projection G, G ≤ P ∨Q−Q, the operator is AG ∈ M. Let
us choose a projection F, F 6= 0, such that F ≤ P∆AG, and projection E, E 6= 0, such that
E ≤ P∆QF. We will obtain F ∨ E ∈M and 0 6= (F ∨ E) ∧ G ∈M. Hence, any projection G,
G ≤ (P ∨Q−Q) contains a non-zero projection from M. It is now clear that this similarly
holds for any projection G, G ≤ P ∨Q. According to Proposition 1,

µ((F ∨ E) ∧ G) ≤ µ(F ∨ E) ≤ α(µ(P) + µ(Q)).

It follows from this inequality that every projection G ≤ P ∨ Q has a finite µ-measure.
Hence, M is the ideal. The countable additivity of the function µ is obvious. Theorem 1 is
proved.

Definition 4. The measure µ of Theorem 1 is said to be a closed measure.

Note that the closure of a measure does not change its regularity.
Let T =

∫
λdeλ be non-negative self-adjoint operator associated withM, (i.e., eλ ∈ M

for all λ). The function τ(TP)→ [0,+∞] is said to be the measure associated with T.
There are projection ideals in which not every measure is regular. Therefore, the fol-

lowing theorem is of interest.

Theorem 2. In the von Neumann algebra of type I I for any measure ν : Mτ → R+, there is a
non-negative operator Tµ, such that µ(Q) = τ(TµQ), ∀ Q ∈Mτ .

We first introduce some notations and provide auxiliary assertions. Let µ : M→ R+

be a measurement. Put

αµ(Q) = in f {α (≤ +∞) : µ(Q′) < ατ(Q′), ∀Q′ ∈M∩Mτ , Q′ ≤ Q, Q′ 6= 0}.

N(P, a) = {Q ∈Mτ ∩M : µ(Q) ≥ aτ(Q), Q ≤ P}.
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Sa = {P ∈Mτ : αµ(I − P) < a}.

We note the following elementary property: If Q1 ⊥ Q2 then αµ(Q1 + Q2) ≤ αµ(Q1) +
αµ(Q2) (< +∞) We will use the following proposition

Corollary 1. Let µ : Mτ → R+ be a measure in the algebra of type I I and αµ(I) < +∞. Then,
operator Tµ ∈ M is found, such that µ(Q) = τ(TµQ) ∀ Q.

Proof. Let αµ(P) < c ∀P. Place

D(M) = ∪Q∈M(L2(MP) ∩MQ), P = ∨Q∈MQ.

Let us define the bilinear form t(x, y) = µ′(y∗x), x, y ∈ D(M). Bilinear form t(·, ·), defined
on the lineal D(M) of operators that densely occur in a Hilbert space L2(MP), is bounded,
i.e., sup‖x‖=1t(x, x) < c. According to continuity, the form t(·, ·) can be extended to the
bilinear form t(,̇·) onL2(MP). Operator 0 ≤ Tµ ∈ M is found, such that t(x, y) = τ(y∗xTµ)
(see [10], p. 118). Let P ∈ M. Put P = ∑ Pi, PiPj = δijPi, and P ∈ D(M). By applying
Lemma 13.1 [10], we complete the proof.

It is clear that Tµ ≥ 0. Let us first find out the structure of the set Sa, a > 0.

Lemma 2. Let µ : M → R+ be a measure in the algebra of type I I and a > 0. If N, some set
of mutually orthogonal projections from N(I, a) and 0 ≤ 2b ≤ τ(∨{Q, Q ∈ N}), occurs, then
P ∈ Π can be found, such that

τ(P) = b and 2µ(P) ≥ aτ(P) (1)

Proof. Let the lemma’s requirements be satisfied. LetX be some finite set from N, such that
b < τ(∨{Q : (Q ∈ X )}). Let L1(τ,MP) be a set of all integrable by τ operators with the
norm ‖B‖1 = τ(|B|). For any P ∈M, there exists an operator BP

µ for which τ(BP
µ ) = µ(P)

and µ(Q) = τ(BP
µ Q), Q ≤ P. Place Z = ∨{Q : Q ∈ X} and let |BZ

µ Q| =
∫

λdeλ be the
spectral representation of |BZ

µ Q|. Then,

aτ(Z) = ∑
Q∈X

aτ(Q) ≤ ∑
Q∈X

µ(Q) = ‖BZ
µ ‖1.

If µ(I − eλ) = ‖|BZ
µ Q|(I − eλ)‖1 < aτ(I − eλ), λ > 0, then λ < a and

µ(eλ + Z− I) = ‖|BZ
µ Q|(eλ + Z− I)‖1 < aτ(eλ + Z− I), ∀ λ > 0

Hence,

µ(Z) = µ(I − eλ) + µ(eλ + Z− I) < aτ(Z), µ(I − eλ) ≥ aτ(I − eλ), ∀λ > 0

Let b ≤ τ(Z). If b ≥ τ(I − e+0), then any projection P ∈ Π, such that τ(P) = b and
I − e+0 ≤ P ≤ Z projections will be desirable because

aτ(P) ≤ aτ(Z) ≤ µ(Z) = ‖BZ
µ ‖1 = ‖BZ

µ P‖1 = µ(P).

If b < τ(I − e+0), then there is λ > 0 with τ(I − eλ+0) ≤ b ≤ τ(I − eλ). Therefore, any
projection P ∈ Π such that τ(P) = b and I − eλ+e ≤ P ≤ I − eλ will be desired.

Lemma 3. Let µ : Mτ → R+ be a measure in the algebra of type I I∞. Then, there exists a > 0,
such that Sa 6= ∅.

Proof. However, for any a > 0 and any P0 ∈ Mτ , there is a projection, Q, which means
Q ∈Mτ , Q ≤ I − P0 and µ(Q) > aτ(Q). Let us denote, using N, the maximal, mutually
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orthogonal set from N(I, a). Place Pa = ∨{Q : Q ∈ N}. It is clear that Pa /∈ Mτ . Let
us choose a sequence of positive numbers, an and bn, such that an ↗ +∞, ∑ bn < +∞
and ∑ anbn = +∞. According to Lemma 2, there exists P1 ∈ Π, such that τ(P1) = b1 and
µ(P1) > a1τ(P1).

Let us suppose that the projection Pn−1 is already chosen. Let us carry out the same
reasoning as before, choosing the projection Pn such that

τ(Pn) = bn, Pn ∈ N(I −
k=n

∑
k=1

Pk, an).

Place P = ∑n Pn. Then, µ(P) = ∑ µ(Pn) = ∑n bn < +∞, i.e., P < I. In addition,
µ(P) = ∑n µ(Pn) > ∑n anτ(Pn) > ∑n anbn = +∞. We obtain a contradiction.

Lemma 4. Let µ : M → R+ be a measure of the algebra of type I I. For any ε > 0, a > 0 and
P ∈ Sa, such that τ(P) ≤ ε.

The proof is easy to carry out using the opposite reasoning. We omit the proof.

Corollary 2. For any ε > 0, there exists a > 0 and a maximal set of mutually orthogonal
projections N from N(I, a) with τ(∨{Q : Q ∈ N}) < ε, ∀ {Q : Q ∈ N} ∈ Sa .

Lemma 5. Let µ : Mτ → R+ be a measure in the algebra of type I I. Then, there exists a sequence
of projections {Pn} ⊂Mτ , such that Pn ↘ 0 and αµ(I − Pn) < +∞ ∀ n.

Proof. Let the sequences {an} and Qn ∈ San be such that τ(Qn) < 2−n. Put Pn = ∨k>nQk.
Then, the sequence {Pn} is the desired one. The lemma is proved.

Proof of Theorem 2. Let µ : Mτ → R+ be a measure of the algebra of type I I. Let {Pn} be
the sequence obtained from Lemma 5. According to Corollary 1, the sequence operators
Tn

µ ∈ M, such that µ(Q) = τ(Tn
µ Q) ∀ Q ≤ I − Pn. We can assume that Tn

µ = PnTn
µ Pn. It is

clear that Tn
µ = PnTm

µ Pn if n < m. This means that the sequence {Tn
µ} is fundamental in

measure τ. limn→+∞ Tn
µ = Tµ can be obtained by measure µ. It is clear that µ(Q) = τ(TµQ),

∀ Q.

A similar property, which is already in Neumann algebras of type I, is not true.

Theorem 3. Let Mτ be the set of all finite-dimensional orthogonal projections in infinite-dimensional
separable Hilbert space H. Let µ : Mτ → +R+ be a measure. In addition, let {ei}+∞

1 be the
orthonormal basis in H, such that

µ(P) = lim
n→∞

µ′(EnPEn) (2)

Here, En is orthogonal projection on subspace Hn, generated by ek k = 1, 2, . . .. Then, there
exists the bounded operator B, such that µ(P) = tr(BP) ∀P.

Proof. Place a(k, i) = µ′((·, ek)ei). The proof known to the author is based on the fact that
the matrix ‖a(k, i)‖ defines a closed symmetric operator B, which is defined everywhere.
Therefore, it is bounded. Hence, µ(BP) = tr(PB).

Note that, without condition (2), the theorem is not true
Theorem 3 was previously proved by Stinespring W.F. ([11] Theorem 2.1) He ob-

tained this proof using the fact that equality (S + N, T + N) = µ′(TS∗), here N = {T ∈
F , µ′(T∗T) = 0}, and the set F of all finite-dimensional operators from F/N , deter-
mine the structure of a pre-Hilbert space in the left module. Having replenished this
space, considering the ∗−representation of the ring F , Stinespringe obtained a number of
necessary estimates.
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Differences between the properties of measures in algebras of type I and I I are ex-
plainedby the following:

Measures in the algebras of type I are finitely additive. Therefore, singular (or, of
course, additive) measures are not excluded. Such measures are identically zero on finite-
dimensional projectors. Therefore, we needed an additional condition (2).

The measures in algebras of type I I are countably additive.
In the mathematical literature, the ideals C0(Γ) of measurable operators are studied as

an analog of the ideal of completely continuous operators. Let A be measurable operator,
and |A| =

∫
λdEλ is spectral decomposition of |A|. Then, A ∈ C0(Γ) if, and only if, for any

λ > 0, τ(I − Eλ) < +∞.
Let µ : M→ R+ be a measure of the algebra of type I I. Place

N(I, β) = {Q ∈M : in f
µ(Q′)
τ(Q′)

≥ β ∀Q′ ≤ Q.

Theorem 4. The measure µ : M→ R+, which is to be associated with the operator from C0(Γ), is
sufficient for any β > 0 and every of set mutually orthogonal projections {Pn} from N(I, β): this
shows that τ(∑n Pn) < +∞ .

Proof. Let the condition of this theorem be satisfied. For some β > 0, we chose a maximal
family {Pn} of pairwise orthogonal projections from W(β). Using τ(∑i Pn) < +∞, we
obtained µ(Q) ≤ βτ(Q) for any Q ∈ M, such that Q ≤ I −∑n Pn. According to Remark
1, we can deduce that there is a sequence of projectors {Qm} ∈M for which Qm ↗ ∑n Pn
and α(Qm) < +∞.

Then, for any Q ∈M, Q ≤ (I −∑n Pn) + Qn = Cn, we have α(Q) < +∞. According
to Remark 1, there is a sequence of bounded operators (0 ≤)Bn ∈ M, such that BnCn = Bn,
and for any P ∈M, the equalities µ(P) = τ(BnP) and Bn = CnBmCn hold, if m > n. Hence,
the sequence {Bn} is fundamental according to the measure τ. Let Bn → B, by the measure
τ. Operator B is measurable and non-negative. For any n, we have CnBCn = Bn. Hence, it
follows that µ is associated with B.

Let B =
∫

λdEλ be the spectral decomposition of B. Let us show that τ(I − Eλ) < +∞
for any λ > 0. Let {Qn} be maximal set of mutually orthogonal projections from N(I, λ).
Then, for any Q ∈M, Q ≤ I −∑n Qn, we have τ(Q) < +∞. Thus, B1/2G is bounded, and
‖B1/2G‖ ≤ λ1/2; here, G = I −∑n Qn.

Let us suppose that τ(I − Eλ) = +∞. Then, (I − Eλ) ∧ G 6= 0. Therefore, ‖B1/2G‖ ≥
λ1/2. Contradiction. The Theorem is proved.

Remark 2. The condition of Theorem 4 is not necessary.

Proof. Let (Pk,n
k=1,n=1) be a set of mutually orthogonal projections of factor N of type I I∞,

such that τ(Pk
n) =

1
n2 , k = 1, n. Let us construct this using induction Pn,k. Place Pn,1 = P1

n .
Assume Pn,k−1 has already been constructed, and let V ∈ N be a partially isometric
operator, such that VV∗ = Pn,n−1, V∗n V = Pk

n . Put

Pn,k =
1
k

Pk
n + (1− 1

k
)Pn,k−1 +

√
1
k
(1− 1

k
)(V + V∗).

Let us denote, using µM : toR+, the measure associated with K ∈ Cγ
0 . Here,

K =
∞

∑
1

n2Pn,n +
∞

∑
n=1

1
n
(

n

∑
k=1

Pk
n − Pn,n).

According to this construction, τ(∑∞
n=1 ∑n

k=1 Pk
n) = +∞. At the same time, (Pk

n)
n,∞
k=1,n=1 ∈

N(I, 1).
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Therefore, we can obtain an example of a measure that is associated with a measurable
operator from C0(γ) but does not satisfy the condition of Theorem 4.

Bilinear forms and measures Let T ≥ 0 be a self-adjoining operator that is associated
withM. Let MT = {P ∈ Π : τ(TP) < +∞}. Note: (a) the function τ(T·) is understood
in the sense of article [12]; (b) MI = Mτ . The set MT is the ideal of projections and
µ : P ∈MT → τ(TP) is a closed measure.

Let M be an ideal. Let us denote, using Mτ(M), the set

{P ∈ M : there is a f inite subset Ξ ⊂M∩Mτ , such that P ≤ ∨Q∈ΞQ}.

It is known that Mτ(M) is a projection ideal and, for any P ∈ Mτ(M), the value
of the measurement µ is calculated according to µ(Q) = τ(TPQ), ∀ Q ≤ P. Here, TP is
nonnegative operator attached toM.

Let us assume that a bilinear form a(·, ·) with domain D(a) is attached toM if, for
any unitary operator U ∈ M′, f ∈ D(a) entails U f ∈ D(a) and a( f , g) = a(U f , Ug), f ,
g ∈ D(a).

Proposition 3. Let µ : M→ R+ be a measure. Then, the equality

aµ( f , g) = (T1/2
P f , T1/2

P g), f , g ∈ D(T1/2
P ).

defines b.f. on the lineal Dµ =
⋃

P∈Mτ(M) D(T1/2
P ) attached toM.

Coversely, let a be b.f., and let Ma be the set projections from Mτ such that, for any P ∈Ma,
we have:

(a) The set PH ∩ D(a) is strongly dense with respect toMP;
(b) There is 0 ≤ AP ∈ L1(τ,M), such that a( f , g) = (A1/2

P f , A1/2
P g). Here, f ,g ∈

D(a) ∩ PH.
Then, Ma is ideal and the function µa(·) = τ(AP·) : Ma → R+ is the measure.

The idea of describing measures in terms of bilinear forms belongs to Sherstnev [13].
Proposition 3 is another version of the assertion that was proved by him.

Further, we assume that the set of projections satisfies the axioms of (i), (ii), and the
ideal, with the exception of (iii).

Note that the equality P ∧Q = 0, ∀ Q ∈Mτ(M) is equivalent to

(
⋃

Q∈Mτ(M)

QH) ∩ PH = 0.

Proposition 4. Let M → R+ be a measure and let this projection occur P ∈ Π, such that
P ∧Q = 0 for all Q ∈M. Then, the measure µ′ : M′ → R+ is shown, such that P ∈M′ and µ′ is
a continuation of µ.

Proof. Let the conditions of the theorem be satisfied. Let the lineal Dµ and bilinear form aµ

be constructed. Then, Dmu ∩ PH = 0. Let us choose 0 ≤ A ∈ L1(τ,M), such that A = AP.
Let us construct b.f. a( f , g). Place

a( f1 + g1, f2 + g2) = (A1/2 f1, A1/2 f2) + aµ(g1, g2), ∀ f1, f2 ∈ PH, g1, g2 ∈ Dµ.

Let Ma be ideal and µa be the measure constructed in Proposition 3. Then, (Mτ ∩M) ⊂Ma.
For any Q ∈ Mτ ∩M, we have µa(Q) = µ(Q). It is clear that P ∈ Ma and M ⊂ Ma.
The measure µ : Ma → R+ is the measure that was sought.

Definition 5. The measure µ : M→ R+ is said to be a locally finite measure if ∀P ∈ Π contains
Q ∈M, Q 6= 0, such that Q ≤ P.
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Earlier, we introduced an order relation for these measures. Note that, accoding to the
Zorn lemma, every measure has a maximal continuation. We can now characterize the
maximum measures.

Theorem 5. The measure µ : M→ R+ is maximal if, and only if, it is a closed and locally finite
measure.

Proof. The maximal measure must be closed and locally finite.
Conversely, let the measure µ : M→ R+ be closed and locally finite. Let the measure

µ′ : M′ → R+ be a continuation of µ. From the local finiteness of µ it follows that, for any
P ∈ M′, there is Q ≤ P, Q ∈ M, i.e., P is a hereditary finite µ- measure projection. The
closedness of µ implies P ∈M. Hence, M′ = M.

Corollary 3. The regular measure µT ;MT → R+ is maximal if, and only if, for any P ∈ Π, there
exists such a projection Q ∈ Π that QH ⊂ D(T1/2) and T1/2Q is bounded.

Note that, in factors of type I and II, the corollary is only satisfied by measurable
operators. The regular maximal measures are characterized by the fact that, for the weights
with which these measures are associated, the semifiniteness of the weight can be defined
in the same way as for traces, i.e., for any S ∈ M+ ϕ(S) = sup{ϕ(T) : T ∈ M+ : T ≤
S, ϕ(T) < +∞}.

3. σ-Finite Measure

Let us provide one more definition of an infinite measure.

Definition 6. The function µ : Π :→ [0,+∞] with µ(P) = ∑ µ(Pi) when P = ∑ Pi and
µ(I) = +∞ is said to be σ-a finite measure if a Pn ∈ Π, such that Pn ↗ I and µ(Pn) < +∞ for
any n.

We can offer an elementary description of σ-finite measures in finite algebras of type I I.

Remark 3. Let µ be a σ-finite measure in finite von Neumann algebraM of type I I. Then, there
is a unique nonnegative self-adjoint operator Tµ ∈ L1(τ,M) attached to algebraM, such that
µ(Q) = τ(QT), Q ∈ Π.

Proof. Let the sequence Pn ↗ I and µ(Pn) < +∞ ∀n. Place Qn = Q ∧ Pn for all n and
Q ∈ Π. Then, Qn ↗ Q. According to the Gleason analogy, µ(P) = τ(TnP), ∀P, P ≤ Pn.
Here, 0 ≤ Tn = PnTnPn. According to the finiteness of the algebraM, the sequence {Tn} is
fundamental according to the measure τ. Let Tµ = limTn by τ. For any Q ∈ Π

µ(Q) = lim
n

µ(Qn) = lim
n

τ(QnTn) = lim
n

τ(QTµ).

Our goal is to show that σ-finite measure extends to the weight. Let us start with the
property taken from Lemma 1.

Proposition 5. LetM be a von Neumann algebra of type I I, and µ be the σ-finite measure on Π.
Then, {P ∈ Π : µ(P) < +∞} is the ideal of the projections.

We need completely different arguments for the proof of Proposition 6. We will need a
lemma, due to Lugovay [14]. Note that the idea of the proof of this lemma, as well as of
the work [15], is inspired by the geometric idea of the work [3]. Let Bpr(H) be the set of all
orthogonal projectors.
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Lemma 6 ([14]). Let dimH = 3 and let µ : Bpr(H)→ [0,+∞] be an unbounded measure. Use the
following orthogonal projections: p, dim p = 2, µ(p) < +∞ and q, dim q = 1, and µ(q) < +∞.
Then, q < p.

Proof. Without loss of generality, we can assume that:
(a) H is a real space;
(b) the measure takes only two values: 0 and +∞.
Assume the opposite: p 6> q. Let S be the united sphere in H and ρ : S→ {0,+∞} be

a reper function corresponding to our measure

ρ(ξ) = µ((·, ξ)ξ), ξ ∈ S.

Let K = pH ∩ S and the vector η ∈ S be such that q = (·.η)η and the angle α, (α > 0)
between the vector η and the plane pH is less than π

2 . We introduce a rectangular coordinate
system into H, so that the vector η lies in the X0Y plane with the angle π

2 to the vector
(1, 0, 0) if the angle is counted counterclockwise.

We will write the coordinates of the points S in the spherical system coordinates
(ϕ, θ), where ϕ is Longitude 0 ≤ ϕ < 2π) and θ is Latitude (−π/2 < θ ≤ π/2). Thus,
η = (0, α/2). Let L be a great circle on sphere S, which touches the circle of Latitude α/2
in the point η. Note that ρ(ζ) = 0 for any point ζ ∈ L. Let us first show that ε > 0 occurs
such that

∀θ∀ζ = (ϕ, θ) (|θ| ≤ ε =⇒ ρ(ζ) = 0). (3)

To do this, we estimate the angle θ for which the vector ζ = (ϕ, θ) lies on a great circle
passing through two orthogonal vectors (ϕ1, θ1) ∈ K, (ϕ2, θ2) ∈ L. The condition ensuring
that the points (ϕ, θ), (ϕ1, θ1), (ϕ2, θ2) lie on one large circle has the form:∣∣∣∣∣∣

cosθ cosϕ cosθ sinϕ sinθ
cosθ1 cosϕ1 cosθ1 sinϕ1 sinθ1
cosθ2 cosϕ2 cosθ2 sinϕ2 sinθ2

∣∣∣∣∣∣ = 0 (4)

We consider the orthogonality of the vectors (ϕ1, θ1), (ϕ2, θ2) and whether the circles
K, L, respectively, belong to the planes z = −xtg(α/2), z = xtg(α/2) we obtained from (4)
the equation:

x2(tgθ + tgαcosϕ)− 2xsinϕtgα + (1− tg2α)(tgθ − tgαcosϕ) = 0.

From here
tg2θ ≤ sin2 ϕtg2α/(1− tg2α) + cos2 ϕtg2α

It follows from this inequality that, for any ϕ (0 ≤ ϕ < 2π), there is ε(ϕ) > 0, such
that ρ(ζ) = 0 for any ζ = (ϕ, θ), with the condition |θ| ≤ ε(ϕ). Hence, there is ε > 0, (ε is
independent of ϕ) for which (3).

Let us prove that, from (3), the ρ must be equal to zero in the band |θ| ≤ α, α ≥ π/4.
From here, the assertion of our lemma will follow. For this, we chose ζ1 = (π/2, 0),
ζ2 = (0, π/4), ζ3 = (0,−π/4). We have

µ(I) = µ(pζ1) + µ(pζ2) + µ(pζ3) = ρ(ζ1) + ρ(ζ2) + ρ(ζ3) = 0.

This will contradict the unboundedness of the measure.
Consider two orthogonal vectors (0, ε), (ϕ,−ε) on the sphere S, such that cosϕ =

tg2(ε). The great circle passing through these points lies in the plane

xsinϕtgε− ytgε(1 + cosϕ)− zsinϕ = 0.

This great circle touches the circle of the sphere S Latitude ε1. Here, cosεε1 =
√

cos2ε,
(such that ε1 > ε).
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Note that the reper function ρ = 0; therefore, this could occur at any point in the
sphere S lying in the strip |θ| ≤ ε1. Repeat this procedure for angle ε1. We can obtain
cosε2 =

√
cos2ε1 =

√
2cos2ε− 1 < cos2ε. Thus, ε2 > 2ε.

It is not difficult to see that the proof of lemma 6 can be carried out in terms of vectors
as well as projections.

Note that the proof of Lemma 6 can e generalized to the direct integral of factors of
type I3.

We can interpret the proof of lemma 6 as the proof of lemma 7 (this lemma will be
needed to prove Proposition 5). Note that Propositions 1–3 and Lemma 7 are statements of
the same order.

Lemma 7. Let dimH = 3, and let µ : Bpr(H) → [0,+∞] be a measure. This allows for the
orthogonal projections p, (dimp = 2, µ(p) < +∞), q, (dim q = 1, µ(q) < +∞) and ‖qp‖ < 1.
Then, µ is a finite measure.

We can then proove Proposition 5.

Proof. It is only necessary to show that if P, Q ∈ Π is such that:
(i) µ(P) < +∞, µ(Q) < +∞ and (ii) ‖PQ‖ < 1. Then, µ(P ∨Q) < +∞.
Let P, Q be in a general position, i.e., P ∧Q = (1− P) ∧Q = P ∧ (I −Q) = 0.
Note that the condition implies P = P∆PQ and Q = P∆QP. This means that P ∼ Q. It is

sufficient for us to prove that µ(P ∨Q− P) < +∞.
(1) First, we assume that P, Q ∈ Mτ . Let (P ∨ Q − P)Q = W|(P ∨ Q − P)Q| and

QP = V|QP| be a polar decomposition of (P ∨Q− P)Q and QP, respectively.
To bring the notation closer to the proof of Lemma 6, let us use Z to denote the

projection P ∨Q− P.
Let us find projections Z1, Z2, such that Z1 ∼ Z2, Z1 + Z2 = Z (hence, τ(Zi) =

(1/2)τ(Z) i = 1, 2). Let Qi ≤ Q be such that Zi = P∆(P∧Q−Q)Qi
. Place Pi = P∆PQi , i = 1, 2.

Using the construction, P1 ∼ P2.
Let us use R(Pi, Qi) to denote the von Neumann algebra generated by Pi, Qi and VPi,

W∗Zi with unity P + Zi.
It is well-known ([9]) that there is a central representation R(Pi, Qi) =

∫ ⊕ L(t)dm(t) for
the direct integral of factors of the type I3, i.e., Pi =

∫ ⊕ P(t)dm(t) and Qi =
∫ ⊕ Q(t)dm(t).

Here, P(t), Q(t) are projections that occur almost everywhere in the measure m. It clear
that P ∨Q− P =

∫ ⊕
(I(t)− P(t))dm(t) and P + Xi are unity operators in R(Pi, Qi).

Place ‖PQ‖ = c, c < 1. Then, ‖P(t)Q(t)‖ ≤ ‖Q ∨ P‖ almost everywhere in the
measure m. This means that we can restate the proof of Lemma 6 in terms of a direct
integral. By doing this, we obtain the statement of Lemma 7. Thus, µ(Zi) ≤ +∞, for all i.
Hence, µ(P ∨Q− P) = µ(Z1) + µ(Z2) < +∞ and µ(P ∨Q) < +∞. Applying Proposition
2, we obtain the following enhancement µ(P ∨Q) ≤ (1− ‖PQ‖)−1(µ(P) + µ(Q))

(2) Let P, Q /∈Mτ . Let sequences Pn ↗ P and Qn ↗ Q and Pn, Qn ⊂Mτ . We have
‖PnQn‖ ≤ ‖PQ‖. Hence,

µ(P ∨Q) = lim
n

µ(Pn ∨Qn) ≤ lim
n
(1− ‖PnQn‖)−1(lim

n
µ(Pn) + lim

n
µ(Qn)) ≤

(1− ‖PQ‖)−1(µ(P) + µ(Q)).

(3) The last inequality carries over to the general case of projections P, Q. Proposition
5 is proved.

Let us continue the study of the σ-finite measure. Our goal is to continue the mea-
sure. Considering Proposition 5, we could use the results of §1. However, we will use
another method.
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Let us denote, using Mτ(Mµ), the set

{P ∈ Π : there is f inite subset Φ ⊂Mτ ∩Mµ such that P ≤ ∨Q∈ΦQ}

It is clear that the set Mτ(Mµ) is a lattice. It is clear that the restriction of µ on the
reduction algebraMP, P ∈Mτ(Mµ) is a σ-finite measure. Operator TP = TPP exists, such
that µ(Q) = τ(TPQ) ∀ Q ≤ P. Put

Dµ =
⋃

P∈Mτ(Mµ)

(D(T1/2
P )

⋂
PH)

The set Dµ is a strongly dense set.
Here, the equality t( f , g) = (T1/2

P f , T1/2
P g) is P ∈Mτ(Mµ) and f , g ∈ PH, defining a

bilinear form.

Definition 7. An operator X ∈ M+ is said to be integrable, if there exists AX ∈ L+1 (τ,M),
such that for any Q ∈ Mτ we have t(X1/2 f , X1/2g) = (AX f , g). Here, f , g derive from some
strongly dense set with respect toMQ. Let us denote the set HQ

X1/2 .
LetM+

µ be the set of all integrable operators.

Proposition 6. The setM+
µ is a hereditary cone. If P ∈Mµ then P ∈ M+

µ .

Proof. (1) Let us establish the heredity of M+
µ . Let 0 ≤ Y ≤ X ∈ M+

µ , Y ∈ M+. Let
A ∈ M, such that Y1/2 = X1/2 A∗. Let Q be the projection of P∆A∗P, meaning that P ∈Mτ .
As is known [10], the set HP

Y1/2 = { f ∈ PH : A∗ f ∈ HQ
X1/2} is strongly dense with respect

toMP and for any f , g ∈ HP
Y1/2

t(Y1/2 f , Y1/2g) = t(X1/2 A∗ f , X1/2 A∗g) = (AX A∗ f , A∗g) = (AAX A∗ f , g).

The operator AY = AAX A∗ is desired. The heredity ofM+
µ is proven.

Note that AX−Y = BAXB∗, here B ∈ M, such that (X−Y)1/2 = X1/2B∗.
(2) Let X, Y ∈ M+

µ . Let us prove that Z = X + Y ∈ M+
µ . There exists A, B ∈ M

with X1/2 = Z1/2 A∗ and Y1/2 = Z1/2B∗. In addition, the operator A∗A + B∗B is an
orthogonal projection on ∆Z [9] and X1/2 A + Y1/2B = Z1/2. For any Q ∈ Mτ , the lineal
{ f ∈ QH : (X1/2 A + Y1/2B) f ∈ Dµ} is strongly dense with respect to MQ. Hence,
the lineal

N Q
Z1/2 = { f ∈ QH : Z1/2 f ∈ Qµ} ∩ { f ∈ QH : A f ∈ D(AX), B f ∈ D(AY)}.

is also strongly dense. We substitute the operator Z1/2 for X1/2 A + Y1/2B. We obtain

t(Z1/2Q f , Z1/2Q f ) ≤ 2[t(X1/2 A f , X1/2 A f ) + t(Y1/2B f , Y1/2B f )] =

= 2[(AX A f , AF) + (AYBF, B f )] = 2(A∗AX A + B∗AYB)QF, Q f ). (5)

for any f ∈ N Q
Z1/2 . According to this definition, ∪Q≤PN Q

Z1/2 is a strongly dense lineal in
PH for any P ∈ Π. Place K = A∗AX A + B∗AYB. Note that K ∈ L1(τ,M). Hence, for any
ε > 0, there exists Pε ∈ Π with τ(I − Pε) < ε and KPε is bounded. By (2), the restriction
of t(Z)1/2·, Z1/2·) on ∪Q≤Pε

N Q
Z1/2 is bounded. Hence, operator Aε = Pε Aε ∈ M+ exists,

such that
t(Z1/2 f , Z1/2g) = (Aε f , g), f , g ∈ ∪Q≤Pε

N Q
Z1/2

Place ε = 1/n. We chose an increasing sequence P1/n ↗ I. Then, A1/m = P1/m A1/nP1/m,
m < n and A1/n is fundamental by τ. Place A1/n → A by τ. Of course, A ≥ 0. Using (3),
τ(A1/n) ≤ 2τ(K). Hence, τ(A) ≤ τ(K). Put AZ = A.
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For any Q ∈ Mτ , the linear D = ∪n(Q ∧ P1/n)H is strongly dense with respect to
MQ. Therefore, the lineals D ∩ D(AZ) and HQ

Z1/2 = N Q
Z1/2 ∩ D ∩ D(AZ) are similar. For

any f ,g ∈ HQ
Z1/2 there is n, such that f , g ∈ P1/n H. Then, t(Z1/2 f , Z1/2g) = (A1/n f , g) =

(A f , g). We used the equality A1/n = P1/n AP1/n. Therefore,M+
µ is a hereditary cone.

Let P ∈ Mµ. Then, operator AP = APP ∈ L2(τ,M) occurs, such that µ(Q) =
τ(APQ), ∀ Q ≤ P. Analogous with the previous equation, we can see that P ∈ Mµ. The
proposition is proved.

Place µ(X) = +∞ if X ∈ M+\M+
µ , and µ(X) = τ(AX), if X ∈ M+

µ .
Let us remember that AY = AAX A∗, AX−Y = BAXB∗. Operator B∗B + A∗A = P is

the orthogonal projection on (B∗B + A∗A)H and AXP = AX . Hence,

µ(X) = τ(AXP) = τ(AX(B∗B + A∗A)) = (6)

τ(BAXB∗) + τ(AAX A∗) = µ(X−Y) + µ(Y).

Hence, the corollary is true

Corollary 4. The function µ(·) is a weight that continues the measure µ.

Proposition 7. The weight µ(·) is normal if {Xn} ⊂ M+
µ and Xn ↗ X ∈ M+

µ have a strong
operator topology. Then, µ(Xn)↗ µ(X).

Proof. Let the proposition conditions be fulfilled. According to (6) µ(X) = µ(Xn) + µ(X−
Xn). Hence, µ(Xn) ≤ µ(X) and µ(Xn) ≤ µ(Xn+1) for all n. To prove Proposition 6, we
used the following property: AX−Xn = Bn AXB∗n, here Bn ∈ M, ‖Bn‖ ≤ 1, such that
(X − Xn)1/2 = X1/2B∗n = BnX1/2. As X − Xn ↘ 0, then Bn → 0 is a strong operator
topology. Therefore, µ(X− Xn) = τ(Bn AXB∗n)↘ 0. Thus, µ(Xn)↗ µ(X).

Another example of measures of projections and the logics of projections is provided
by the consideration of perfect Hilbert algebras and Tomita’s theory [16].

The proofs of the corresponding assertions for perfect algebras known to the author
are quite extensive and are not the aim of this paper.
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